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Abstract

In this paper we continue the coalgebraization of the structure of multilat-
tice. Specifically, we introduce a coalgebraic characterization of the notion
of finitary multi(semi)lattice, a generalization of that of semilattice which
arises naturally in several areas of computer science and provides the pos-
sibility of handling non-determinism.
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1. Introduction

Coalgebras have received special interest in recent years, specially be-
cause they are simple mathematical structures capable to theoretically de-
scribe state-based dynamical systems. Coalgebras have been applied in very
disparate areas, ranging from genetics (as in [33] where a coalgebraic study
of genetics is presented) to several research lines in Computer Science: for
instance, coalgebras have been used to describe automata or transition sys-
tems [16, 30]. In [14, 27] the specification of object-oriented systems are
given via coalgebraic operations and initial states, satisfying certain prop-
erties which are defined using bisimilarity. Other application of the theory
of coalgebras is the modelling of finite interactive computing agents [36].
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They are also used as semantic structures for logical languages [24], to de-
velop automatic theorem provers [9], and to build semantical structures for
various non-classical logics, such as modal logics, temporal logics, logics for
multi-agents system [18, 1, 32, 26, 25, 15], etc. Last but not least, coalge-
bras have been applied in quantum physics to formalize quantum spectra
underlying quantum measurements [5].

On the other hand, this paper deals with certain non-deterministic gen-
eralization of the notion of (complete) lattice. In the area of fuzzy logic
programming, numerous works have focused on the generalization of well-
known results by substituting in the semantics the structure of complete
lattice by weaker conditions. In this sense, residuated lattices are used in
[8, 35]; multi-adjoint lattices in [21, 22]; a more general structure, namely al-
gebraic domains in [28]; another generalization, based on the ordered struc-
ture of multilattice, was given in [20].

The main idea underlying the notion of multilattice is to change the
notion of supremum by the minimal elements of the set of upper bounds in
such a way that every upper bound is greater than or equal to a minimal
element of the upper bounds. Dually, every lower bound is less than or equal
to a maximal element of the lower bounds. Thus, the existence of a unique
supremum is substituted by the existence of several minimal upper bounds
(multisuprema), allowing for an alternative approach to non-determinism,
as the supremum operation is no longer deterministic: a least upper bound
need not exist, but several minimal ones.

The structure of multilattice is an example of hyperstructure [7], which
is interesting in several fields of Computer Science [29, 34]. For instance,
this structure has been used to design ATPs in temporal logics [6]; on the
other hand, the free monoid X∗ over a set X forms a multilattice under
the substring order defined as follows: given τ, ω ∈ X∗, the string τ is said
to be a substring of ω if ω = ςτυ for some ς, υ ∈ X∗ (see [17, 23] and
the references therein, just to mention a few). In the same monoid, we
also obtain a multilattice with the subsequence order given by: the string
τ is said to be a subsequence of ω if we can obtain τ by deleting elements
in ω [10, 23]. These examples are considered as important in the theory of
multilattices as the power set P(X) is in lattice theory.

The original notion of ordered multilattice was introduced by Benado
in [2] and other equivalent algebraic characterizations can be found in the
literature [13]. Unlike in the case for lattices, the existence of multisuprema
(and, dually, multiinfima) produces different structures when they are for-



mulated for pairs of elements, as in Benado’s approach, and for finite sub-
sets of any cardinality. The first definition of a similar generalized structure
which demands the existence of multisuprema for every nonempty finite sub-
set, the finitary multilattice,1 appears in [6, 19] together with an equivalent
algebraic characterization.

In [3] a coalgebraic characterization of multilattices was proposed, and
it can be viewed as a starting point for the research line carried out in this
work, whose aim is to provide a coalgebraic characterization for finitary
multisemilattices and multilattices as a step-stone towards complete2 mul-
tilattices which will lead to a thorough study of coalgebraic semantics for
fuzzy logics.

Concerning the application of the coalgebraic approach to multilattices
in the realm of fuzzy logics, our efforts pursue to fuse together two different
lines. On the one hand, it is well-known that soon after Zadeh used values of
the unit interval [0, 1] as degrees of membership of elements in a fuzzy set, his
approach was extended by Goguen [11] to the notion of L-fuzzy set, in which
a complete lattice L is substituted for the unit interval; recently, several
authors have advocated for the greater level of generality, and hence more
flexibility, provided when substituting a complete lattice L by a complete
multilattice M , considering a theory of M-fuzzy sets as a basis for fuzzy
logics [29, 20]. On the other hand, the extensive use of coalgebraic methods
in modal and other non-classical logics suggests the possibility of developing
a coalgebraic approach to fuzziness; some initial and promising results have
been presented recently in [31], where the generic framework of coalgebraic
logic has been adapted to the specific setting of fuzzy description logics in
order to prove decidability of this kind of logics with a modality to express
the adverb “probably”.

A key property in the study of this non-deterministic extension of the
notion of lattice is that of associativity. The natural extension to the non-
deterministic case turns out to be excessively restrictive, since in [19] it was
proved that a multilattice satisfying the natural definition of associativity
collapses to a lattice.

Although non-associativity arises naturally in different physical phe-
nomena, and there exist applicable non-associative algebraic structures (for

1The original term used in [19] was universal, but we prefer to change the name in
order to prevent possible misunderstandings with universal algebras.

2In a complete multilattice for any subset X of elements and a lower (resp. upper)
bound b there exist multiinfima (resp. multisuprema) between b and X .



instance Lie algebras are used in the study of particle physics), we have
focused our attention on alternative definitions of associativity. Some ap-
proaches were proposed by several authors [2, 13], but they were not really
a generalization of associativity. In [19] the notion of weak-associativity
allowed for studying multilattices in terms of interlaced multisemilattices,
in a similar form to the classical case. However, this type of associativity
does not work when changing binary by finitary multisuprema (that is, as-
suming a flexible-arity in the operator which computes multisuprema, i.e.
postulating the existence of multisuprema of finite sets of arbitrary size).

In the coalgebraic approach to binary multilattices presented in [3], a
weaker definition of associativity was introduced, the m-associativity, which
allows for providing the coalgebraic characterization of multilattices and
multisemilattices. In that reference, binary ND-coalgebras were introduced
as a new kind of coalgebras capable of providing a suitable definition of
binary multilattices. In this paper we show that finitary multilattices also
can be properly described as a coalgebra, specifically as a finitary ND-
coalgebra using this kind of associativity.

