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Abstract Continuing our categorical study of L-fuzzy extensions of formal concept

analysis, we provide a representation theorem for the category of L-Chu correspon-

dences between L-formal contexts and prove that it is equivalent to the category of

completely lattice L-ordered sets.
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1 Introduction

Category theory has become important in many areas of modern mathematics (either

as a research area per se or as a tool for doing mathematics) and computer science (as

a means to unifying several approaches of abstract machines, or type theories, etc),

although its use in other areas of computer science tend to find resistance, due to the

reluctancy to admit high levels of abstraction; on the other hand, Formal Concept

Analysis (FCA) has become an extremely useful theoretical and practical tool for for-

mally describing structural and hierarchical properties of data with “object-attribute”

character, and this applicability justifies the need of a deeper knowledge of its under-

lying mechanisms: and one important way to obtain this extra knowledge turns out to

be via generalization and abstraction.

Goguen argues in [22] that research on concepts should be thoroughly interdis-

ciplinary, and in particular, should transcend the boundaries between sciences and

humanities. One of the tools that he proposes is precisely category theory as a unifying

language capable of merging different apparently disparate approaches. Not trying to

reach such an ambitious goal (at least on the short/mid term), this paper continues
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previous work of the authors of a categorical study of FCA, and deals with an extremely

general form of L-fuzzy FCA, based on categorical constructs and L-fuzzy sets.

The introduction of generalization and abstraction in FCA, as in many other re-

search areas, may lead to new theoretical and applied results. For instance, concerning

the use of fuzzy (or, in same cases, L-fuzzy) FCA, one can see papers ranging from reso-

lution of fuzzy relational equations [2] and ontology merging [12], to applications to the

Semantic Web by using the notion of concept similarity or rough sets [17,18], and from

noise control in document classification [32] to the development of recommender sys-

tems [15], or the study of fuzzy databases, in areas such as functional dependencies [37]

or data mining in terms of closure systems [10].

Theoretically, several approaches have been presented for generalizing the frame-

work and the scope of FCA and, nowadays, one can see works which extend it by

using ideas from fuzzy set theory [1, 3], rough set theory [30, 31, 42], the multi-adjoint

framework [33,34,36], or possibility theory [16], or heterogeneous approaches in which

concept lattices are based on Galois connections allowing to analyse object-attribute

models with different structures for truth values of attributes [11,35].

The use of category theory to study of ideas related to FCA has proliferated in the

recent years; for instance, the Information Flow Framework [25] provides a framework

for ontology development making it possible to communicate between categorical and

FCA formalisms, or the study of concept structures done by Hitzler et al [23, 24]

applying categorical methods to define the notion of approximable structure (borrowed

from the field of denotational semantics), or the categorical study of fuzzy Galois

connections [20] allowing for presenting its theory in a more succinct way, and providing

a useful method to study the links between the commutative and the non-commutative

worlds, or a more abstract study of the concept lattice functors [40] including the

relationship between contexts, closure spaces, and complete lattices, or the categorical

view of generalized concept lattices [26].

The categorical treatment of morphisms as fundamental structural properties has

been advocated by [29] as a means for the modelling of data translation, communi-

cation, and distributed computing, among other applications. Our approach broadly

focuses on the research line which links the theory of Chu spaces with concept lat-

tices [44, 45]; in the latter, it is shown that the notion of state in Scott’s information

system corresponds precisely to that of formal concepts in FCA with respect to all fi-

nite Chu spaces, and the entailment relation corresponds to association rules (another

link between FCA with database theory) and, specifically, on the identification of the

categories associated to certain constructions.

Our approach is particularly based on the notion of Chu correspondences between

formal contexts, developed by Mori, which we briefly sketch below:

In [38], the author focused on the great number of structures having certain duality

which can be formalized in terms of a formal context (B,A, r). Homomorphisms be-

tween two of these structures, with contexts (Bi, Ai, ri) for i ∈ {1, 2}, induce Chu map-

pings, that is pairs of mappings ϕ : B1 → B2 and ψ : A2 → A1 such that r2(ϕ(b1), a2) =

r1(b1, ψ(a2)); note the similarity with the adjoint property of isotone Galois connec-

tions. A functor, the Galois functor, can be naturally defined from the category of Chu

mappings and the category of join-preserving mappings between complete lattices; un-

fortunately, this functor is neither full (surjective) nor faithful (injective). The main

contribution of [38] was the introduction of the notion of Chu correspondence and

proving, on the one hand, the fullness and faithfulness of the Galois functor and, on

the other hand, the *-autonomous structure of the category of Chu correspondences.
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Fig. 1 Classical ChuCors vs L-(fuzzy)ChuCors.

Previous work in this categorical approach has been already developed by the au-

thors. In [28], the notion of L-Chu correspondence between L-contexts was introduced;

in addition, the resulting set of L-Chu correspondences was shown to be a complete lat-

tice anti-isomorphic to that of L-bonds between formal contexts. More recently [27], the

authors started the categorical study of L-contexts and their morphisms by introduc-

ing the category L-ChuCors, having L-contexts as objects and L-Chu correspondences

as morphisms, providing a further abstraction with the aim of formally describing

structural properties of intercontextual relationships. In addition, in that paper it was

proved that the resulting category is *-autonomous and, therefore, its underlying logic

is classical linear logic [5, 39].

In the present work, we continue our study of L-ChuCors, seen as a common cat-

egorical umbrella for several fuzzy extensions of the classical notion concept lattice,

initiated mainly by Bělohlávek [6–9], who extended the underlying interpretation on

classical logic to the more general framework of L-fuzzy logic [21].

Pictorially, we can represent the contribution of this work as the right arrow in

Figure 1, which somehow closes the initial study of L-ChuCors, in that we already

have completed the picture of the behavior of Chu correspondences in an L-fuzzy

environment. Specifically, the main result in this work is a constructive proof of the

equivalence between the category L-ChuCors and a category of completely lattice L-

ordered sets (L-CLOS1) with isotone Galois connections between them. This result,

on the one hand, reinforces the notion of L-CLOS as the most adequate fuzzy version

of complete lattice, since in the crisp case the equivalence is with the category of

join-preserving maps between complete lattices, on the other hand, paves the way

for future work on finding further connections following the thread of L-CLOS; an

interesting possibility might be studying the topic of approximable concepts, because

of the existing relationship between them and L-CLOS [13].

In order to obtain a reasonably self-contained document, Section 2 introduces the

basic definitions concerning the L-fuzzy extension of formal concept analysis, as well as

those concerning L-Chu correspondences; then, the categories associated to L-formal

contexts and L-CLOS are defined in Section 3 and, finally, the proof of equivalence is

in Section 4.

