
Annals of Mathematics and Artificial Intelligence manuscript No.
(will be inserted by the editor)

Multi-adjoint concept lattices with heterogeneous
conjunctors and hedges
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Abstract This paper is related, on the one hand, to the framework of multi-adjoint

concept lattices with heterogeneous conjunctors and, on the other hand, to the use

of intensifying hedges as truth-stressers. Specifically, we continue on the line of recent

works by Belohlavek and Vychodil, which use intensifying hedges as a tool to reduce

the size of a concept lattice. In this paper we use hedges as a reduction tool in the

general framework of multi-adjoint concept lattices with heterogeneous conjunctors.
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1 Introduction

Formal Concept Analysis (FCA) is a very active topic for several research groups

throughout the world [1,5,10,13,20,22,28,33]. In this work, the authors aim to merge

recent advances obtained in this area: on the one hand, the use of hedges as operators

which allow one to modulate the size of fuzzy concept lattices [6] and, on the other

hand, the consideration of heterogeneous conjunctors in the general approach to fuzzy

FCA so-called multi-adjoint framework [25].
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The hedges were introduced to FCA in a fuzzy setting as a way to address one of the

most recognized problems in FCA—reduction of the size of concept lattice. Linguistic

hedges represent important language connectives whose study in the context of fuzzy

logic has been initiated by Zadeh, see [34]. Our notion of a linguistic hedge as unary

logical connective is close to that of Hájek [14,15]. In particular, we use the notion of a

truth-stressing hedge of [5], called an idempotent truth-stresser in [4]. Linguistic hedges

such as “very” or “extremely” are inserted in the description of the concept-forming

operators and become parameters for FCA that control the number of formal concepts

extracted from data. From a broader perspective, linguistic hedges represent a feasible

way to parameterize methods for knowledge extraction from data that enables one to

emphasize or suppress extracted patterns while keeping their interpretation [6]. The

study of reduction in concept lattices is an interesting research topic because the size

of a concept lattice can be exponential on the size of the context. The idea of reducing

concept lattices using hedges was used in [5], a generalization which enables one to

use a different hedge for each attribute was proposed in [6]. Hedges for isotone fuzzy

concept-forming operators were described in [19].

On the other hand, the multi-adjoint approach was originally developed within

the field of generalized fuzzy logic programming [29] introducing a much more flexible

syntax and enabling the use of several optimization techniques used in areas such as

functional programming [16], and other approaches ranging from the implementation

of query languages [2] to more theoretical ones [30] and, finally, applied in the research

area of FCA. The main feature that the multi-adjoint approach provides to FCA is

related to its ability to encode preferences, as this was also one of its virtues in the logic

programming framework (see the last section). The great flexibility provided by this

approach makes it a suitable framework to work with, especially taking into account its

numerous possible instantiations. In [28], the multi-adjoint philosophy was applied to

the fuzzy extension of FCA, relating some of the existing approaches [27]. Since then,

it has been recognized as an important and unifying framework for generalization in

this area [7, 17, 31, 32], and a number of possible instantiations of this paradigm have

been introduced in FCA (the multi-adjoint t-concepts [24], dual multi-adjoint concept

lattices [26], multi-adjoint property- or object-oriented concept lattices [23], multi-

adjoint concept lattices with heterogeneous conjunctors [25]), and related areas such

as solving relation equations [9], or rough set theory [8].

The recently introduced multi-adjoint approach with heterogeneous conjunctors

has an interesting feature in that some quasi-closure operators arise which, although

do not directly allow one to prove the complete lattice structure of the resulting set

of concepts as usual, i.e. in terms of a Galois connection, actually do provide means

to manually build the operators for suprema and infima of a set of concepts. The core

notion in [25] is that of P -connected pair of posets which, in some sense, turns out to

be a more abstract notion than a linguistic hedge. As a consequence of this observation,

due to Radim Belohlavek, we now focus on the use of the specific properties of hedges

in order to import some results related to the size of fuzzy concept lattices to the more

general framework of [25].

In this paper, we continue on the line of recent works by Belohlavek and Vychodil,

which use intensifying hedges as a tool to reduce the size of a concept lattice. Specif-

ically, we use hedges as a reduction tool in the general framework of multi-adjoint

concept lattices with heterogeneous conjunctors.