In this manuscript, we focus on the adaptation of the notion of m-
associativity to handle finitary non-deterministic operations in a way that
the coalgebraic characterization of finitary multi(semi)lattices is preserved.
The extension is not straightforward in that, opposite to what occurs with
the other properties, the recursive extension of the binary m-associativity
turns out to be too weak to characterize coalgebraically the finitary multi-
(semi)lattices.

The paper is organized as follows. Section 2 contains notational conven-
tions and recalls some technical preliminaries. In Section 3, finitary ND-
coalgebras are introduced; the natural extension of basic properties used
for coalgebraic characterization of multilattices are presented in Section 4.
The next section is devoted to analyze the most adequate extension of m-
associativity for finitary ND-coalgebras. Section 6 includes the main results
of the paper and it leads to the definition of finitary coalgebraic multisemi-
lattice as the coalgebraic version of finitary multisemilattices. The notion of
multilattice, which arises naturally from multisemilattices, also has a coal-
gebraic interpretation, which is developed in Section 7. Finally, Section 8
summarizes the results presented and outlines future work.



2. Notation and mathematical background

Given (A,≤) a partially ordered set (henceforth, poset) and B ⊆ A,
we write UBounds(B) to denote the set of upper bounds of B and, sim-
ilarly, LBounds(B) to denote the set of lower bounds of B. Moreover,
Maximal(B) and Minimal(B) stand for the set of maximal and minimal
elements of B, respectively.

Likewise, ↑ and ↓ denote the upper and lower closure operators respec-
tively. That is, for all B ⊆ A

B ↑=
⋃

b∈B

{x ∈ A | x ≥ b} and B ↓=
⋃

b∈B

{x ∈ A | x ≤ b}

In order to introduce the notion of multilattice as an ordered structure,
firstly it is necessary to define the concept of multi-supremum as an exten-
sion of supremum (resp. multi-infimum). In a poset A, a multi-supremum
of a subset B is a minimal element of the set of upper bounds of B and
through the paper, Msup(B) denotes the set of multi-suprema of B; the
notion of multi-infima is similarly defined.

The definition of multilattice will be based on that of multisemilattice,
which is given below:

Definition 2.1. A join-multisemilattice is a poset (M,≤) in which, for all
a, b, x ∈ M with a ≤ x and b ≤ x, there exists z ∈ Msup{a, b} such
that z ≤ x. The dual concept of a join-multisemilattice is called meet-
multisemilattice.

A poset (M,≤) is said to be a multilattice if it is a join and meet-
multisemilattice.

Notice that (A,≤) is a join-multisemilattice wheneverUBounds{a, b} ⊆
(Msup{a, b}) ↑ for all a, b ∈ A, and is a meet-multisemilattice whenever
LBounds{a, b} ⊆ (Minf{a, b}) ↓ for all a, b ∈ A.

The previous definition is consistent with the existence of two incom-
parable elements without any multi-supremum or multi-infimum. In other
words, Msup{a, b} and Minf{a, b} can be empty. Moreover, if Msup{a, b}
and Minf{a, b} are singletons for all {a, b}, then (M,≤) is a lattice, which
implies that multilattices are more general structures than lattices.

In the concept of ordered multisemilattice, minimal upper bounds (multi-
suprema) play the role of least upper bounds in a lattice (analogously for
the dual). The main difference that is noticed is that the operators which



compute multi-suprema are not single-valued, because there may be sev-
eral multi-suprema or may be none. The following examples show several
specific features of multilattices.

Example 2.1. Let (A,≤) be the poset whose diagram is:
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(A,≤) is a meet-multisemilattice, but not a join-multisemilattice because

UBounds{a, b} = {e} ∪ {ci, di}i∈N 6⊆ (Msup{a, b}) ↑= {e} ∪ {di}i∈N

Example 2.2. Let us consider the poset A whose diagram is
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Notice that (A,≤) is a join-multisemilattice. However, the set {u1, u2, . . . }
of all upper bounds of the set H = {a, b, c} has no minimal elements.



It is well-known that an equivalent definition of a semilattice involves
finite nonempty subsets instead of pairs of elements [12]. However, in the
realm of multisemilattices, the corresponding extension to finite subsets
generates a new structure which will be called finitary multisemilattice [19].

Definition 2.2. A finitary join-multisemilattice is a poset (M,≤) such
that, for all finite H ⊆ M there exists z ∈ Msup(H) satisfying z ≤ x for
all x ∈ UBounds(H). The dual concept of finitary join-multisemilattice is
called finitary meet-multisemilattice.

A poset (M,≤) is said to be a finitary multilattice if it is both a finitary
join and meet-multisemilattice.

Notice that the definition above is equivalent to saying that the poset
(M,≤) is a finitary join-multisemilattice if UBounds(H) ⊆ (Msup(H)) ↑
for all finite subset H ⊆ M , and is a finitary meet-multisemilattice if
LBounds(H) ⊆ (Minf(H)) ↓ for all finite subset H ⊆ A

In order to deal with finitary multilattices from an algebraic point of
view, let us introduce the notion of non-deterministic operator of flexible
arity as a mapping from n-tuples, for n ∈ N, to subsets. This notion gener-
alizes that of the non-deterministic operator originally introduced in [19].

Definition 2.3. A non-deterministic operator with flexible arity in X is a
function

F : X∗ −→ P(X)

where X∗ =
⋃

n∈NX
n is the set of strings in X.

Given U ⊆ X , we will consider the extension of F as follows

F (x1, . . . , xi−1, U, xi+1, . . . , xn) =
⋃

u∈U

F (x1, . . . , xi−1, u, xi+1, . . . , xn)

As a consequence, F (x1, . . . , xi−1,∅, xi+1, . . . , xn) = ∅.
Notice that Maximal( ), UBounds( ) and Msup( ) and their dual

operators can be considered as non-deterministic operators of flexible arity
in a poset. For instance, given (X,≤) a poset, Msup( ) : X∗ −→ P(X) is
defined as

Msup(ω) = Msup{x1, x2, . . . , xn} for all ω = x1x2 · · ·xn ∈ X∗.



