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Abstract

Sometimes, in real applications, we have to consider the
use of non-commutative operators. However, it is in-
teresting to be able to “balance” of “soften” the non-
commutative character of the involved operators.

There exist some approaches to the construction of
concept lattices based on non-commutative conjunctors
L × L → L, but are based on the fact that the supports
of the fuzzy subsets of both objects and attributes has to
coincide.

Our contribution in this work is to present sufficient
conditions in order to be able to construct concepts in a
generalized fuzzy context in which the domain of the un-
derlying conjunctors can be L1 × L2 with L1 6= L2.

Keywords: concept lattices, multi-adjoint lattices, Galois
connection, implication triples.

1 Introduction

Since its introduction by Wille in the eighties, formal con-
cept analysis has become an important and appealing re-
search topic both from a theoretical perspective [17,26,29]
and from the applicative one. Regarding applications, we
can find papers ranging from ontology merging [11, 24],
to applications to the Semantic Web by using the notion
of concept similarity [12], and from processing of medical
records in the clinical domain [14] to the development of
recommender systems [9].

Soon after the introduction of “classical” formal con-
cept analysis, a number of different approaches for its gen-
eralization were introduced and, nowadays, there are works
which extend the theory with ideas from fuzzy set the-
ory [3, 20, 21] or fuzzy logic reasoning [2, 5, 10] or from
rough set theory [19,27,30] or some integrated approaches
such as fuzzy and rough [28], or rough and domain the-
ory [18].

In this paper we concentrate on the fuzzy extensions
of formal concept analysis, for which a number of different
approaches have been presented. To the best of our knowl-
edge, the first one was given in [7], although they did not
advance much beyond the basic definitions, probably due to
the fact that they did not use residuated implications. Later,
in [3, 25] the authors independently used complete resid-
uated lattices as structures for the truth degrees; for this

approach, a representation theorem was proved directly in
a fuzzy framework in [4], setting the basis of most of the
subsequent direct proofs.

In recent years there has been an increased interest
in studying formal concept analysis on the perspective of
using non-commutative conjunctors. This is not a mere
mathematical generalization, but a real need since, for in-
stance, when one learns a conjunction from examples it is
not unusual that the resulting conjunction does not satisfy
commutativity.

Different authors have argued in favour of considering
non-commutative conjunctors. Actually, there exist quite
reasonable examples of non-commutative and even non-
associative conjunctors defined on a regular partition of the
unit interval, see [23]. An often used example considers the
case in which we are looking for a hotel which is close to
downtown, with reasonable price and being new or recently
renovated, then classical fuzzy approaches would assign a
user “his/her” particular interpretation of “close”, “reason-
able” and “new”. Therefore, as in practice, we can only
recognize finitely many degrees of being close, reason-
able, new, for instance, for closeness five degrees might be
convenient in order to specify: far, non-far, foot-distance,
close and very-close; for reasonable, three values might be
enough to refer to expensive, admissible and cheap, respec-
tively; and a similar treatment could be given to new; as a
result, the corresponding fuzzy sets have always a stepwise
shape. This motivates the lattice-valued approach we will
assume in this paper: it is just a matter of representation
that the outcome is done by means of intervals of granula-
tion and/or indistinguishability.

Another example of non-conmutative conjunctors is
given when the user wants to give preference to some of its
arguments, for instance, when considering the conjunctor
&: [0, 1]× [0, 1]→ [0, 1], defined as x& y = x2y for each
x, y ∈ [0, 1].

Non-commutative logic and similarity were used to
develop new kinds of concept lattices in [13]. This ap-
proach, but in a different direction, was also extended in
an asymmetric way in [16] where the so-called generalised
concept lattices were introduced.

More recently, we can find even further generalisa-
tions, such as the variable threshold concept lattices [31]
and multi-adjoint concept lattices [23]. Such a number
of versions have been introduced that it is not surpris-
ing to discover relationships between them (see for in-
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stance [6, 15, 22]).

Multi-adjoint concept lattices were introduced [23]
to formal concept analysis is applied. With the idea of
providing a general framework in which the different ap-
proaches stated above could be conveniently accommo-
dated, the authors worked in a general non-commutative
environment; and this naturally lead to the consideration
of adjoint triples, also called implication triples [1] as the
main building blocks of a multi-adjoint concept lattice.