1 Although the proper acronym should be CLLOS, we prefer to use the prefix L in the
acronym to better reflect that we are working on an L-fuzzy extension.
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2 Preliminaries

2.1 Basics of L-fuzzy FCA

In this section we introduce the preliminary definitions of L-fuzzy FCA and the the-

ory of completely L-lattice ordered sets. In this respect, we are assuming the same

motivations used in [8, 9].

Definition 1 An algebra 〈L,∧,∨,⊗,→, 0, 1〉 is said to be a complete residuated

lattice if

– 〈L,∧,∨, 0, 1〉 is a complete lattice with the least element 0 and the greatest ele-

ment 1,

– 〈L,⊗, 1〉 is a commutative monoid,

– ⊗ and→ are adjoint, i.e. a⊗ b ≤ c if and only if a ≤ b→ c, for all a, b, c ∈ L, where

≤ is the ordering in the lattice generated from ∧ and ∨.

For a good overview of the theory of complete residuated lattices, the reader is

referred to [19].

Definition 2 Let L be a complete residuated lattice, an L-fuzzy context is a triple

〈B,A, r〉 consisting of a set of objects B, a set of attributes A and an L-fuzzy binary

relation r, i.e. a mapping r : B × A −→ L, which can be alternatively understood as

an L-fuzzy subset of B ×A. The set of all L-sets of objects from B will be denoted by

LB , and similarly for any base set.

Definition 3 Consider an L-fuzzy context 〈B,A, r〉. Mappings ↑ : LB −→ LA and

↓ : LA −→ LB can be defined for every f ∈ LB and g ∈ LA as follows:

↑ (f)(a) =
^
o∈B

`
f(o)→ r(o, a)

´
↓ (g)(o) =

^
a∈A

`
g(a)→ r(o, a)

´
(1)

Definition 4 An L-fuzzy concept is a pair 〈f, g〉 such that ↑ (f) = g and ↓ (g) = f .

The first component f is said to be the extent of the concept, whereas the second

component g is the intent of the concept.

The set of all L-fuzzy concepts associated to a fuzzy context 〈B,A, r〉 will be

denoted as L-FCL(B,A, r).

An ordering between L-fuzzy concepts is defined as follows: 〈f1, g1〉 ≤ 〈f2, g2〉 if

and only if f1 ⊆ f2 (namely, f1(o) ≤ f2(o) for all o ∈ B) if and only if g1 ⊇ g2 (that

is, g1(a) ≥ g2(a) for all a ∈ A).

Example 1 Consider two L-contexts C1 and C2, where L = {1, 0.5, 0}. Any value

from L in any cell of the following tables represents a relationship of the corresponding

object-attribute pair. It is a formalization of the information about the degree that an

object has some attribute or, conversely, how any attribute is shared by some object.

C1 a11 a12 a13 a14

o11 1 1 0.5 0

o12 1 0.5 1 0.5

C2 a21 a22 a23

o21 1 1 1

o22 0.5 1 1

o23 0 1 0.5

4



If we consider  Lukasiewicz logic connectives 〈⊗,→〉, defined as

k ⊗m = max{0, k +m− 1} k → m = min{1, 1− k +m}

and with derivation operators 〈↑, ↓〉 defined in (1) above we obtain the set of all L-

concepts of C1 and C2 that are shown in the following tables. Each row represents one

L-concept. For the sake of readability, we will denote L-concepts of C1 as p1, . . . , p5
and L-concepts of C2 as q1, q2, q3.

L-FCL(C1) o11 o12 a11 a12 a13 a14

p1 1 1 1 0.5 0.5 0

p2 1 0.5 1 1 0.5 0

p3 0.5 1 1 0.5 1 0.5

p4 0.5 0.5 1 1 1 0.5

p5 0 0.5 1 1 1 1

L-FCL(C2) o21 o22 o23 a21 a22 a23

q1 1 1 1 0 1 0.5

q2 1 1 0.5 0.5 1 1

q3 1 0.5 0 1 1 1

There are four extremal L-concepts, namely, p1, p5, q1 and q3 formalizing the sit-

uation in which the (crisp) set of all objects has the whole set corresponding L-set

of common attributes or, vice versa, that all attributes are shared by the correspond-

ing L-set of objects. There are also examples of L-concepts covering the information

about some L-set of objects satisfying an L-set of common attributes, for instance p2.

Finally, concept p4 has objects o11 and o12 both with membership degree 0.5 which

share the common attributes a11, a12 and a13, attribute a14 is common attribute with

membership degree 0.5. ut

Bělohlávek has extended the fundamental theorem of concept lattices by Dedekind-

MacNeille completion in fuzzy settings by using the notions of L-equality and L-

ordering. All the definitions and related constructions given until the end of this section

are from [9].

Definition 5 A binary L-relation ≈ on X is called an L-equality if it satisfies

1. (x ≈ x) = 1, (reflexivity),

2. (x ≈ y) = (y ≈ x), (symmetry),

3. (x ≈ y)⊗ (y ≈ z) ≤ (x ≈ z), (transitivity),

4. (x ≈ y) = 1 implies x = y

L-equality is a natural generalization of the classical (bivalent) notion.

Definition 6 An L-ordering (or fuzzy ordering) on a set X endowed with an L-

equality relation ≈ is a binary L-relation � which is compatible w.r.t. ≈ (i.e. f(x)⊗(x ≈
y) ≤ f(y), for all x, y ∈ X) and satisfies

1. x � x = 1, (reflexivity),

2. (x � y) ∧ (y � x) ≤ (x ≈ y), (antisymmetry),

3. (x � y)⊗ (y � z) ≤ (x � z), (transitivity).

If � is an L-order on a set X with an L-equality ≈, we call the pair 〈〈X,≈〉 �〉 an

L-ordered set.
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Clearly, if L = 2, the notion of L-order coincides with the usual notion of (partial)

order.

Definition 7 An L-set f ∈ LX is said to be an L-singleton in 〈X,≈〉 if it is com-

patible w.r.t. ≈ and the following holds:

1. There exists x0 ∈ X with f(x0) = 1

2. f(x)⊗ f(y) ≤ (x ≈ y), for all x, y ∈ X.

Definition 8 For an L-ordered set 〈〈X,≈〉 �〉 and f ∈ LX the L-sets inf(f) and

sup(f) in X are defined by

1. inf(f)(x) = (L(f))(x) ∧ (UL(f))(x)

2. sup(f)(x) = (U(f))(x) ∧ (LU(f))(x)

where

L(f)(x) =
^
y∈X

`
f(y)→ (x � y)

´
and U(f)(x) =

^
y∈X

`
f(y)→ (y � x)

´
The L-sets inf(f) and sup(f) are called infimum and supremum, respectively.

Definition 9 An L-ordered set 〈〈X,≈〉 �〉 is said to be completely lattice L-

ordered set if for any f ∈ LX both sup(f) and inf(f) are ≈-singletons.