3. Finitary ND-coalgebras

In [3] binary ND-coalgebras were introduced as a new kind of coalgebras
capable of providing a suitable definition of multilattices. As stated in the
introduction, in this work we focus on the coalgebraic characterization of
finitary multilattices, and to begin with, we need a convenient generalization
of the notion of binary ND-coalgebra which allows for defining the flexible
arity ND-operators. This extended structure, introduced in this section,
will be called finitary ND-coalgebra.

In order to formally introduce the notion of finitary ND-coalgebra, some
knowledge of elementary notions of category theory will be assumed: essen-
tially, the notions of object and morphism in a category, and functor as a
morphism between categories.

A type (or signature) is a non-trivial endofunctor in the category Set of
sets, T : Set → Set. A coalgebra of type T is a pair (A, α) consisting of a
set A and a map α : A → T (A).

The types of the coalgebras we are concerned with, are related to the
(covariant) powerset functor, also called direct image functor. Specifically,
we consider Set-functors mappings object X to P(Xn), for any n ∈ N.
This collection of Set-functors allow for many non-deterministic structures
to benefit from a coalgebraic treatment.

Definition 3.1 ([3]).

1. Given n ∈ N, the functor Tn : Set → Set is defined as follows:

• if X is a set then Tn(X) = P(Xn)

• if f : X → Y is a morphism then Tn(f) : P(Xn) → P(Y n) is the
morphism given for all X ⊆ Xn, by

Tn(f)(X ) = {(f(x1), . . . , f(xn)) | (x1, . . . , xn) ∈ X}

2. The class of ND-functors in the category Set is defined as the least
set NDF containing Tn for all n ∈ N, and closed for the product of
functors, that is if T is a subset of NDF, then the product

∏

T ∈T T is
in NDF.

3. An ND-coalgebra is a coalgebra of type an ND-functor T , namely, a
pair A = (A, α) where α is a mapping α : A → T (A).

Example 3.1. Functors given by X → P(Xn1) × · · · × P(Xnr), where
r ∈ N, r ≥ 1 and n1, . . . , nr ∈ N, are ND-functors.



Throughout the paper, given an ND-coalgebra A = (A, α) of type T ,
for every a ∈ A, the element α(a) ∈ T (A) will be denoted by αa. We will
write N+ to denote Nr {0}.

Definition 3.2.

1. An n-ary ND-coalgebra (briefly (n)-ND-coalgebra) is an ND-coalgebra
of type Tn.

2. A finitary ND-coalgebra is one of type
∏

n∈N+

Tn. In other words, a

finitary ND-coalgebra is a pair (A, α) where α : A →
∏

n∈N+

Tn(A).

Definition 3.3. Let A = (A, α) be a finitary ND-coalgebra; given n ∈ N+,
the n-factor of A is defined as the (n)-ND-coalgebra An = (A, αn), where

αn = πn ◦ α and πn :
∏

m∈N+

P(Am) → P(An) denotes the natural projection.

Remark 3.4. Given a finitary ND-coalgebra (A, α) and a ∈ A, there are
several possible interpretations of an element αa:

1. Since for n ≥ 1, P(An) ≃ P(A)A
n−1

, αa can be determined if we know
the subset that αn

a assigns to an arbitrary element of An−1, for all n.

2. The element αa can be written as (αn
a)n∈N+, where αn

a ∈ P(An).

3. Finally, αa can be regarded as a non-deterministic operator

αa : A
∗ → P(A) by defining3 αa(ω) =

{

α1
a if ω = ε

αn+1
a (ω) if ω ∈ An, n 6= 0

Notice that, in particular, a finitary ND-coalgebra can be also consid-
ered as a coalgebra whose type is the functor A → P(A)A

∗

. In order to
distinguish this interpretation from the one given in the first construction
(Definition 3.2) it will be henceforth denoted T∗.

Concerning morphisms between finitary ND-coalgebras, as a particular
case of ND-coalgebras, all the considerations presented in [3] apply. Specifi-
cally, it was shown that the standard notion of morphism in the category of
T -coalgebras, for an arbitrary type T ,4 is not suitable for the construction
of a category of ND-coalgebras.

3Note that the empty string is denoted by ε.
4The class of all T -coalgebras forms a category in which the morphisms are defined

as follows: given A = (A,α) and B = (B, β) two T -coalgebras, a map f : A → B is a
standard homomorphism of coalgebras if T f ◦ α = β ◦ f .



The most adequate definition of morphism, following Benado’s initial
ideas, is given by relaxing the condition required by substituting an inclusion
for the equality sign.

Definition 3.5. Let T be an ND-functor. A function f : A → B between
two T -coalgebras (A, α) and (B, β) is said to be a Benado-homomorphism
of coalgebras if (T f ◦ α)(a) ⊆ (β ◦ f)(a) for all a ∈ A.

It is straightforward to show that the identity map is always a Benado-
homomorphism and the composition of two Benado-homomorphisms is again
a Benado homomorphism. Moreover, finitary ND-coalgebras constitute a
subcategory of this category of ND-coalgebras.

In adition, it is not difficult to see that any morphism between two
finitary ND-coalgebras (A, α) and (B, β) is also a morphism between the
n-factors (A, αn) and (B, βn), for all n ∈ N+.

4. Towards finitary coalgebraic multisemilattices: first results

In [19] it was shown that the generalization of multilattices to finitary
multilattices is non-trivial due to the difficulty of obtaining a suitable ex-
tension of the associative property. We will have to face a similar problem,
in terms of coalgebras, in passing from binary to finitary ND-coalgebras. In
fact, some properties of binary ND-coalgebras can be extended as expected
to finitary ND-coalgebras, but the notion of m-associativity for binary ND-
coalgebras from [3] cannot be extended in a straightforward way to the fini-
tary case. In [3] we obtained a coalgebraic characterization of multilattices
as a doubly binary ND-coalgebra consisting of two properly assembled coal-
gebraic multisemilattices, which are binary ND-coalgebras satisfying certain
properties (see Definition 32 in [3]).