The structure of the paper is the following: in Section 2 the preliminary definitions

are introduced, interested readers will obtain further comment on the intuitions un-
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derlying the definitions in the original papers [6,25]; the main results are presented in

Section 3. In the last section we recover an example which illustrates how easy is to

encode a preferred set of attributes, and then hedges are used to reduce the size of the

associated concept lattices.

2 Preliminary definitions and results

In this section, we introduce the basic definitions and preliminary results which will be

used later in the core of this work.

Definition 1 Let (L,�,>,⊥) be a complete lattice, a truth-stressing hedge in L is a

mapping ∗ : L→ L satisfying, for each x, y ∈ L,

∗(>) = >, (1)

∗(x) � x, (2)

x � y implies ∗ (x) � ∗(y), (3)

∗(∗(x)) = ∗(x) (4)

fix(∗) denotes the set of fixed points of ∗ in L, i.e. fix(∗) = {a ∈ L | ∗(a) = a}.

Later in this work, we will need the following two lemmas:

Lemma 1 Let (L,�) be a complete lattice, for any mapping ∗ : L→ L satisfying (2),

(3), and (4) we have, for each xi ∈ L,∨
i∈I
∗(xi) = ∗(

∨
i∈I
∗(xi)) and ∗ (

∧
i∈I
∗(xi)) = ∗(

∧
i∈I

xi). (5)

In addition, if we have xj =
∨
i∈I xi for some j ∈ I then

∗(
∨
i∈I

xi) =
∨
i∈I
∗(xi). (6)

Similarly, if we have xj =
∧
i∈I xi for some j ∈ I then

∗(
∧
i∈I

xi) =
∧
i∈I
∗(xi). (7)

Proof The proof of (5) can be found in [6]. (6) and (7) follow from (5) and (3). ut

Lemma 2 (a) Let ∗ : L→ L be a mapping satisfying (2), (3), and (4). Then fix(∗) is

a complete ∨-subsemilattice of L.

(b) Let K be a complete ∨-subsemilattice of L then the mapping ∗K : L → L defined

by

∗K(x) =
∨
{y ∈ K | y ≤ x}

satisfies (2), (3), and (4). In addition, ∗fix(∗) = ∗ and fix(∗K) = K.
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Proof (a) follows directly from Lemma 1.

(b) Let ∗K(x) =
∨
{y ∈ K | y ≤ x} for each a ∈ L. We have (2) holds true by

properties of suprema. If x ≤ z then ∗K(x) is supremum of a smaller (by means of

subsethood) set than ∗K(z); thus ∗K(x) ≤ ∗K(z), i.e. (3) holds true. (4) is obvious.

Now, we have ∗fix(∗)(x) =
∨
{y | y ∈ fix(∗) : y ≤ x} =

∨
{∗(y) | ∗(y) ∈ L : ∗(y) ≤

x} =
∨
{∗(y) | ∗(y) ∈ L : ∗(y) ≤ ∗(x)} = ∗(x).

Finally, x ∈ fix(∗K) means x = ∗K(x) =
∨
{y ∈ K | y ≤ x}; now, as K is a

complete ∨-subsemilattice, we have that x ∈ K. It is straightforward to check that any

x ∈ K is a fixed point of ∗K . ut

By Lemma 2, given a truth-stressing hedge ∗, the set fix(∗) is a complete ∨-

subsemilattice. Now we will introduce the basic notions of multi-adjoint concept lattices

with heterogeneous conjunctors, in order to show how both frameworks, hedges and

heterogeneous conjunctors, can be merged.

Firstly, let us introduce a bit of terminology: in the rest of this work we will call

a mapping ∗ : L → L satisfying (2), (3), and (4) an intensifying hedge, following

the terminology introduced in [3]. In terms of interior structures (L,�), a mapping

satisfying (2)–(4) is an interior operator on the lattice of truth degrees.

The two main notions on which multi-adjoint concept lattices with heterogeneous

conjunctors is defined are given below: the P -connection between posets, and the ad-

joint triples.

Definition 2 Given posets (P1,≤1), (P2,≤2) and (P,≤), we say that P1 and P2

are P -connected if there exist non-decreasing mappings ψ1 : P1 → P , φ1 : P → P1,

ψ2 : P2 → P and φ2 : P → P2 verifying that φ1(ψ1(x)) = x, and φ2(ψ2(y)) = y, for all

x ∈ P1, y ∈ P2.