Following the general techniques of formal concept
analysis and based on the initial work [13], given a non-
commutative conjunctor, it is possible to provide general-
izations of the mappings for the intension and the exten-
sion in two different ways, generating a pair of concept
lattices. This approach was subsumed by the so-called t-
concept lattice in [22], whose multi-adjoint extension is the
framework we will consider in this paper.

2 Preliminary definitions

The main notion in this contribution refers to the notion of
L-connection between two complete lattices. As we will
see later, this condition will allow to somehow conciliate
the different values generated by the consideration of a non-
commutative conjunctor in the construction of a concept
lattice.

Definition 1 Given complete lattices (L1,�1), (L2,�2)
and (L,�), we say that L1 and L2 are L-connected if
there exist increasing mappings i1 : L1 → L, φ1 : L→ L1,
i2 : L2 → L and φ2 : L→ L2 verifying that

1. φ1(i1(x)) = x, and φ2(i2(y)) = y, for all x ∈ L1,
y ∈ L2;

2. t � i1(φ1(t)), and t � i2(φ2(t)), for all t ∈ L.

Example 1 Any pair of lattices (L1,�1), (L2,�2) with
top elements >1 and >2 , respectively, are (L1 × L2,�)-
connected, with the pairwise ordering, and by considering
the mappings φ1, φ2 as the projections and i1, i2 as the in-
clusions defined as i1(x) = (x,>2), i2(y) = (>1, y), for
all x ∈ L1, y ∈ L2.

A more complex example is presented below:

Example 2 Assume that, in order to perform an evaluation
of a product, for which we have to assign one value out
of four possible ones. We ask two experts to collaborate
in this task and, only when collecting the feedback from
each expert, we notice that one expert has considered the
ordering of values as in Figure 1, whereas the other has
considered that in Figure 2. In both cases, the expert has
used a suitable adjoint triple on these lattices in order to
obtain the final result of the evaluation.

In order to unify both evaluations, we want to embed
the lattices above into another one, for example, we might
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Figure 1. Lattice (L1,�1)
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Figure 2. Lattice (L2,�2)
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Figure 3. Lattice (L,�)

consider the given in Figure 3. In this case we can define
two mappings i1 : L1 → L, i2 : L2 → L as in Figure 4.

Therefore, we can define the maps φ1 : L → L1,
φ2 : L → L2 in order to satisfy the properties in Defi-
nition 1. There exist several possibilities, one of them is
shown below:

x y z t u v
φ1 a b c d c d

x y z t u v
φ2 α β γ γ δ δ

Therefore, L1 and L2 are L-connected.

Example 3 A different example arises when we consider
the lattices ([0, 1]2,≤), ([0, 1]4,≤), where [0, 1]n means
the granulated on n+1 different values of [0, 1], which pro-
vide a regular partition of [0, 1] into n pieces, for instance
[0, 1]2 = {0, 0.5, 1}, [0, 1]4 = {0, 0.25, 0.5, 0.75, 1}.

We have that [0, 1]2, [0, 1]4 are [0, 1]-connected, un-
der the lexicographic ordering, considering the mappings
i1, i2 as the inclusions i1(x) = x, i2(y) = y, for all
x ∈ L1, y ∈ L2; and φ1, φ2 defined as φ1(t) = d2 · te/2,
φ2(t) = d4 · te/4, where d e is the ceiling function. For
example, if t = 0.55, φ1(0.55) = 1, φ2(0.55) = 0.75,

2.1 Recalling t-concepts

Assuming non-commutativity on the conjunctor, directly
provides two different ways of generalising the well-known
adjoint property between a t-norm and its residuated impli-
cation, depending on which argument is fixed.
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a b c d
i1 x y u v

α β γ δ
i2 x y t v

Figure 4. Definition of i1 and i2

Definition 2 Let (P1,≤1), (P2,≤2), (P3,≤3) be posets
and &: P1×P2 → P3,↙ : P3×P2 → P1,↖ : P3×P1 →
P2 be mappings, then (&,↙,↖) is an adjoint triple with
respect to P1, P2, P3 if:

1. & is order-preserving in both arguments.

2. ↙ and↖ are order-preserving in the consequent and
order-reversing in the antecedent.

3. x ≤1 z ↙ y iff x& y ≤3 z iff y ≤2 z ↖ x,
where x ∈ P1, y ∈ P2 and z ∈ P3.

The multi-adjoint framework allows the existence of
several adjoint triples for a given triplet of lattices.