In this section our aim is to obtain a coalgebraic characterization of
finitary multisemilattices as finitary ND-coalgebras. It is reasonable to be-
lieve that we can characterize a finitary multisemilattice as a finitary ND-
coalgebra satisfying certain properties similar to those of binary coalgebraic
multisemilattices. In fact, a finitary coalgebraic multisemilattice will be a
finitary ND-coalgebra such that it is commutative, m-associative, separat-
ing, strongly secondary reflexive and all the elements are self-conscious.



On the recursive structure of finitary ND-coalgebras

From Definition 3.2, if (A, α) is an (n)-ND-coalgebra with n > 0, then
(A, αa) is an (n−1)-ND-coalgebra, for all a ∈ A. This property enables the
recursive construction of the definitions presented in this section.

Schema of recursive extension. The recursive definition of the properties
that we will use follows the scheme below:

1. Depending on the property, the base case will be given for unary or
binary ND-coalgebras (that is (1)- or (2)-ND-coalgebras).

2. The generalization for an (n)-ND-coalgebra, will be specified in each
case, via the so-called recursive generator.

3. We will say that the property is verified for a finitary ND-coalgebra
A = (A, α), if it is satisfied for the n-factor of A for all n ∈ N+.

As a first example of extension of binary properties to the finitary case
via the schema of recursive extension, let us consider the property of com-
mutativity:

The base case is that given in [3] for a binary ND-coalgebra, that is,
αa(b) = αb(a) for all a, b ∈ A. Its finitary extension is done in terms
of the recursive extension as follows: (A, α) is commutative if (A, αa) is
commutative, for all a ∈ A.

Now, by using the third interpretation of finitary ND-coalgebra showed
in Remark 3.4, the following definition naturally arises:

Definition 4.1. A finitary ND-coalgebra A = (A, α) is commutative if

αa(x1x2 · · ·xn) = αa(xσ(1)xσ(2) · · ·xσ(n))

for every permutation σ and n ∈ N+ and

αa(xω) = αx(aω)

for every a, x ∈ A and ω ∈ A∗.

In [3], an element a of a (2)-ND-coalgebra (A, α) was defined to be self-
conscious if a ∈ αa(a) and isolated if {a} = αa(a). Both concepts can be
generalized for finitary ND-coalgebras.

Definition 4.2. An element a of a finitary ND-coalgebra A = (A, α) is:5

5Note that when we have ((((αn

a
1

)a
2
)a

3
) . . . )a

m

, using multiplicative notation in the
subscripts we will write αn

a
1
...a

m

. In particular, αn

a...a
= αn

a
m .



1. self-conscious if for all a ∈ A and all n ∈ N+ a ∈ αn
an−1 .

2. isolated if for all a ∈ A and all n ∈ N+, αn
an−1 = {a}.

Example 4.1. From a poset (A,≤), a finitary ND-coalgebra (A, α) can
be defined by αa(ω) =

⋃

x∈ω UBounds(a, x) for all a ∈ A, and ω ∈ A∗.
Every element of A is self-conscious but not necessarily isolated.

Example 4.2. Considering the set of real numbers R, for every x ∈ R and
ω ∈ R∗, let αa(ω) denote the smallest closed interval containing a and the
elements of ω. Clearly, all the elements of the finitary ND-coalgebra (R, α)
are isolated.

Recall from [4] that a binary relation R in a set X is said to be strongly
secondary reflexive if the following condition holds

x ∈ R(y) implies R(x) = {x}, for all x, y ∈ X

That is, R is the identity relation when restricted to R(X) =
⋃

x∈X

R(x).

A binary ND-coalgebra (A, α) is defined to be strongly secondary re-
flexive (see [3]) if αx is a strongly secondary reflexive binary relation, for
all x ∈ A. So, a finitary ND-coalgebra A = (A, α) is strongly secondary
reflexive if it satisfies the schema of recursive construction, with the follow-
ing recursive generator: an (n)-ND-coalgebra (A, α) with n > 1 is strongly
secondary reflexive if x ∈ αn

an implies αn
xn = {x}.

An equivalent presentation in terms of the elements of the coalgebra, is
given in the following definition:

Definition 4.3. A finitary ND-coalgebra (A, α) is strongly secondary re-
flexive if and only if

a) x ∈ αa(ε) implies {x} = αx(ε) for all x, a ∈ A and

b) x ∈ αa(ωy) implies {x} = αa(ωx) for all x, y ∈ A, ω ∈ A∗.

If the finitary ND-coalgebra is both commutative and strongly secondary
reflexive, the previous conditions can be rewritten in a much simpler way
as {x} = αx(ω) for every x ∈ αa(ω).

In a strongly secondary reflexive finitary ND-coalgebra, it is easy to
prove that the properties of self-consciousness and isolation coincide. As
this fact will be used later, we will formally state it as follows:



Proposition 4.4. In a strongly secondary reflexive finitary ND-coalgebra
an element is self-conscious if and only if it is isolated.

The simple fact that two different upper (lower) bounds or two different
multisuprema (multiinfima) of the same subset cannot be related in a poset,
provides an important property to be taken into account when the poset is
viewed from a coalgebraic point of view. In binary coalgebras this property
was called separation (Definition 20 of [3]). We will use the same term for
finitary ND-coalgebras.

A binary ND-coalgebra (A, α) is defined to be separating if x, y ∈ αa(b)
and x ∈ αx(y) then x = y for all a, b, x, y ∈ A. So, a finitary ND-coalgebra
A = (A, α) is separating if it satisfies the schema of recursive extension, with
the following recursive generator: an (n)-ND-coalgebra (A, α) with n > 2
is separating if (A, αa) is a separating (n− 1)-ND-coalgebra, for all a ∈ A.

As above, this property can also be formulated by means of the elements
of the coalgebra. For this reason, we can give the following definition:

Definition 4.5. A finitary ND-coalgebra (A, α) is separating if and only if
(A, α2) is separating and

if x, y ∈ αa(ωbc) and x ∈ αa(ωxy) then x = y

for all a, b, c, x, y ∈ A, ω ∈ A∗.

5. On a suitable notion of associativity

As stated in the introduction, a suitable extension of associativity for the
coalgebraic characterization of finitary multilattices is not straightforward
by using the schema of recursive extension as in the other properties in
the previous section. The reason is that the multisuprema of sets of three
elements, in general, cannot be described in terms of pairs, see Example 5.1
below, and the general expression of associativity needs three elements to
be stated.