In the proof of the following chain of lemmas some well-known properties of resid-

uated lattices are used (details can be found in [8]). Some of the needed properties are

listed below.

(k → (l→ m)) = ((k ⊗ l)→ m) = ((l ⊗ k)→ m) = (l→ (k → m)) (2)

k →
^
i∈I

mi =
^
i∈I

(k → mi) (3)

(
_
i∈I

mi)→ k =
^
i∈I

(mi → k) (4)

Lemma 1 For any pair of L-concepts 〈fi, gi〉 ∈ L-FCL(B,A, r) (i ∈ {1, 2}) of any

L-context 〈B,A, r〉 the following equality holds.^
o∈B

`
f1(o)→ f2(o)

´
=
^
a∈A

`
g2(a)→ g1(a)

´
Proof ^

o∈B
(f1(o)→ f2(o)) =

^
o∈B

(f1(o)→ ↓ (g2)(o))

(1)
=
^
o∈B

0@f1(o)→
^
a∈A

(g2(a)→ r(o, a))

1A
(3)
=
^
o∈B

^
a∈A

(f1(o)→ (g2(a)→ r(o, a)))
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(2)
=
^
o∈B

^
a∈A

(g2(a)→ (f1(o)→ r(o, a)))

(3)
=
^
a∈A

0@g2(a)→
^
o∈B

(f1(o)→ r(o, a))

1A
(1)
=
^
a∈A

(g2(a)→ ↑ (f1)(a))

=
^
a∈A

(g2(a)→ g1(a)) ut

Definition 10 L-equality ≈ and L-ordering � on the set of formal concepts L-FCL(C)

of L-context C are defined as follows:

〈f1, g1〉 � 〈f2, g2〉 =
^
o∈B

`
f1(o)→ f2(o)

´
=
^
a∈A

`
g2(a)→ g1(a)

´
(5)

〈f1, g1〉 ≈ 〈f2, g2〉 =
^
o∈B

`
f1(o)↔ f2(o)

´
=
^
a∈A

`
g2(a)↔ g1(a)

´
(6)

where k ↔ m is defined as (k → m) ∧ (m→ k) for any k,m ∈ L.

Example 2 In the following tables we can see the L-ordering on the sets of L-concepts

of C1 and C2 from Example 1.

�1 p1 p2 p3 p4 p5
p1 1 0.5 0.5 0.5 0

p2 1 1 0.5 0.5 0

p3 1 0.5 1 0.5 0

p4 1 1 1 1 0.5

p5 1 1 1 1 1

�2 q1 q2 q3
q1 1 0.5 0

q2 1 1 0.5

q3 1 1 1

Definition 11 Let C = 〈B,A, r〉 be an L-fuzzy formal context and γ be an L-set from

LL-FCL(C). L-sets of objects and attributes
S
B γ and

S
A γ are defined as follows:

1. (
S
B γ)(o) =

_
〈f,g〉∈L-FCL(C)

(γ(〈f, g〉)⊗ f(o)), for o ∈ B

2. (
S
A γ)(a) =

_
〈f,g〉∈L-FCL(C)

(γ(〈f, g〉)⊗ g(a)), for a ∈ A

Theorem 1 Let C = 〈B,A, r〉 be an L-context. 〈〈L-FCL(C),≈〉,�〉 is a completely

lattice L-ordered set in which infima and suprema can be described as follows: for an

L-set γ ∈ LL-FCL(C) we have:

1 inf(γ) =
n˙
↓
`[
A

γ
´
, ↑↓

`[
A

γ
´¸o 1 sup(γ) =

n˙
↓↑
`[
B

γ
´
, ↑
`[
B

γ
´¸o

Moreover a completely lattice L-ordered set V = 〈〈V,≈〉,�〉 is said to be isomor-

phic to 〈〈L-FCL(〈B,A, r〉),≈1〉,�1〉 iff there are mappings γ : B × L −→ V and

µ : A× L −→ V , such that γ(B×L) is {0, 1}-supremum dense and µ(A×L) is {0, 1}-
infimum dense in V, and ((k ⊗ l) → r(o, a)) = (γ(o, k) � µ(a, l)) for all o ∈ B, a ∈ A
and k, l ∈ L. In particular, V is isomorphic to 〈〈L-FCL(V, V,�),≈1〉,�1〉.

If L = 2, the previous theorem coincides with the standard version of the funda-

mental theorem of concept lattices.
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2.2 L-Isotone Galois connection

Now an L-fuzzy extension of the notion of isotone Galois connection will be introduced.

Firstly we will define an L-isotone mapping between two L-ordered sets.

Definition 12 Let 〈〈Vi,≈i〉,�i〉 for i ∈ {1, 2} be two L-ordered sets. A mapping

s : V1 −→ V2 is said to be L-isotone if for any u, v ∈ V1 the following holds`
u �1 v

´
≤
`
s(u) �2 s(v)

´
.

It is not difficult to check that this definition extends that in the classical case.

Lemma 2 2-isotone mappings correspond to classical isotone mappings.

The definition of L-isotone Galois connection is given below:

Definition 13 Let 〈〈Vi,≈i〉,�i〉 for i ∈ {1, 2} be two L-ordered sets. An L-isotone

Galois connection is a pair of L-isotone mappings 〈s, z〉 such that s : V1 −→ V2 and

z : V2 −→ V1 and for any pair (v1, v2) ∈ V1 × V2 the following equality holds`
s(v1) �2 v2

´
=
`
v1 �1 z(v2)

´
.

Lemma 3 The 2-isotone Galois connections correspond to classical isotone Galois

connections.

Proof From the previous lemma, we know that if L = 2 then s and z are classi-

cal isotone mappings between ordered sets 〈V1,≤1〉 and 〈V2,≤2〉. Equality of val-

ues (s(v1) ≤2 v2) and (v1 ≤1 z(v2)) that are from {0, 1} makes the equivalence

(s(v1) ≤2 v2)⇔ (v1 ≤1 z(v2)) hold true. Hence 〈s, z〉 forms an isotone Galois connec-

tion. ut

2.3 L-Chu correspondences

For the sake of self-containment, in this section we recall the main definitions concerning

L-Chu correspondences, which were already used in our previous works [27,28].

Definition 14 An L-multifunction from set X to set Y is a mapping from X to LY .

Definition 15 Given $ : X −→ LY , a mapping $+ : LX −→ LY for all f ∈ LX is

defined by

$+(f)(y) =
_
x∈X

`
f(x)⊗$(x)(y)

´
. (7)

Definition 16 Consider two L-fuzzy contexts Ci = 〈Bi, Ai, ri〉, (i = 1, 2), then the

pair ϕ = (ϕL, ϕR) is said to be a correspondence from C1 to C2 if ϕL and ϕR are

L-multifunctions, respectively, from B1 to B2 and from A2 to A1 (ie, ϕL : B1 −→ LB2

and ϕR : A2 −→ LA1).