Definition 3 A multi-adjoint frame L is a tuple

(L1, L2, L,�1,�2,≤,&1,↙1,↖1, . . . ,&n,↙n,↖n)

where (L1,�1), (L2,�2) and (L,≤) are complete lattices
and, for all i = 1, . . . , n, (&i,↙i,↖i) is an adjoint triple
with respect to L1, L2, P .
Multi-adjoint frames are denoted (L1, L2, L,&1, . . . ,&n).

Given a frame, a multi-adjoint context is a tuple con-
sisting of sets of objects and attributes and a fuzzy relation
among them; in addition, the multi-adjoint approach also
includes a function which assigns an adjoint triple to each
object (or attribute).

Definition 4 Let (L1, L2, P,&1, . . . ,&n) be a multi-
adjoint frame, a context is a tuple (A,B,R, σ) such that
A and B are non-empty sets (usually interpreted as at-
tributes and objects, respectively), R is a P -fuzzy relation
R : A × B → P and σ : B → {1, . . . , n} is a mapping
which associates any element in B with some particular
adjoint triple in the frame.1

In order to make this contribution self-contained and
since we will provide a specific construction of a Galois
connection, we recall its formal definition below:

Definition 5 Let (P1,≤1) and (P2,≤2) be posets, and
↓ : P1 → P2, ↑ : P2 → P1 mappings, the pair (↑, ↓) forms
a Galois connection between P1 and P2 if and only if:

1. ↑ and ↓ are order-reversing.

2. x ≤1 x
↓↑ for all x ∈ P1.

1A similar theory could be developed by considering a mapping
τ : A → {1, . . . , n} which associates any element in A with some par-
ticular adjoint triple in the frame.

3. y ≤2 y
↑↓ for all y ∈ P2.

Given L1 and L2, L-connected, a multi-adjoint frame
(L1, L2, P,&1, . . . ,&n), and a context (A,B,R, σ), we
can define the following mappings ↑tσ : LB → LA and
↓tσ : LA → LB :

g↑tσ (a) = i1(inf{R(a, b)↙σ(b) φ2(g(b)) | b ∈ B}) (1)

f↓
tσ

(b) = i2(inf{R(a, b)↖σ(b) φ1(f(a)) | a ∈ A})(2)

Note that we can define, for each adjoint triple (&,↙,↖),
the mappings↙∗ : P × L2 → L1,↖∗ : P × L1 → L2 as
following:

z ↙∗ y = i1(z ↙ φ2(y))
z ↖∗ x = i2(z ↖ φ1(x))

for all x, y ∈ L and z ∈ P , and, if i1 and i2 are
inf-preserving, then the mappings ↑tσ : LB → LA and
↓tσ : LA → LB are equal to:

g↑tσ (a) = inf{R(a, b)↙∗b g(b) | b ∈ B} (3)

f↓
tσ

(b) = inf{R(a, b)↖∗b f(a) | a ∈ A} (4)

Therefore, if (&∗,↙∗,↖∗) is an adjoint triple, then the
mappings above are the Galois connection associated to the
frame (L,L, P,&∗1, . . . ,&

∗
n) that were introduced in [23].

These last equalities can only be written if i1 and i2
are inf-preserving,2 which is more restrictive that we need,
as we show in the following trivial example. Therefore we
will assume Equalities (1), (2).

Example 4 Given the lattices in Figures 5 and 6, we can
define two mappings i1 : L1 → L and φ1 : L → L1, as
i1(a) = e, i1(b) = f , i1(c) = g, i1(d) = g, and φ1 is the
inverse of i1, which verifying the conditions on Definition 1
but i1 is not inf-preserving.
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Figure 5. Lattice (L1,�1)
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Figure 6. Lattice (L,�)

We can also use one of the previous examples in order
to obtain another case where i1 is not inf-preserving.

For instance, if we consider the definitions of i1 and
φ1 that appear in Example 2, by writing i1(b) = t instead
of i1(b) = y and φ(t) = b instead of φ(t) = d, then i1

2We say that a map between two lattice f : L1 → L is inf-preserving
if satisfies that f(inf x, y) = inf{f(x), f(y)}, for all x, y ∈ L1
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and φ1 verify the conditions in Definition 1 but i1 is not
inf-preserving because

i1(inf{b, c}) = i1(a) = x

inf{i1(b), i1(c)} = inf{t, u} = z

and x 6= z.