Example 5.1. Consider the multilattice depicted below:
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The solution we propose considers finitary ND-coalgebras as coalgebras
of type T∗ (see at the end of Section 3).

Definition 5.1. A finitary ND-coalgebra (A, α) is said to be m-associative
if for elements a, b ∈ A and ω ∈ A∗ satisfying αa(bω) = {a}, the following
inclusion holds

αa(γ) ⊆
⋂

ωγ=ω′γ′

αa(αb(ω
′)γ′) for all γ ∈ A∗. (1)

If the inclusion in (1) is an identity, the finitary ND-coalgebra will be called
strongly m-associative.

Example 5.2. The finitary ND-coalgebra (R, α) defined in Example 4.2 is
m-associative; in fact, in this case, all the sets αa(αb(ω

′)γ′) in (1) coincide
with αa(γ), for all a, b ∈ R, γ ∈ R∗, so it is strongly m-associative.



Example 5.3. Consider the set X = {x1, x2, x3, x4} and α : X → P(X)X
∗

as follows:

αxi
(ε) = {xi}; αxi

(xi · · ·xi) = {xi} for all i ∈ {1, 2, 3, 4}

αxi
(xj) is described in the figure below for all i, j ∈ {1, 2, 3, 4}

x4 x3

x1 x2

αx1

x4 x3

x1 x2

αx2

x4 x3

x1 x2

αx3

x4 x3

x1 x2

αx4

and αxi
(ω) = X otherwise. The finitary ND-coalgebra (X,α) is m-associative

but not strongly m-associative because αx1
(x1) = {x1} but taking γ = x2, in

the left-hand side of the inclusion (1), we have αx1
(x2) = {x2, x3}, whereas

in the right-hand side

⋂

x2=ω′γ′

αx1
(αx1

(ω′)γ′) = αx1
(αx1

(x2)) ∩ αx1
(x1x2) =

αx1
({x2, x3}) ∩X = {x2, x3, x4}.

Example 5.4. Let Z be the ring of integer numbers ordered with the di-
visibility relation. For a ∈ Z and ω ∈ Z∗, consider αa(ω) as the set of
prime numbers dividing both a and all the elements in ω. The finitary ND-
coalgebra (Z, α) is strongly secondary reflexive, commutative, separating and
m-associative. Only the prime elements are self-conscious.

Now, we have all the required properties defined in the finitary case.
The rest of this section includes some useful technical results which arise as
consequences of several combinations of properties.

Proposition 5.2. Let (A, α) be an m-associative finitary ND-coalgebra whose
elements are isolated. Then, for all a ∈ A and ω ∈ A∗,

(i) αa(ω) ⊆
⋂

ω=ω′γ′

αa(αa(ω
′)γ′). In particular, αa(ω) ⊆ αa(αa(ω)).

(ii) αa(ω) ⊆ αa(aω) = αa(a · · ·aω).

(iii) αa(ωa) ⊆ αa(ω) if αa(ω) = {a}.



Proof:

(i) Consider a ∈ A and ω ∈ A∗. As αa(aε) = αa(a) = {a}, by m-
associativity

αa(ω) ⊆
⋂

εω=ω′γ′

αa(αa(ω
′)γ′) =

⋂

ω=ω′γ′

αa(αa(ω
′)γ′)

(ii) As αa(aa) = {a}, then αa(ω) ⊆
⋂

aω=ω′γ′

αa(αa(ω
′)γ′). Taking ω′ = a and

γ′ = ω, we deduce that

αa(ω) ⊆ αa(αa(a)ω) = αa(aω).

Consequently, we also have that αa(aω) ⊆ αa(a · · ·aω). Now, applying i),
we have

αa(a · · ·aω) ⊆
⋂

a···aω=ω′γ′

αa(αa(ω
′)γ′) ⊆ αa(αa(a · · · a)ω) = αa(aω).

(iii) Assume that αa(ω) = {a}, then

αa(ω a) ⊆
⋂

ω a=ω′γ′

αa(αa(ω
′)γ′) ⊆ αa(αa(ω)a) = αa(aa) = {a} = αa(ω).

It is easy to see that on the additional assumption of commutativity to
the hypotheses of the previous proposition, if αa(ω) = {a} then αa(ω) =
αa(ω a).

The following example shows that the inclusion in Proposition 5.2.(ii)
need not be an equality in general. Moreover, even though the finitary
ND-coalgebra is commutative, the aforementioned inclusion needn’t be an
equality.

Example 5.5. Let X be the set {x1, x2, x3, x4} and α : X → P(X)X
∗

be as
follows:

αxi
(ε) = {xi}; αxi

(xi · · ·xi) = {xi} for all i ∈ {1, 2, 3, 4}

αxi
(xj) is described in the figure below for all i, j ∈ {1, 2, 3, 4}



x4 x3

x1 x2

αx1

x4 x3

x1 x2

αx2

x4 x3

x1 x2

αx3

x4 x3

x1 x2

αx4

and αxi
(ω) = X otherwise. The finitary ND-coalgebra (X,α) is commuta-

tive, m-associative and all the elements are isolated. However,

αx1
(x2) = {x1, x2, x3}  αx1

(x1x2) = X

Notice that (X,α) is not strongly m-associative because αx1
(x1) = {x1} but

setting γ = x2, in the first place αx1
(x2) = {x1, x2, x3} and in the second

place

⋂

x2=ω′γ′

αx1
(αx1

(ω′)γ′) = αx1
(αx1

(x2)) ∩ αx1
(x1x2) =

= αx1
({x1, x2, x3}) ∩X = X

If the ND-coalgebra is commutative and also strongly m-associative, the
equality always holds in Proposition 5.2. (ii). Moreover, under certain con-
ditions, which will be specified in the theorem below, the previous equality
characterizes strong m-associativity.

Theorem 5.3. Let A = (A, α) be a commutative and m-associative finitary
ND-coalgebra whose elements are isolated. The following conditions are
equivalent:

i) αa(ω) = αa(aω), for all a ∈ A, ω ∈ A∗.

ii) αa(γ) = αa(ωγ) if αa(ω) = {a}, for all a ∈ A, ω, γ ∈ A∗.

iii) A is strongly m-associative.