The L-correspondence ϕ is said to be a weak L-Chu correspondence if the

following equality holds for all o1 ∈ B1 and a2 ∈ A2:^
a1∈A1

(ϕR(a2)(a1)→ r1(o1, a1)) =
^

o2∈B2

(ϕL(o1)(o2)→ r2(o2, a2)) (8)

A weak Chu correspondence ϕ is an L-Chu correspondence if ϕL(o1) is an L-set

of objects closed in C2 and ϕR(a2) is an L-set of attributes closed in C1 for all o1 ∈ B1

and a2 ∈ A2. We will denote the set of all L-Chu correspondences from C1 to C2 by

L-ChuCors(C1, C2).
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Table 1

(−)L (−)R

ϕ1

o21 o22 o23

o11 1 1 0.5

o12 1 1 0.5

a11 a12 a13 a14

a21 1 1 1 0.5

a22 1 0.5 0.5 0

a23 1 0.5 0.5 0

ϕ2

o21 o22 o23

o11 1 1 0.5

o12 1 0.5 0

a11 a12 a13 a14

a21 1 0.5 1 0.5

a22 1 0.5 0.5 0

a23 1 0.5 0.5 0

ϕ3

o21 o22 o23

o11 1 0.5 0

o12 1 1 0.5

a11 a12 a13 a14

a21 1 1 0.5 0

a22 1 0.5 0.5 0

a23 1 0.5 0.5 0

ϕ4

o21 o22 o23

o11 1 0.5 0

o12 1 0.5 0

a11 a12 a13 a14

a21 1 0.5 0.5 0

a22 1 0.5 0.5 0

a23 1 0.5 0.5 0

ϕ5

o21 o22 o23

o11 1 1 1

o12 1 1 0.5

a11 a12 a13 a14

a21 1 1 1 1

a22 1 0.5 0.5 0

a23 1 0.5 1 0.5

Example 3 All L-Chu correspondences between the L-contexts C1 and C2 used in

Example 1 can be seen in Table 1.

In the left column of the table one can see all the left parts ϕL, which are L-

multifunctions that assign some extent of C2 to every object of C1. In the right column

of the table the corresponding right parts of the L-Chu correspondences ϕR are shown;

they assign some intent of C1 to every attribute of C2 in such a way that equality (8)

from Definition 16 holds. ut

3 Introducing the relevant categories

3.1 The category L-ChuCors

The category of L-fuzzy formal contexts and L-Chu correspondences between them is

formally defined below:

– objects L-fuzzy formal contexts

– arrows L-Chu correspondences

– identity arrow ι : C −→ C of L-context C = 〈B,A, r〉
– ιL(o) =↓↑ (χo), for all o ∈ B
– ιR(a) =↑↓ (χa), for all a ∈ A

where χx(x) = 1 and χx(y) = 0 for any y 6= x

– composition ϕ2 ◦ ϕ1 : C1 −→ C3 of arrows ϕ1 : C1 −→ C2, ϕ2 : C2 −→ C3

(Ci = 〈Bi, Ai, ri〉, i ∈ {1, 2})
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– (ϕ2 ◦ ϕ1)L : B1 −→ LB3 defined as

(ϕ2 ◦ ϕ1)L(o1) = ↓3↑3
`
ϕ2L+(ϕ1L(o1))

´
(9)

where

ϕ2L+(ϕ1L(o1))(o3) =
_

o2∈B2

ϕ1L(o1)(o2)⊗ ϕ2L(o2)(o3)

– and (ϕ2 ◦ ϕ1)R : A3 −→ LA1 defined as

(ϕ2 ◦ ϕ1)R(a3) = ↑1↓1
`
ϕ1R+(ϕ2R(a3))

´
(10)

where

ϕ1R+(ϕ2R(a3))(a1) =
_

a2∈A2

ϕ2R(a3)(a2)⊗ ϕ1R(a2)(a1)

All details about the definition of the category L-ChuCors could be found in [27].

3.2 Category L-CLOS

Here we define another category

Objects are completely lattice L-ordered sets (L-CLOS) i.e. our objects will be rep-

resented as V = 〈〈V,≈〉,�〉
Arrows are L-isotone Galois connections between two L-CLOS i.e. 〈s, z〉 between V1

and V2, such that:

1. s : V1 −→ V2,

2. z : V2 −→ V1,

3. (s(v1) �2 v2) = (v1 �1 z(v2)) for all (v1, v2) ∈ V1 × V2.

Identity arrow of 〈〈V,≈〉,�〉 is a pair of identity morphisms 〈idV , idV 〉
Composition of arrows is based on composition of mappings: consider two ar-

rows 〈si, zi〉 : Vi −→ Vi+1, where i ∈ {1, 2}. Composition is defined as follows:

〈s2, z2〉 ◦ 〈s1, z1〉 = 〈s2 ◦ s1, z1 ◦ z2〉.

Thus, given a pair of two arbitrary elements (v1, v3) ∈ V1 × V3 then:

`
(s2 ◦ s1)(v1) �3 v3

´
=
`
s2(s1(v1)) �3 v3

´
=
`
s1(v1) �2 z2(v3)

´
=
`
v1 �1 z1(z2(v3))

´
=
`
v1 �1 (z1 ◦ z2)(v3)

´
Associativity of composition follows trivially because of the associativity of

composition of mappings between sets.

10



4 The categories L-ChuCors and L-CLOS are equivalent

As stated in [4], mathematically significant properties of objects are those that are

invariant under isomorphisms and, in category theory, equivalence of categories is the

most convenient notion of “isomorphism” (used here with an informal meaning) be-

tween categories.

In this section, we reach the main goal of this paper: to prove the equivalence

of the categories L-ChuCors and L-CLOS. As a result, we obtain that the generalized

approaches based on L-Chu correspondences and those on completely L-lattice ordered

sets are mutually interchangeable.

The equivalence between both categories will be proved by defining a suitable func-

tor Γ which links L-ChuCors to L-CLOS. The behavior of Γ for objects is straight-

forward: to any L-context C the functor Γ assigns its corresponding concept L-CLOS,

namely L-FCL(C), . The formal definition is given below:

1. Γ (C) = 〈〈L-FCL(C),≈〉,�〉
2. For any L-Chu correspondence ϕ ∈ L-ChuCors(C1, C2), the result of Γ (ϕ) will be

a pair of mappings 〈ϕ∨, ϕ∧〉 defined as follows:

ϕ∨
`
〈f1, g1〉

´
=
˙
↓2↑2

`
ϕL+(f1)

´
, ↑2

`
ϕL+(f1)

´¸
(11)

ϕ∧
`
〈f2, g2〉

´
=
˙
↓1
`
ϕR+(g2)

´
, ↑1↓1

`
ϕR+(g2)

´¸
(12)

where 〈fi, gi〉 ∈ L-FCL(Ci) for i ∈ {1, 2}.