Expressions (1), (2) do not coincide with those given
in [23], because they are not defined directly from a residu-
ated implication but appear also the mapping i1, i1, φ1 and
φ2. Hence, we need to prove that these mapping form a
Galois connection.

Proposition 1 Let (L1, L2, P,&1, . . . ,&n) be a multi-
adjoint frame, where L1 and L2 are L-connected, and a
context (A,B,R, σ), the pair (↑tσ , ↓

tσ

) is a Galois connec-
tion between LA and LB .

Proof: To improve readability, we will write (↑t , ↓
t

) in-
stead of (↑tσ , ↓

tσ

) and↙b,↖b instead of↙σ(b),↖σ(b).
By definition, we have to prove that:

1. ↑t and ↓
t

are order-reversing. If f1, f2 ∈ LA, f1 �1

f2, then φ1(f1(a)) �1 φ1(f2(a)) for all a ∈ A, be-
cause φ1 is increasing, now, as the implications are
order-reversing in the second argument we obtain that:

R(a.b)↖ φ1(f2(a)) �2 R(a.b)↖ φ1(f1(a))

for all a ∈ a and b ∈ B. Thus, as i2 is increasing and
by the infimum property we obtain that:

f↓t2 (b) = i2(inf{R(a.b)↖ φ1(f2(a)) | a ∈ A}
� i2(inf{R(a.b)↖ φ1(f1(a)) | a ∈ A}
= f↓t1 (b)

for all b ∈ B. The proof for ↑t is similar.

2. We need to prove that, given g ∈ LB , then g � g↑t↓
t

.
We begin from the definition of ↑t :

g↑t(a) = i1(inf{R(a, b)↙σ(b) φ2(g(b)) | b ∈ B})

for all a ∈ A. Now, applying the mapping φ1, we
obtain:

φ1(g↑t(a)) = inf{R(a, b)↙σ(b) φ2(g(b)) | b ∈ B}

for all a ∈ A. Therefore, given a ∈ A and b ∈ B the
next chain of inequalities holds by the adjoint prop-
erty:

φ1(g↑t(a)) �1 R(a, b)↙b φ2(g(b))⇐⇒
⇐⇒ φ1(g↑t(a)) &b φ2(g(b)) ≤ R(a, b)
⇐⇒ φ2(g(b)) �2 R(a, b)↖b φ1(g↑t(a))

As these inequalities hold for all a ∈ A, by applying
properties of the infimum we obtain, for all b ∈ B,
that

φ2(g(b)) �2 inf{R(a, b)↖b φ1(g↑t(a)) | a ∈ A}

Hence: g(b) � g↑t↓
t

(b) for all b ∈ B, because the
map i2 is increasing.

3. f � f↓t↑t for all f ∈ LA1 . The proof is similar. �

Hence, we define a new Galois connection from a
frame where the lattices (L1,�1) and (L2,�2) are L-
connected, using the mappings i1, i2, φ1 and φ2. There-
fore, the concepts are different and we obtain a new con-
cept lattice. In this framework, a concept is a pair 〈g∗, f∗〉
satisfying that g∗ ∈ LB , f∗ ∈ LA and that (g∗)↑t = f∗

and (f∗)↓
t

= g∗; with (↑t , ↓
t

) being the Galois connection
defined above.

Definition 6 The multi-adjoint abelianized con-
cept lattice associated to a multi-adjoint frame
(L1, L2, P,&1, . . . ,&n) and a context (A,B,R, σ),
where L1 and L2 are L-connected, is the set

ML = {〈g∗, f∗〉 | 〈g∗, f∗〉 is a concept}

in which the ordering is defined by 〈g∗1 , f∗1 〉 �
〈g∗2 , f∗2 〉 if and only if g∗1 �2 g

∗
2 (equivalently f∗2 �1 f

∗
1 ).

As (↑t , ↓
t

) is a Galois connection, the pair (ML,�) is, in-
deed, a complete lattice [8, 23].