Proof:

i) ⇒ ii) If αa(ω) = {a} then αa(ωγ)
†

⊆ αa(αa(ω)γ) = αa(aγ) = αa(γ)
where inclusion † is consequence of Proposition 5.2.(i).

On the other hand, as αa(aω) = {a}, then

αa(γ) ⊆
⋂

ωγ=ω′γ′

αa(αa(ω
′)γ′) ⊆ αa(αa(ε)ωγ) = αa(aωγ) = αa(ωγ)



ii) ⇒ iii) If αa(bω) = {a},

αa(γ) ⊆
⋂

ωγ=ω′γ′

αa(αb(ω
′)γ′) ⊆ αa(αb(ε)ωγ) = αa(bωγ) = αa(γ).

which proves that A is strongly m-associative.

iii) ⇒ i) As αa(a) = {a} then αa(aω) =
⋂

aω=ω′γ′

αa(αa(ω
′)γ′).

Finally, from αa(aa) = {a} we have that αa(ω) =
⋂

aω=ω′γ′

αa(αa(ω
′)γ′)

which completes the proof.

Corollary 5.4. Let (A, α) be a commutative, strongly m-associative fini-
tary ND-coalgebra whose elements are isolated. Then

i) If αa(x) = {a} for every x ∈ ω, then αa(ω) = {a}, for all a ∈ A, ω ∈
A∗.

ii) Let ω ∈ A∗ and ω̂ be any string obtained from ω deleting some ele-
ments repeated in the sequence. Then, αa(ω) = αa(ω̂).

Proof: The proof of item i) is straightforward, reasoning by induction
on the length of the string ω and applying Theorem 5.3-ii). Likewise, item
ii) is also proved by using repeatedly Theorem 5.3-i) and commutativity.

6. Finitary coalgebraic multisemilattices

When considering several properties simultaneously, such as strong sec-
ondary reflexivity, together with m-associativity, commutativity and self-
conscious elements, a more general equality holds (Proposition 6.2 and
Corollary 6.3) which resembles the idempotency and is closer to the binary
version.

Definition 6.1. A finitary coalgebraic quasimultisemilattice is a a finitary
ND-coalgebra (A, α), satisfying the following properties



a) All the elements of A are self-conscious

b) A is commutative

c) A is strongly secondary reflexive
d) A is m-associative

Notice that, in difference with the result in [3], the property “uncou-
pling” in the binary case is replaced here by “strongly secondary reflexive”.
The reason is that the first one is a property of a binary relation and makes
no sense for finitary ND-coalgebras.

Proposition 6.2. Let (A, α) be a finitary coalgebraic quasimultisemilattice.
If x ∈ αa(ω) then {x} = αa(γx) for all γ ⊆ ω, where the inclusion γ ⊆ ω

between chains should be interpreted in set-theoretic terms, that is, x ∈ ω

for all x ∈ γ.

Proof: Firstly, if γ ⊆ ω and the commutative law holds, we can iteratively
apply Proposition 5.2.(ii) and obtain that αa(ω) ⊆ αa(ωγ).

If x ∈ αa(ω), then x ∈ αa(ωa) and the strong secondary reflexivity
ensures that αa(ωx) = {x}. Hence,

{x} = αa(ωx) ⊆ αa(ωxγ)
†

⊆ αa(αa(ωx)γ) = αa(xγ)

where, in †, we use Proposition 5.2.(i). Now, by strong secondary reflexivity,
again, we have x ∈ αa(xγ) implies {x} = αa(γx).

A consequence of the previous proposition, also verified in the binary
case (Lemma 48 [3]), can be stated here in terms of the idempotency of αa.

Corollary 6.3. Let (A, α) be a finitary coalgebraic quasimultisemilattice.
Then for all a ∈ A and ω ∈ A∗,

i) αa(αa(ω)) = αa(ω).

ii) αa(ω) =
⋂

ω=ω′γ′

αa(αa(ω
′)γ′)

Proof: To prove item i), it suffices to take γ = ε in Proposition 6.2 and
apply Proposition 5.2.i). For item ii), note that

αa(ω) ⊆
⋂

ω=ω′γ′

αa(αa(ω
′)γ′) ⊆ αa(αa(ω)) = αa(ω)



Now we have all the pieces in order to obtain a coalgebraic character-
ization of finitary multisemilattices as a finitary ND-coalgebra satisfying
certain properties similar to those of the Definition 32 in [3].

Definition 6.4. A finitary coalgebraic multisemilattice is a finitary coal-
gebraic quasimultisemilattice A = (A, α), such that A is separating.

In a similar way as Proposition 6.2 provides an alternative definition of
the strong secondary reflexivity, next lemma provides a more suitable use
of separation which is reminiscent of the binary case.

Lemma 6.5. For a finitary coalgebraic multisemilattice A = (A, α), the
following condition holds:

if x, y ∈ αa(ω) and x ∈ αx(y) then x = y for all a, x, y ∈ A, ω ∈ A∗

Proof: First, αa(ω) ⊆ αa(ω a) = αa(ω aa), by Proposition 5.2.(ii) and
commutativity. Thereby, x, y ∈ αa(ω aa). Likewise, as A is strongly sec-
ondary reflexive, x ∈ αa(ω a) implies {x} = αa(ω x) = αx(aω). Applying
now the m-associative property, we have that

x ∈ αx(y) ⊆
⋂

ωy=ω′γ′

αx(αa(ω
′)γ′) ⊆ αx(αa(ε)ω y) = αx(aω y) = αa(ω xy)

Therefore, the conditions required in Definition 4.5 are satisfied and hence
x = y.

As mentioned previously, under certain ambient hypothesis different
properties can collapse to the same thing. For instance, in a strongly sec-
ondary reflexive finitary ND-coalgebra, an element is self-conscious if and
only if it is isolated (Proposition 4.4). Concerning finitary coalgebraic mul-
tisemilattices, we can state the following proposition.

Proposition 6.6. Strongly m-associative holds in any finitary coalgebraic
multisemilattice.