Example 4 Continuing with our running example, Table 2 contains all pairs of map-

pings 〈ϕ∨, ϕ∧〉 between L-concept lattices of C1 and C2 that are assigned by the

mapping Γ to all L-Chu correspondences ϕ between L-contexts C1 and C2 from Ex-

ample 3. ut

Table 2

p1 p2 p3 p4 p5 q1 q2 q3

ϕ1∨(−) q2 q2 q2 q3 q3 ϕ1∧(−) p1 p1 p4

ϕ2∨(−) q2 q2 q3 q3 q3 ϕ2∧(−) p1 p1 p3

ϕ3∨(−) q2 q3 q2 q3 q3 ϕ3∧(−) p1 p1 p2

ϕ4∨(−) q3 q3 q3 q3 q3 ϕ4∧(−) p1 p1 p1

ϕ5∨(−) q1 q1 q2 q2 q3 ϕ5∧(−) p1 p2 p3

The two following lemmas are needed in order to prove that the morphism part of

the functor Γ is well defined, that is, the pair 〈ϕ∨, ϕ∧〉 is an L-isotone Galois connection

between Γ (C1) and Γ (C2).

Lemma 4 Let C = 〈B,A, r〉 be an L-context. For any L-set f ∈ LB and any concept

〈h, g〉 holds: ^
o∈B

(↓↑ (f)(o)→ h(o)) =
^
o∈B

(f(o)→ h(o))

11



Proof

^
o∈B2

(↓2↑2 (f)(o)→ h(o)) =
^
o∈B2

(↓2↑2 (f)(o)→↓2↑2 (h)(o))

because of lemma 1

=
^
a∈A2

(↑2 (h)(a)→↑2 (f)(a))

(1)
=

^
a∈A2

0@↑2 (h)(a)→
^
o∈B2

(f(o)→ r2(o, a))

1A
(3)
=

^
o∈B2

^
a∈A2

(↑2 (h)(a)→ (f(o)→ r2(o, a)))

(2)
=

^
o∈B2

^
a∈A2

(f(o)→ (↑2 (h)(a)→ r2(o, a)))

(3)
=

^
o∈B2

0@f(o)→
^
a∈A2

(↑2 (h)(a)→ r2(o, a))

1A
(1)
=

^
o∈B2

(f(o)→↓2↑2 (h)(o))

h is closed L-set

=
^
o∈B2

(f(o)→ h(o))ut

Lemma 5 Let Ci = 〈Bi, Ai, ri〉 for i ∈ {1, 2} be two arbitrary L-contexts. Let ω be

an L-multifunction between B1 and B2 (ω : B1 −→ LB2) and f be an arbitrary L-set

from LB1 . Then

↑2 (ω+(f))(a) =
^
b∈B1

(f(b)→↑2 (ω(b))(a)).

Proof

↑2 (ω+(f))(a)
(1)
=

^
o∈B2

(ω+(f)(o)→ r2(o, a))

(7)
=

^
o∈B2

0@ _
b∈B1

(f(b)⊗ ω(b)(o))→ r2(o, a)

1A
(4)
=

^
o∈B2

^
b∈B1

((f(b)⊗ ω(b)(o))→ r2(o, a))

(2)
=

^
o∈B2

^
b∈B1

(f(b)→ (ω(b)(o))→ r2(o, a))

12



(3)
=

^
b∈B1

0@f(b)→
^
o∈B2

(ω(b)(o))→ r2(o, a)

1A
(1)
=

^
b∈B1

(f(b)→↑2 (ω(b))(a))

ut

With the help of the previous lemmas we can now prove that the morphism part

of Γ is well-defined.

Lemma 6 Γ (ϕ) ∈ L-CLLOS(Γ (C1), Γ (C2)) for any ϕ ∈ L-ChuCors(C1, C2).

Proof Firstly, L-isotonicity of the pair of mappings 〈ϕ∨, ϕ∧〉 will be shown. Let us

consider 〈f, ↑1 (f)〉 and 〈h, ↑1 (h)〉 be two L-concepts of context C1 = 〈B1, A1, r1〉

ϕ∨(〈f, ↑1 (f)〉) �2ϕ∨(〈h, ↑1 (h)〉)
(5)
=

^
o∈B2

(↓2↑2 (ϕL+(f))(o)→↓2↑2 (ϕL+(h))(o))

because of Lemma 4

=
^
o∈B2

(ϕL+(f)(o)→↓2↑2 (ϕL+(h))(o))

(7)
=

^
o∈B2

0@ _
b∈B1

(ϕL(b)(o)⊗ f(b))→↓2↑2 (ϕL+(h))(o)

1A
(4)
=

^
o∈B2

^
b∈B1

((ϕL(b)(o)⊗ f())→↓2↑2 (ϕL+(h))(o))

(2)
=

^
o∈B2

^
b∈B1

(f(b)→ (ϕL(b)(o)→↓2↑2 (ϕL+(h))(o)))

(3)
=
^
b∈B1

(f(b)→
^
o∈B2

(ϕL(b)(o)→↓2↑2 (ϕL+(h))(o)))

because of Lemma 1

=
^
b∈B1

(f(b)→
^
a∈A2

(↑2 (ϕL+(h))(a)→↑2 (ϕL(b))(a)))

because of Lemma 5

=
^
b∈B1

0@f(b)→
^
a∈A2

0@ ^
j∈B1

`
h(j)→↑2 (ϕL(j))(a)

´
→↑2 (ϕL(b))(a)

1A1A
denoting ↑2 (ϕL(b))(a) = β(b, a)

=
^
b∈B1

0@f(b)→
^
a∈A2

0@ ^
j∈B1

`
h(j)→ β(j, a)

´
→ β(b, a)

1A1A

13



(1)
=
^
b∈B1

`
f(b)→↓β↑β (h)(b)

´
by the property of closure

≥
^
b∈B1

(f(b)→ h(b))

=(〈f, ↑1 (f)〉 �1 〈h, ↑1 (h)〉)

Hence ϕ∨ is L-isotone. Similarly for ϕ∧.

Consider two arbitrary L-concepts 〈fi, gi〉 of 〈〈L-FCL(Ci),≈i〉,�i〉 for i ∈ {1, 2}
where Ci = 〈Bi, Ai, ri〉.