In a similar way that we have defined the Ga-
lois connection (↑t , ↓

t

), permutating the adjoint impli-
cations we define the following operators ⇑t : LB →
LA and ⇓

t

: LA → LB , given a multi-adjoint frame
(L1, L2, P,&1, . . . ,&n), and a context (A,B,R, σ),
where L1 and L2 are L-connected:

g⇑t(a) = i2(inf{R(a, b)↖σ(b) φ1(g(b)) | b ∈ B})

f⇓
t

(b) = i1(inf{R(a, b)↙σ(b) φ2(f(a)) | a ∈ A})

It is not difficult to check that these two arrows generate a
Galois connection, because of Proposition 1, since it coin-
cides with the connection defined by Equations (1), (2), on
the multi-adjoint frame (L2, L1, P,&

op
1 , . . . ,&

op
n ) and con-

text (A,B,R, σ), being &op
i : L2×L1 → P and x&op

i y =
y&i x for all i ∈ {1, . . . , n}, since the implications are
permuted, if the initial adjoint triples are (&i,↖i,↙i) the
adjoint triples considered are: (&op

i ,↙i,↖i).
Now, we have two Galois connections (↑, ↓),

(↑op , ↓op), on which two different multi-adjoint concept lat-
tices (ML,�), (Mop

L ,�) can be defined.3 These concept
lattices can be proved to embed the concept lattices defined
by Georgescu and Popescu in [13].

As both lattices are different if at least one conjunctor
&i is non-commutative, but are certainly related since both
are defined on the same adjoint triples. This suggests to
consider the following subsets ofML ×Mop

L :

NL
1 = {(〈g, f1〉, 〈g, f2〉) | 〈g, f1〉 ∈ ML, 〈g, f2〉 ∈ Mop

L }
NL

2 = {(〈g1, f〉, 〈g2, f〉) | 〈g1, f〉 ∈ ML, 〈g2, f〉 ∈ Mop
L }

which, together with the orderings

(〈g, f1〉, 〈g, f2〉) � (〈g′, f ′1〉, 〈g′, f ′2〉) iff g � g′

(〈g1, f〉, 〈g2, f〉) � (〈g′1, f ′〉, 〈g′2, f ′〉) iff f ′ � f
3Note that the ordering relation is the same for both lattices, although

its domain might differ from one to another.
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are sublattices ofML ×Mop
L and, thus, are complete lat-

tices.
Since, if L1 = L2, the multi-adjoint concept lattices

ML×Mop
L allow to prove that the concept lattices defined

by Georgescu and Popescu in [13] can be seen as particular
cases of multi-adjoint concept latticesML×Mop

L . Specif-
ically,

Theorem 1 Given a complete generalized residuated lat-
tice (L,�,&,↙,↖) and a residuated context (A,B,R)
(defined in [13]), then there exist a multi-adjoint concept
lattice,M, such that the sublatticeN1 is isomorphic to the
non-commutative fuzzy concept lattice L (defined in [13]).

From now on, we will only consider NL
1 (the results

given forNL
1 can be proved for the other one analogously).

Moreover, we will write the elements of NL
1 as 〈g, f1, f2〉

and we will called triple concept (t-concept, in short).
Hence, if we consider a t-concept, then 〈g, f1, f2〉 sat-

isfies (g∗)↑t = f∗1 , (g∗)⇑t = f∗2 , (f∗1 )↓t = (f∗2 )⇓t = g∗,
so we consider a concept which the non-commutative of
the operators are not determinant with respect to g.

Finally, we need to prove that given a t-concept we
can obtain directly a concept inML. That is, if 〈g∗, f∗〉 ∈
ML, then we have an associated concept inM as we show
the following result.

Proposition 2 Given a context (A,B,R, σ), a frame
(L1, L2, P,&1, . . . ,&n) and the multi-adjoint concept lat-
ticeML. If 〈g∗, f∗〉 ∈ ML, then the mappings g : B →
L2, f : A→ L1, defined as: g = φ2◦g∗, f = φ1◦f∗, form
a concept of the multi-adjoint concept latticeM associated
to the frame (L1, L2, P,&1, . . . ,&n).

Proof: We need to prove that g↑ = f, f↓ = g. We will
prove the first equality and the second one follows simi-
larly.

Given a ∈ A, as 〈g∗, f∗〉 ∈ ML, we have that the
following chain of equalities:

f∗(a) = (g∗)↑t

= i1(inf{R(a, b)↙ φ2(g∗(b)) | b ∈ B})
= i1(inf{R(a, b)↙ g(b) | b ∈ B})
= i1(g↑)

Hence, applying φ1 on both members, we obtain

f(a) = φ1(f∗(a)) = φ1(i1(g↑)) = g↑(a)

�

The result above can also be applied toMop
L and we

obtain that, given a t-concept 〈g, f1, f2〉, the elements 〈φ1 ◦
g, φ1 ◦ f1〉, 〈φ2 ◦ g, φ2 ◦ f2〉 are concepts ofML andMop

L ,
respectively. Moreover, we have that

g = (i1 ◦ φ1 ◦ f1)↓ = (i2 ◦ φ2 ◦ f2)⇓

Therefore, we are presented a procedure to obtain concepts
where the non-commutative character of the operators on
the frame is avoided.