Proof: Theorem 5.3 enables one just to check the equality αa(ω) =
αa(aω) for all a ∈ A, ω ∈ A∗. Recall that αa(ω) ⊆ αa(aω) according to



Proposition 5.2. Given x ∈ αa(aω), since αa(aω) = αa(ωa) ⊆ αa(αa(ω)a),
there exists y ∈ αa(ω) (and so y ∈ αa(aω)) such that x ∈ αa(ya) = αy(aa).
By Proposition 6.2, we have that αy(x) = {x}. Finally, Lemma 6.5 guaran-
tees x = y and, therefore, x ∈ αa(ω).

We already stated the conditions required to link finitary coalgebraic
multisemilattices and ordered sets.

Proposition 6.7. Let (A, α) be a commutative, m-associative finitary ND-
coalgebra whose elements are isolated. Then (A,≤) is a poset with the binary
relation defined by x ≤ y iff αy(x) = {y}.

If (A, α) is also strongly m-associative and strongly secondary reflexive
then, UBounds(aω) ⊆ αa(ω) ↑, for all a ∈ A, ω ∈ A∗.

Proof: Reflexivity and antisymmetry are directly deduced from commu-
tativity and the fact that all the elements are isolated. Assume now that
αy(x) = {y} and αz(y) = {z}. Then, αz(x) ⊆ αz(αy(x)) = {z}. As αz(x)
is nonempty because {z} = αy(z) ⊆ αy(αx(z)), thus αz(x) = {z}, which
proves transitivity.

Assume that (A, α) is also strongly m-associative and strongly secondary
reflexive. Let z be an upper bound of aω. Then, αz(a) = {z} and also
αz(x) = {z} for all x ∈ ω. By Corollary 5.4.i), we have that αz(aω) =
{z} which allows us to apply m-associativity and obtain {z} = αz(ε) ⊆
⋂

ω=ω′γ′ αz(αa(ω
′)γ′) ⊆ αz(αa(ω)). So, there exists y ∈ αa(ω) such that z ∈

αz(y) which implies that {z} = αz(y), that is z ≥ y. Hence, z ∈ αa(ω) ↑.

Proposition 6.8. Given a poset (A,≤), the finitary ND-coalgebra (A, α)
defined by setting αa(ω) = Msup(aω), for all a ∈ A, ω ∈ A∗, verifies:

i) All the elements of A are self-conscious.

ii) A is commutative.

iii) A is strongly secondary reflexive.

iv) A is separating.

Furthermore, (A,≤) is a finitary join-multisemilattice if and only if
(A, α) is m-associative.



Proof: Properties i)− iv) are directly obtained from the definition. As-
sume now that (A,≤) is a finitary join-multisemilattice and {a} = αa(bω) =
Msup(ab ω). Given z ∈ αa(γ) and ω′, γ′ such that ωγ = ω′γ′, it is clear
that z is an upper bound of bω′. Thus, there exists t ∈ Msup(bω′) such
that t ≤ z. Observe that z ∈ Msup(a tγ′) = αa(tγ

′) because every upper
bound of a tγ′ is also an upper bound of aγ. To prove the converse, it is
sufficient to apply Proposition 6.6 and 6.7.

Theorem 6.9.

i) If (A,≤) is a finitary join-multisemilattice, then the finitary ND-
coalgebra (A, α) defined by setting αa(ω) = Msup(aω), for all a ∈ A,
ω ∈ A∗, is a finitary coalgebraic multisemilattice.

ii) If (A, α) is a finitary coalgebraic multisemilattice, then (A,≤) where
x ≤ y ⇔ αy(x) = {y} is a finitary join-multisemilattice such that
αa(ω) = Msup(aω), for all a ∈ A, ω ∈ A∗.

Proof:

i) This item is deduced by applying Proposition 6.8.
ii) Due to Proposition 6.8, it suffices to prove that αa(ω) = Msup(aω),

for all a ∈ A, ω ∈ A∗. On the one hand, we have that αa(ω) ⊆ UBounds(aω)
by Proposition 6.2. Besides, UBounds(aω) ⊆ αa(ω) ↑ by Proposition 6.7,
whence αa(ω) ↑= UBounds(aω). Lemma 6.5 establishes that αa(ω) is an
antichain and therefore αa(ω) = Minimal(UBounds(aω)) = Msup(aω).

Remark 6.10. The dual result for a finitary meet-multisemilattice (A, β)
is true as well, considering x ≤ y if and only if βx(y) = {x}.

7. Finitary coalgebraic multilattices

In the same way as a lattice can be constructed from two different semi-
lattices which are conveniently assembled, our purpose in this section is to
define a finitary multilattice as a coalgebra which can be separated as two
finitary coalgebraic multisemilattices and next analyze how they both can
be properly connected.



Definition 7.1. A doubly finitary ND-coalgebra is an ND-coalgebra of type
∏

n∈N+⊕N+

Tn where ⊕ denotes the disjoint union.6

Thus, a double finitary ND-coalgebra is a pair (A, γ) with

γ : A −→
∏

θ∈N+⊕N+

Tν(θ)(A)

being ν : N+ ⊕ N+ → N the mapping that assigns (n, 0) and (n, 1) to n.
By considering the isomorphism

∏

θ∈N+⊕N+

Tν(θ)(A) ≃

(

∏

n∈N+

Tn(A)

)

×

(

∏

n∈N+

Tn(A)

)

for every a ∈ A, the element γa can be considered as a pair γa = (αa, βa),
where αa = (αn

a)n∈N+ and βa = (βn
a )n∈N+ .

This allows us to separate both components as a pair of finitary ND-
coalgebras, namely (A, α) and (A, β). Henceforth, given a doubly finitary
ND-coalgebra (A, γ), we will write γ = (α, β).

Theorem 7.2. Let A = (A, γ) be a doubly finitary ND-coalgebra, where
γ = (α, β), such that

a) both (A, α) and (A, β) are finitary coalgebraic multisemilattices and

b) αy(x) = {y} if and only if βx(y) = {x}, for all x, y ∈ A. (duality)

Then, A is a finitary multilattice under the ordering relation

x ≤ y ⇔ αy(x) = {y} where

αa(ω) = Msup(aω) and βa(ω) = Minf(aω) for all a ∈ A, ω ∈ A∗

Proof: It is immediate fromTheorem 6.9 and Remark 6.10.