Definition 3 Let (P1,≤1), (P2,≤2), (P3,≤3) be posets, and consider mappings &: P1×
P2 → P3, ↙ : P3 × P2 → P1, ↖ : P3 × P1 → P2, then (&,↙,↖) is an adjoint triple

with respect to P1, P2, P3 if: x ≤1 z ↙ y iff x& y ≤3 z iff y ≤2 z ↖ x, where x ∈ P1,

y ∈ P2 and z ∈ P3.

From Lemma 2 we immediately obtain the following result:

Corollary 1 Consider lattices (L1,≤1), (L2,≤2) and (L,≤), and assume that L1 and

L2 are L-connected, then:

(a) If ψ1 ◦ φ1 is contractive (i.e. satisfies (2)) then L1 is isomorphic to a complete

∨-subsemilattice of L.

(b) If ∗ : L1 → L1 is an intensifying hedge (i.e. satisfies properties (2), (3), and (4))

then the composition ψ1 ◦ ∗ ◦ φ1 : L→ L is an intensifying hedge in fix(ψ1 ◦ φ1).

We will also need the following lemma.

Lemma 3 Let (L,�), (L1,�1), (L2,�2) be complete lattices and let (&,↙,↖) be an

adjoint triple. For a, ai ∈ L1, b, bi ∈ L2, with i in a set of indexes I, we have∨
i∈I(ai & b) = (

∨
1i∈Ia) & b and

∨
i∈I(a& bi) = a&(

∨
2i∈Ibi) (8)

Now, we introduce basic definitions of multi-adjoint context and multi-adjoint con-

cept lattices [25].
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Definition 4 A multi-adjoint frame is a tuple (L1, L2, P,&1,↙1,↖1, . . . ,&n,↙n

,↖n) where Lis are complete lattices and P is a poset, such that (&i,↙i,↖i) is

an adjoint triple with respect to L1, L2, P for all i = 1, . . . , n.

Definition 5 Let (L1, L2, P,&1, . . . ,&n) be a multi-adjoint frame, a multi-adjoint

context is a tuple (A,B,R, σ) such that A and B are non-empty sets (usually inter-

preted as attributes and objects, respectively), R is a P -fuzzy relation R : A×B → P

and σ : B → {1, . . . , n} is a mapping which associates any element in B with some

particular adjoint triple in the frame.

Given a complete lattice (L,�) such that L1 and L2 are L-connected, a multi-

adjoint frame (L1, L2, P,&1, . . . ,&n), and a context (A,B,R, σ), we can define the

mappings ↑cσ : LB → LA and ↓
cσ

: LA → LB defined for all g ∈ LB and f ∈ LA as

follows:

g↑cσ (a) = ψ1(inf{R(a, b)↙σ(b) φ2(g(b)) | b ∈ B}) (9)

f↓
cσ

(b) = ψ2(inf{R(a, b)↖σ(b) φ1(f(a)) | a ∈ A}) (10)

The notion of concept is defined as usual. A concept is a pair 〈g, f〉 satisfying

g ∈ LB , f ∈ LA and that g↑cσ = f and f↓
cσ

= g.

Definition 6 Given complete lattices (L1,�1), (L2,�2) and (L,�), where L1 and

L2 are L-connected, the set of multi-adjoint L-connected concepts associated with a

multi-adjoint frame (L1, L2, P,&1, . . . ,&n) and context (A,B,R, σ) is given by ML =

{〈g, f〉 | 〈g, f〉 is a concept}.

The main theorem of concept lattices in [25] proves that ML has the structure of

a complete lattice:

Theorem 1 ([25]) Let (L1,�1), (L2,�2), and (L,�) be three complete lattices, where

L1 and L2 are L-connected, a multi-adjoint context (A,B,R, σ), and a multi-adjoint

frame (L1, L2, L,&1, . . . ,&n), the multi-adjoint L-connected concept lattice ML is ac-

tually a complete lattice with the meet and join operators f,g : ML ×ML → ML

defined below, for all 〈g1, f1〉, 〈g2, f2〉 ∈ML,

〈g1, f1〉f 〈g2, f2〉 = 〈ψ2 ◦ φ2(g1 ∧ g2), (f1 ∨ f2)↓
c↑c〉,

〈g1, f1〉g 〈g2, f2〉 = 〈(g1 ∨ g2)↑c↓
c

, ψ1 ◦ φ1(f1 ∧ f2)〉.