3 An application example

To begin with, we cannot use the lattices in Example 1 to
obtain non-trivial t-concepts because, in order to calculate
a fixed point g of both Galois connections, we will have to
compose the mappings i1 and φ2 (φ2 ◦ i1). This will give
us the trivial constant mapping φ2 ◦ i1(x) = >1, for all
x ∈ L1. Hence, using Cartesian product of two lattices in
order to drop the non-commutativity is not interesting.

The lattices in Example 2 can be used but we should
define specific adjoint triples and the example will not be
clarifying but confusing. Hence, in this application exam-
ple, we will use lattices similar to those in Example 3 and
the related adjoint triples will be defined from the product
t-norm.

Let us consider that we have written a scientific paper
and we still have to decide which journal the paper will be
submitted to. According to the main topics of the paper, a
number of journals are considered as potential target. The
target journal will be chosen according to several parame-
ters appearing in the ISI Journal Citation Report.

The set of attributes A is the following:

{IF, II,CHL,BP}

where we consider the “Impact Factor” (IF), the “Immedi-
acy Index” (II) the “Cited Half-Life” (CHL) and the “best
position” (BP) which means the best quartile of the differ-
ent categories under which the journal is included. The set
of objects B is:

{AMC,CAMWA,FSS, IEEE-FS, IJGS, IJUFKS, JIFS}

where the journals considered are Applied Mathematics
and Computation (AMC), Computer and Mathematics with
Applications (CAMWA), Fuzzy Sets and Systems (FSS),
IEEE transactions on Fuzzy Systems (IEEE-FS), Interna-
tional Journal of General Systems (IJGS), International
Journal of Uncertainty Fuzziness and Knowledge-based
Systems (IJUFKS), Journal of Intelligent and Fuzzy Sys-
tems (JIFS).

We will consider a multi-adjoint frame with three dif-
ferent lattices: one for handling the information taken from
the JCR, which is rounded to the second decimal digit; a
second one to handle information about the attributes, in
which we estimate steps of 0.05 in order to distinguish to
appreciate a qualitative difference; and a third one, used to
set the different levels of preference of the journal, which is
considered to be of 0.125 (hence the unit interval is divided
into eight equal pieces)

Let L = ([0, 1]20, [0, 1]8, [0, 1]100,≤,≤,≤,&∗P ) be
a multi-adjoint frame where4 &∗P : [0, 1]20 × [0, 1]8 →
[0, 1]100 is the discretisations of the product conjunctor, de-
fined as:

&∗P (a, b) =
d100 · a · be

100

4Recall that [0, 1]m denotes a regular partition of [0, 1] intom pieces.
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where · denotes the usual product of real numbers and d e
is the ceiling function.

The corresponding residuated implications of &∗P are
↙∗P : [0, 1]100 × [0, 1]8 → [0, 1]20 and ↖∗P : [0, 1]100 ×
[0, 1]20 → [0, 1]8, which are defined as:

b↙∗P a =
b20 ·min{1, b/a}c

20

b↖∗P c =
b8 ·min{1, b/c}c

8

where b c is the floor function.
The fuzzy relation between them, R : A×B → P , is

the normalization to the unit interval [0, 1] of the informa-
tion in the JCR, and can be seen in Table 1.

Table 1. Fuzzy relation between objects and attributes.

R IF II CHL BP
AMC 0.34 0.13 0.31 0.75

CAMWA 0.21 0.09 0.71 0.5
FSS 0.52 0.36 0.92 1

IEEE-FS 0.85 0.17 0.65 1
IJGS 0.43 0.1 0.89 0.5

IJUFKS 0.21 0.04 0.47 0.25
JIFS 0.09 0.06 0.93 0.25

The problem of choosing a suitable journal to submit
depends on the definition of “suitability” we have in mind.
For example, a fuzzy notion of suitability can be defined as
a journal with high impact factor, relatively big immediacy
index, more than 5.5 years of half-life and with not a bad
position in the listing of the category. Such a notion of
suitability can be defined, in the context (A,B,R, σ) where
σ(b) = &P for every b ∈ B, by the fuzzy subset f : A →
[0, 1] below:

f(IF) = 0.75, f(II) = 0.25,
f(CHL) = 0.5, f(BP) = 0.5

Now, the problem consists in finding a multi-adjoint con-
cept which represents the suitable journal as defined by the
fuzzy set f .