6That is, N+ ⊕ N+ = {(n, 0) | n ∈ N+} ∪ {(n, 1) | n ∈ N+}.



Definition 7.3. Two finitary ND-coalgebras, (A, α) and (A, β), are said
to be assembled if, for all a ∈ A and ω ∈ A∗, the following conditions hold:

a) If βa(ω) 6= ∅ then αa(βa(ω)) = {a}.

b) If αa(ω) 6= ∅ then βa(αa(ω)) = {a}.

A doubly finitary ND-coalgebra (A, γ), where γ = (α, β), satisfies the as-
sembly property if (A, α) and (A, β) are assembled.

Remark 7.4. Let (A, α) and (A, β) be two commutative binary ND-coalgebras.
If they are assembled, clearly the duality condition holds. That is,

αy(x) = {y} ⇔ βx(y) = {x} for all x, y ∈ A

Obviously, the converse is not true, in general, because the assembly
property refers to arbitrary strings whereas duality condition involves just
the 2-factors of the finitary ND-coalgebras.

Definition 7.5. A doubly finitary ND-coalgebra (A, γ), where γ = (α, β),
satisfies the absorption property if, for all a ∈ A, the following conditions
hold:

a) If z ∈ βa(A
∗) then αa(z) = {a}.

b) If z ∈ αa(A
∗) then βa(z) = {a}.

By the assembly property, for every string ω the following equality holds

αa(βa(ω)) =
⋃

x∈βa(ω)

αa(x) = {a}

Thus, αa(z) ⊆ {a}, for all z ∈ βa(A
∗). Notice that since αa(z) can be

empty, it does not necessarily coincide with {a}.

Proposition 7.6. Let (A, γ) be a doubly finitary ND-coalgebra, where γ =
(α, β) such that (A, α) and (A, β) are commutative, strongly m-associative
and all their elements are isolated. Then, the following conditions are equiv-
alent:

i) (A, γ) satisfies the absorption property.

ii) (A, α) and (A, β) are strongly secondary reflexive and assembled.



iii) (A, α) and (A, β) are strongly secondary reflexive and the duality con-
dition holds.

Proof: i) ⇒ ii) Firstly, if x ∈ αa(ε), as x is isolated, αx(ε) = {x}. If
x ∈ αa(ω b), we have βa(x) = {a} and also βu(x) = {u} for all u ∈ ω, whence
αx(a) = {x} and αx(u) = {x}. Applying Corollary 5.4 i), one obtains
αx(aω) = {x} which is equivalent to αa(ω x) = {x} by commutativity.
ii) ⇒ iii) It is straightforward. iii) ⇒ i) If z ∈ βa(ω), by Proposition 6.2
we have that βa(z) = {z}. Duality condition guarantees that αa(z) = {a}.
Analogously, the other condition of absorption property is proved.

Definition 7.7. A doubly finitary ND-coalgebra, A = (A, γ) where γ =
(α, β), is said to be a finitary coalgebraic multilattice if

a) both (A, α) and (A, β) are finitary coalgebraic multisemilattices and

b) (A, γ) satisfies the assembly property (absorption property or duality
condition).

Theorem 7.8. There exists a one-to-one correspondence between finitary
coalgebraic multilattices and finitary ordered multilattices.

Proof:

As Theorem 7.2 states, given (A, γ) a finitary coalgebraic multilattice,
where γ = (α, β), an ordering relation can be defined by x ≤ y ⇔ αy(x) =
{y} ⇔ βx(y) = {x}, for all x, y ∈ A such that (A,≤) is a finitary ordered
multilattice where αa(ω) = Msup(aω) and βa(ω) = Minf(aω) for all a ∈ A,
ω ∈ A∗.

Conversely, given (A,≤) an ordered finitary multilattice, by Theorem 6.9
and Remark 6.10, one can obtain two finitary coalgebraic multisemilattices
(A, α) and (A, β) defining αa(ω) = Msup(aω) and βa(ω) = Minf(aω) for
all a ∈ A, ω ∈ A∗ in such a way the duality condition trivially holds.
Then, (A, γ) where γa = (αa, βa), for all a ∈ A, is a finitary coalgebraic
multilattice.



8. Conclusions

In previous works, we introduced a coalgebraic characterization for mul-
tisemilattices and multilattices which involved subsets of cardinality 2. In
doing so, we defined a collection of coalgebras related to non-determinism,
namely, the ND-coalgebras. The properties which specify multisemilattices
as a particular type of binary ND-coalgebras were determined precisely.
Since the generalization to finite subsets with any cardinality does not pro-
duce the same structure, we have provided the coalgebraic characterization
for the so-called finitary multisemilattices and multilattices. Initially, they
are introduced as a class of ND-coalgebras which can be recursively defined
from the binary case. However, a more elegant development is obtained in
terms of non-deterministic operators with flexible arity. Our next aim is to
find both algebraic and coalgebraic definitions for complete multilattices.
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[13] D. J. Hansen. An axiomatic characterization of multilattices. Discrete Math.,

33(1):99–101, 1981.
[14] B. Jacobs. Objects and classes, co-algebraically. In Object orientation with paral-

lelism and persistence, pages 83–103. Kluwer Academic Publishers, 1996.
[15] B. Jacobs. The temporal logic of coalgebras via Galois algebras. Math. Structures

Comput. Sci., 12(6):875–903, 2002.
[16] B. Jacobs and J. J. M. M. Rutten. A tutorial on (co)algebras and (co)induction.

Bulletin of the European Association for Theoretical Computer Science, 62:222–
259, 1997.

[17] R. Kato and O. Watanabe. Substring search and repeat search using factor oracles.
Inform. Process. Lett., 93(6):269–274, 2005.

[18] A. Kurz. Specifying coalgebras with modal logic. Theoret. Comput. Sci., 260(1-
2):119–138, 2001.

[19] J. Mart́ınez, G. Gutiérrez, I. P. de Guzmán, and P. Cordero. Generalizations of
lattices via non-deterministic operators. Discrete Math., 295(1-3):107–141, 2005.

[20] J. Medina, M. Ojeda-Aciego, and J. Ruiz-Calviño. Fuzzy logic programming via
multilattices. Fuzzy Sets and Systems, 158(6):674–688, 2007.

[21] J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Multi-adjoint logic programming with
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