(ϕ∨
`
〈f1, g1〉

´
�2 〈f2, g2〉)

(11)
=
`˙
↓2↑2

`
ϕL+(f1)

´
, ↑2

`
ϕL+(f1)

´¸
�2 〈f2, g2〉

´
(5)
=

^
a2∈A2

`
g2(a2)→ ↑2

`
ϕL+(f1)

´
(a2)

´
(1)
=

^
a2∈A2

0@g2(a2)→
^

o2∈B2

`
ϕL+(f1)(o2)→ r2(o2, a2)

´1A
(7)
=

^
a2∈A2

0@g2(a2)→
^

o2∈B2

0@ _
o1∈B1

`
ϕL(o1)(o2)⊗ f1(o1)

´
→ r2(o2, a2)

1A1A
(4)
=

^
a2∈A2

0@g2(a2)→
^

o2∈B2

^
o1∈B1

``
ϕL(o1)(o2)⊗ f1(o1)

´
→ r2(o2, a2)

´1A
(3)
=

^
a2∈A2

^
o2∈B2

^
o1∈B1

`
g2(a2)→

``
ϕL(o1)(o2)⊗ f1(o1)

´
→ r2(o2, a2)

´´
(2)
=

^
a2∈A2

^
o2∈B2

^
o1∈B1

`
g2(a2)→

`
ϕL(o1)(o2)→

`
f1(o1)→ r2(o2, a2)

´´´
(3)
=

^
a2∈A2

^
o1∈B1

0@g2(a2)→

0@f1(o1)→
^

o2∈B2

`
ϕL(o1)(o2)→ r2(o2, a2)

´1A1A
(8)
=

^
a2∈A2

^
o1∈B1

0@f1(o1)→

0@g2(a2)→
^

a1∈A1

`
ϕR(a2)(a1)→ r1(o1, a1)

´1A1A
by a similar chain of computation we obtain

=
^

o1∈B1

0@f1(o1)→
^

a1∈A1

0@ _
a2∈A2

`
ϕR(a2)(a1)⊗ g2(a2)

´
→ r1(o1, a1)

1A1A
(7)
=

^
o1∈B1

`
f1(o1)→ ↓1

`
ϕR+(g2)

´
(o1)

´
(5)
=
`
〈f1, g1〉 �1

˙
↓1
`
ϕR+(g2)

´
, ↑1↓1

`
ϕR+(g2)

´¸´
(12)
=
`
〈f1, g1〉 �1 ϕ∧

`
〈f2, g2〉

´´
So 〈ϕ∨, ϕ∧〉 is an L-isotone Galois connection between the completely lattice L-ordered

sets 〈〈L-FCL(C1),≈1〉 �1〉 and 〈〈L-FCL(C2),≈2〉 �2〉. ut
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Table 3

ϕ1

ϕ1∧(q1) ϕ1∧(q2) ϕ1∧(q3)
�1 p1 p1 p4

p1 1 1 0.5
p2 1 1 0.5
p3 1 1 0.5
p4 1 1 1
p5 1 1 1

�2 q1 q2 q3

ϕ1∨(p1) q2 1 1 0.5
ϕ1∨(p2) q2 1 1 0.5
ϕ1∨(p3) q2 1 1 0.5
ϕ1∨(p4) q3 1 1 1
ϕ1∨(p5) q3 1 1 1

ϕ2

ϕ2∧(q1) ϕ2∧(q2) ϕ2∧(q3)
�1 p1 p1 p3

p1 1 1 0.5
p2 1 1 0.5
p3 1 1 1
p4 1 1 1
p5 1 1 1

�2 q1 q2 q3

ϕ2∨(p1) q2 1 1 0.5
ϕ2∨(p2) q2 1 1 0.5
ϕ2∨(p3) q3 1 1 1
ϕ2∨(p4) q3 1 1 1
ϕ2∨(p5) q3 1 1 1

ϕ3

ϕ3∧(q1) ϕ3∧(q2) ϕ3∧(q3)
�1 p1 p1 p2

p1 1 1 0.5
p2 1 1 1
p3 1 1 0.5
p4 1 1 1
p5 1 1 1

�2 q1 q2 q3

ϕ3∨(p1) q2 1 1 0.5
ϕ3∨(p2) q3 1 1 1
ϕ3∨(p3) q2 1 1 0.5
ϕ3∨(p4) q3 1 1 1
ϕ3∨(p5) q3 1 1 1

ϕ4

ϕ4∧(q1) ϕ4∧(q2) ϕ4∧(q3)
�1 p1 p1 p1

p1 1 1 1
p2 1 1 1
p3 1 1 1
p4 1 1 1
p5 1 1 1

�2 q1 q2 q3

ϕ4∨(p1) q3 1 1 1
ϕ4∨(p2) q3 1 1 1
ϕ4∨(p3) q3 1 1 1
ϕ4∨(p4) q3 1 1 1
ϕ4∨(p5) q3 1 1 1

ϕ5

ϕ5∧(q1) ϕ5∧(q2) ϕ5∧(q3)
�1 p1 p3 p5

p1 1 0.5 0
p2 1 0.5 0
p3 1 1 0.5
p4 1 1 0.5
p5 1 1 1

�2 q1 q2 q3

ϕ5∨(p1) q1 1 0.5 0
ϕ5∨(p2) q1 1 0.5 0
ϕ5∨(p3) q2 1 1 0.5
ϕ5∨(p4) q2 1 1 0.5
ϕ5∨(p5) q3 1 1 1

Example 5 In Table 3 one can see that all pairs 〈ϕ∨, ϕ∧〉 in Example 4 with the L-

ordering given in Example 2 satisfy Definition 13 and, therefore, all are L-isotone Galois

connections. ut

The following result checks that Γ preserves identity morphisms.

Lemma 7 For the identity arrow ι ∈ L-ChuCors(C,C) of any L-context C = 〈B,A, r〉,
Γ (ι) is the identity arrow from L-CLOS(Γ (C), Γ (C)).

Proof Consider any L-concept 〈f, g〉 from L-FCL(C).

↑
`
ιL+(f)

´
(a) =

^
o∈B

`
ιL+(f)(o)→ r(o, a)

´
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(7)
=
^
o∈B

0@_
b∈B

`
ιL(b)(o)⊗ f(b)

´
→ r(o, a)

1A
(4)
=
^
o∈B

^
b∈B

``
ιL(b)(o)⊗ f(b)

´
→ r(o, a)

´
(2)(3)

=
^
o∈B

0@f(b)→
^
b∈B

`
ιL(b)(o)→ r(o, a)

´1A
(1)
=
^
b∈B

`
f(b)→ ↑

`
χb
´
(a)
´

=
^
b∈B

`
f(b)→ ↑↓↑

`
χb
´
(a)
´

=
^
b∈B

`
f(b)→ r(b, a)

´
= ↑ (f)(a)

Therefore, we have ι∨(〈f, g〉) = 〈f, g〉. The proof for ι∧ is similar. ut

We continue with a technical lemma which proves an equality needed in the proof

that Γ preserves composition.