As any concept gets completely determined by any of
its components, it is sufficient to compute the component
f↓ which, in addition, will provide information about the
suitability (modulo f ) of every journal. As explained in
previous sections, the required computations are as follows:

f↓(AMC) = inf{R(a,AMC)↖∗P f(a) : a ∈ A}
= inf {0.34↖∗P 0.75, 0.13↖∗P 0.3,

0.31↖∗P 0.55, 0.75↖∗P 0.5}

=
b8 ·min{1, 0.13/0.3}c

8
= 0.375

For the rest of the journals, the computation is similar, ob-
taining the following results

f↓(AMC) = 0.375 f↓(CAMWA) = 0.25
f↓(FSS) = 0.625 f↓(IEEE-FS) = 0.625
f↓(IJGS) = 0.4 f↓(IJUFKS) = 0.125
f↓(JIFS) = 0

based on which, there are two suitable journals because
FSS and IEEE-FS have the same value.

Now, the user should think about other possibilities
which allow to better discriminate among the target jour-
nals. One of this can be to consider a new frame in which
the information about the attributes is considered to be in
[0, 1]8 and, in order to appreciate a qualitative difference,
the information about the journal in [0, 1]20. Therefore, the
new frame is

Lop = ([0, 1]20, [0, 1]8, [0, 1]100,≤,≤,≤, (&∗P )op)

the new Galois conection is the dual one of above, and
we obtain from the particular definition for “suitability”,
f , that:

f⇓(AMC) = 0.45 f⇓(CAMWA) = 0.25
f⇓(FSS) = 0.65 f⇓(IEEE-FS) = 0.65
f⇓(IJGS) = 0.4 f⇓(IJUFKS) = 0.15
f⇓(JIFS) = 0.1

and we have a tie again.

Finally, we will consider a new possibility, that is try-
ing to completely remove the granularity and to consider a
lattice L which embeds both [0, 1]8 and [0, 1]20. Hence, we
can consider L = [0, 1], the mappings i8, i20, φ8 and φ20

as in Example 3, and the following Galois connections:

g↑
20
8 (a) = i20(inf{R(a, b)↙∗P φ8(g(b)) | b ∈ B})

f↓
20
8 (b) = i8(inf{R(a, b)↖∗P φ20(f(a)) | a ∈ A})

g⇑
8
20(a) = i8(inf{R(a, b)↖∗P φ20(g(b)) | b ∈ B})

f⇓
8
20(b) = i20(inf{R(a, b)↙∗P φ8(f(a)) | a ∈ A})

We want to obtain a triple 〈f, g1, g2〉 ∈ NL
2 such that

〈g1, f〉 is a concept ofML and 〈g2, f〉 is a concept ofMop
L .

Table 2. t-concepts from f0

f0 f f↓
20
8 f⇓

8
20

IF 0.75 1 AMC 0.25 0.3
II 0.25 0.25 CAMWA 0.125 0.2

CHL 0.5 1 FSS 0.5 0.5
BP 0.5 1 IEEE-FS 0.5 0.65

IJGS 0.375 0.4
IJUFKS 0.125 0.15

JIFS 0 0
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Iterating the mapping ↓208 ↑
20
8 ⇓

8
20⇑

8
20 from the function

above, which we will rewrite it as f0, we will obtain a fix-
point and, as a consequence, the required triple.

In Table 2, we have the values of the triple 〈f, g1, g2〉,
and we can check that, finally, the best target journal is
IEEE-FS.

4 Conclusions

We have presented one approach to the construction of
concept lattices based on non-commutative conjunctors
which allows the underlying conjunctors to have the type
L1 × L2 → L with L1 6= L2.

The idea is to present sufficient conditions in order to
be able to construct concepts in a generalized fuzzy context
in which the domain of the underlying conjunctors L1×L2

can be adequately embedded in a common one. As a result,
our approach enables a conciliation between the different
values obtained due to the non-commutativity.
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[4] R. Bělohlávek. Lattices of fixed points of fuzzy Galois
connections. Mathematical Logic Quartely, 47(1):111–116,
2001.
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