Lemma 8 Consider two arbitrary ϕi ∈ L-ChuCors(Ci, Ci+1) for i ∈ {1, 2} and any

element o1 ∈ B1 and g3 ∈ LA3 . Then

↓1
`
ϕ1R+

`
ϕ2R+(g3)

´´
(o1) = ↓1

`
ϕ1R+

`
↑2↓2

`
ϕ2R+(g3)

´´´
(o1).

Proof

↓1
`
ϕ1R+

`
ϕ2R+(g3)

´´
(o1) =

(1)
=

^
a1∈A1

`
ϕ1R+

`
ϕ2R+(g3)

´
(a1)→ r1(o1, a1)

´
(7)
=

^
a1∈A1

0@ _
a2∈A2

`
ϕ1R(a2)(a1)⊗ ϕ2R+(g3)(a2)

´
→ r1(o1, a1)

1A
(4)(2)(3)

=
^

a2∈A2

0@ϕ2R+(g3)(a2)→
^

a1∈A1

`
ϕ1R(a2)(a1)→ r1(o1, a1)

´1A
(8)
=

^
a2∈A2

0@ϕ2R+(g3)(a2)→
^

o2∈B2

`
ϕ1L(o1)(o2)→ r2(o2, a2)

´1A
(2)(3)

=
^

o2∈B2

0@ϕ1L(o1)(o2)→
^

a2∈A2

`
ϕ2R+(g3)(a2)→ r2(o2, a2)

´1A
(1)
=

^
o2∈B2

`
ϕ1L(o1)(o2)→ ↓2

`
ϕ2R+(g3)

´
(o2)

´
by the closure property

=
^

o2∈B2

`
ϕ1L(o1)(o2)→ ↓2↑2↓2

`
ϕ2R+(g3)

´
(o2)

´
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Finally, by applying the same chain of modifications in opposite way we will obtain

↓1
`
ϕ1R+

`
↑2↓2

`
ϕ2R+(g3)

´´´
(o1)

ut

Lemma 9 Γ is closed under arrow composition.

Proof Consider ϕi ∈ L-ChuCors(Ci, Ci+1) for i ∈ {1, 2}. Let 〈fi, gi〉 ∈ L-FCL(Ci) be

an arbitrary L-context for all i ∈ {1, 3}. Recall that

1. Γ (ϕ2 ◦ ϕ1) =
˙
(ϕ2 ◦ ϕ1)∨, (ϕ2 ◦ ϕ1)∧

¸
2. Γ (ϕ2) ◦ Γ (ϕ1) =

˙
ϕ2∨ ◦ ϕ1∨, ϕ1∧ ◦ ϕ2∧

¸
The proof will be based on equality of corresponding elements of the previous pairs:

only one part will be proved, the other one is similar.

↓1 (ϕ1R+(ϕ2R+(g3)))(o1) =

(7)
=

^
a1∈A1

0@ _
a2∈A2

(ϕ1R(a2)(a1)⊗ ϕ2R+(g3)(a2))→ r1(o1, a1)

1A
(7)
=

^
a1∈A1

0@ _
a2∈A2

(ϕ1R(a2)(a1)⊗
_

a3∈A3

(ϕ2R(a3)(a2)⊗ g3(a3)))→ r1(o1, a1)

1A
(7)
=

^
a1∈A1

0@ _
a3∈A3

`
ϕ1R+(ϕ2R(a3))(a1)⊗ g3(a3)

´
→ r1(o1, a1)

1A
(4)(2)(3)

=
^

a3∈A3

0@g3(a3)→
^

a1∈A1

`
ϕ1R+(ϕ2R(a3))(a1)→ r1(o1, a1)

´1A
(1)
=

^
a3∈A3

`
g3(a3)→↓1

`
ϕ1R+(ϕ2R(a3))

´
(o1)

´
=

^
a3∈A3

`
g3(a3)→↓1↑1↓1

`
ϕ1R+(ϕ2R(a3))

´
(o1)

´
(10)
=

^
a3∈A3

`
g3(a3)→↓1

`
(ϕ2 ◦ ϕ1)R(a3)

´
(o1)

´
(1)
=

^
a3∈A3

`
g3(a3)→

^
a1∈A1

`
(ϕ2 ◦ ϕ1)R(a3)(a1)→ r1(o1, a1)

´´
(3)(2)

=
^

a1∈A1

^
a3∈A3

``
g3(a3)⊗ (ϕ2 ◦ ϕ1)R(a3)(a1)

´
→ r1(o1, a1)

´
(4)
=

^
a1∈A1

0@ _
a3∈A3

(g3(a3)⊗ (ϕ2 ◦ ϕ1)R(a3)(a1))→ r1(o1, a1)

1A
(7)
= ↓1

`
(ϕ2 ◦ ϕ1)R+(g3)

´
(o1)

17



Hence

(ϕ1∧ ◦ ϕ2∧)
`
〈f3, g3〉

´
= ϕ1∧

`
ϕ2∧

`
〈f3, g3〉

´´
(12)
=
˙
↓1 (ϕ1R+(↑2↓2 (ϕ2R+(g3)))), ↑1↓1 (ϕ1R+(↑2↓2 (ϕ2R+(g3))))

¸
by lemma 8 we have

=
˙
↓1 (ϕ1R+(ϕ2R+(g3))), ↑1↓1 (ϕ1R+(ϕ2R+(g3)))

¸
(10)
=
˙
↓1 ((ϕ2 ◦ ϕ1)R+(g3)), ↑1↓1 ((ϕ2 ◦ ϕ1)R+(g3))

¸
(12)
= (ϕ2 ◦ ϕ1)∧(〈f3, g3〉)

ut

Now, using Lemmas 6, 7 and 9 we directly obtain the following result.

Proposition 1 Γ is a functor from L-ChuCors to L-CLOS.

We recall now some necessary notions which will be used in order to prove that the

previous functor satisfies the conditions to define a categorical equivalence.

Definition 17

1. A functor F : C −→ D is faithful if for all objects A,B of a category C, the map

FA,B : HomC(A,B) −→ HomD(F (A), F (B)) is injective.

2. Similarly, F is full if FA,B is always surjective.

The proof of the categorical equivalence will be done by using the following char-

acterization:

Theorem 2 (See [4]) The following conditions on a functor F : C −→ D are equiva-

lent:

– F is an equivalence of categories.

– F is full and faithful and “essentially surjective” on objects: for every D ∈ D there

is some C ∈ C such that F (C) ∼= D.

In our cases, for proving fullness and faithfulness of the functor Γ we need to prove

surjectivity and injectivity of the mapping

ΓC1,C2 : L-ChuCors(C1, C2) −→ L-CLOS(Γ (C1), Γ (C2))

for any two L-contexts C1 and C2. This will be done in the forthcoming lemmas.

Lemma 10 Γ is full.

Proof The point of the proof is to show that given any arrow 〈s, z〉 from the set

L-CLOS(Γ (C1), Γ (C2)) there exists an L-Chu correspondence ϕ〈s,z〉 from the set

L-ChuCors(C1, C2), for any two L-contexts Ci = 〈Bi, Ai, ri〉 for i = {1, 2}. Let us

define the following mappings:

– ϕ
〈s,z〉
L (o1) = Ext

`
s
`
〈↓1↑1 (χo1), ↑1 (χo1)〉

´´
– ϕ

〈s,z〉
R (a2) = Int

`
z
`
〈↓2 (χa2), ↑2↓2 (χa2)〉

´´
18



↑2
`
ϕ
〈s,z〉
L (o1)

´
(a2) =

^
o2∈B2

`
ϕ
〈s,z〉
L (o1)(o2)→ r2(o2, a2)

´
=

^
o2∈B2

`
Ext(s(〈↓1↑1 (χo1), ↑1 (χo1)〉))(o2)→ ↓2 (χa2)(o2)

´
= s
`
〈↓1↑1 (χo1), ↑1 (χo1)〉

´
�2 〈↓2 (χa2), ↑2↓2 (χa2)〉

= 〈↓1↑1 (χo1), ↑1 (χo1)〉 �1 z
`
〈↓2 (χa2), ↑2↓2 (χa2)〉

´
=

^
a1∈A1

`
Int(z(〈↓2 (χa2), ↑2↓2 (χa2)〉))(a1)→ ↑1 (χo1)(a1)

´
=

^
a1∈A1

`
ϕ
〈s,z〉
R (a2)(a1)→ r1(o1, a1)

´
= ↓1

`
ϕ
〈s,z〉
R (a2)

´
(o1)

So ϕ〈s,z〉 ∈ L-ChuCors(C1, C2) and ΓC1,C2 is surjective, hence Γ is full. ut

Lemma 11 Γ is faithful.

Proof Now the point is to prove the injectivity of ΓC1,C2 .

Consider two L-Chu correspondences ϕ1, ϕ2 from L-ChuCors(C1, C2) such that

ϕ1 6= ϕ2, and let us fix the pair (o1, a2) ∈ B1 ×A2, such that

↑2
`
ϕ1L(o1)

´
(a2) = ↓1

`
ϕ1R(a2)

´
(o1) 6= ↑2

`
ϕ2L(o1)

´
(a2) = ↓1

`
ϕ2R(a2)

´
(o1)

Let us assume that either ↓1
`
ϕ1R(a2)

´
(o1) > ↑2

`
ϕ2L(o1)

´
(a2) or both values

from L are incomparable, that is equivalent to the following:

↓1
`
ϕ1R(a2)

´
(o1)→ ↑2

`
ϕ2L(o1)

´
(a2) < 1

Now consider the L-concept 〈↓1 (ϕ1R(a2)), ϕ1R(a2)〉 and let us compare its images

under the mappings ϕ1∨ and ϕ2∨.

↑2
`
ϕ2L+

`
↓1 (ϕ1R(a2))

´´
(a2)

(1)
=

^
o2∈B2

`
ϕ2L+(↓1 (ϕ1R(a2)))(o2)→ r2(o2, a2)

´
(7)
=

^
o2∈B2

0@ _
b1∈B1

`
ϕ2L(b1)(o2)⊗ ↓1 (ϕ1R(a2))(b1)

´
→ r2(o2, a2)

1A
(4)(2)(3)

=
^

b1∈B1

0@↓1 (ϕ1R(a2))(b1)→
^

o2∈B2

`
ϕ2L(b1)(o2)→ r2(o2, a2)

´1A
(1)
=

^
b1∈B1

`
↓1 (ϕ1R(a2))(b1)→ ↑2 (ϕ2L(b1))(a2)

´
≤↓1 (ϕ1R(a2))(o1)→ ↑2 (ϕ2L(o1))(a2)

because of the restriction given above

< 1
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Similarly, we can obtain:

↑2(ϕ1L+(↓1 (ϕ1R(a2))))(a2) =

=
^

b1∈B1

`
↓1 (ϕ1R(a2))(b1)→ ↑2 (ϕ1L(b1))(a2)

´
(8)
=

^
b1∈B1

`
↓1 (ϕ1R(a2))(b1)→ ↓1 (ϕ1R(a2))(b1)

´
= 1

It means that ϕ1∨
`
〈↓1 (ϕ1R(a2)), ϕ1R(a2)〉

´
6= ϕ2∨

`
〈↓1 (ϕ1R(a2)), ϕ1R(a2)〉

´
Hence ϕ1∨(〈↓1 (ϕ1R(a2)), ϕ1R(a2)〉) 6= ϕ2∨(〈↓1 (ϕ1R(a2)), ϕ1R(a2)〉) and ϕ1∨ 6=

ϕ2∨. So ΓC1,C2 is injective and Γ is faithful. ut

Proposition 2 The functor Γ is an equivalence of categories L-ChuCors and L-

CLOS.

Proof Fullness and faithfulness of Γ is given by previous lemmas. Essential surjectivity

on objects is ensured by the fact that given any object 〈〈V,≈〉,�〉 of L-CLOS there

exists an L-context 〈V, V,�〉, such that Γ
`
〈V, V,�〉

´ ∼= 〈〈V,≈〉,�〉. Hence, we can state

that Γ is the functor of equivalence between L-ChuCors and L-CLOS. ut

5 Conclusions and future work

After introducing the basic definitions concerning the L-fuzzy extension of formal

concept analysis, as well as those concerning L-Chu correspondences, the categories

associated to L-formal contexts and L-CLOS are defined and, finally, we provide a

constructive proof of the equivalence between the categories of L-formal contexts with

L-Chu correspondences as morphisms and that of completely lattice L-ordered sets and

their corresponding morphisms. As a result, we obtain that the generalized approaches

based on L-Chu correspondences and those on completely L-lattice ordered sets are

mutually interchangeable.

Roughly similar results, in essence, have already been obtained, for instance, in [24].

In that paper, a new notion of morphism on formal contexts resulted in a category

equivalent to both the category of complete algebraic lattices and Scott continuous

functions, and a category of information systems and approximable mappings.

Other researchers have studied as well the relationships between Chu construc-

tions and L-fuzzy FCA. For instance, in [14] FCA is linked to both order-theoretic

developments in the theory of Galois connections and to Chu spaces; as a result, not

surprisingly from our previous works, they obtain further relationships between for-

mal contexts and topological systems within the category of Chu systems. Recently,

Solovyov, in [41], extends the results of [14] to clarify the relationships between Chu

spaces, many-valued formal contexts of FCA, lattice-valued interchange systems and

Galois connections.

Potential applications are primary motivations for future work, for instance, to

consider possible classes of formal L-contexts induced from existing datamining notions,

and study its associated categories.
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