The order � which corresponds to f and g is defined as

〈g1, f1〉 � 〈g2, f2〉 iff φ2(g1) ≤ φ2(g2) (iff φ1(f2) ≤ φ1(f1)).

In what follows M denotes multi-adjoint L-connected concept lattice of given con-

text (A,B,R, σ). We will also omit subscript σ(b) and write just ↙ instead of ↙σ(b).
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3 Size reducing results for multi-adjoint concept lattices based on

heterogeneous conjunctors

The size of the concept lattice M can be reduced either by a suitable selection of a

complete ∨-subsemilattice of L1 (and/or L2) and the use of a restriction of &. The

following proposition says that the selection of complete ∨-subsemilattices of L1 (resp.

L2) yields a reduction of size of concept lattice and, moreover, preserves extents (resp.

intents) of the original concept lattice.

Proposition 1 Let A = (L1, L2, P,&1, . . . ,&n),A′ = (K1, L2, P,&
′
1, . . . ,&

′
n) be multi-

adjoint frames, s.t. K1 is a complete ∨-subsemilattice of L1, and &
′
1, . . . ,&

′
n are restric-

tions of &1, . . . ,&n to K1×L2 and ψ′1 = ψ1, ψ′2 = ψ2, φ′2 = φ2, φ′1 = ∗K1
◦φ1, where

∗K1
is the hedge associated with K1 as introduced in Lemma 2. Then, Ext(MA′) ⊆

Ext(MA) where Ext(M) denotes the set of extents in M.

Proof (sketch) We have z ↖′ x = z ↖ x, for each x ∈ K1, z ∈ P , whence f↓
′

= f↓,
for each f : A → ψ1(K1) where ψ1(K1) ⊆ L is the image of ψ1 (note that ↙′ is

well-defined since K1 is complete ∨-subsemilattice) and thus by Proposition 16 in [25]

Ext(MA′) ⊆ Ext(MA). ut

Remark 1 (a) One can state a dual proposition to Proposition 1 for intents. Let A =

(L1, L2, P,&1, . . . ,&n),A′′ = (L1,K2, P,&
′′
1 , . . . ,&

′′
n) be multi-adjoint frames such

that K2 is a complete ∨-subsemilattice of L2, and &
′′
1 , . . . ,&

′′
n are restrictions of

&1, . . . ,&n to L1 ×K2 and φ′′2 = ∗K2
◦ φ2.

(b) We have z ↖′ x = z ↖ x; For the right residuum of &
′ we have

z ↙′ y =
∨

2
{x ∈ K1 | x& y ≤ z} =

∨
2
{∗K1

(x) ∈ L1 | ∗K1
(x) & y ≤ z} =

=
∨

2
{∗K1

(x) ∈ L1 | x& y ≤ z} = {∗K1
(x) ∈ L1 | x& y ≤ z}

=
∨

2
∗K1

({x ∈ L1 | x& y ≤ z}) = ∗K1
(z ↙ y).

(c) Even in a crisp case we can find a counterexample to show that we do not generally

have Int(MA′) ⊆ Int(MA) even in a crisp case. Use L1, L2, L3 = 〈{0, 1},≤〉,
& = min, K1 = {0}, φ1, φ2, ψ1, ψ2 being the identity, and full incidence relation R.

Corollary 2 (a) Considering MA′ , MA from Proposition 1 we have 〈Ext(MA′),�Ext〉
is complete

∧
-subsemilattice of 〈Ext(MA),�Ext〉, where �Ext is the extent com-

ponent of � (i.e. g1 � g2 iff φ2(g1) ≤ φ2(g2)).

(b) Collection of extent parts Ext(MA′) of the reduced concept lattices MA′ with the

order relation ‘being a complete
∧

-subsemilattice’ forms a complete lattice.

Proof Follows from Proposition 1 and Theorem 1.

Example 1 This example demonstrates the reduction of the concept lattice of the fol-

lowing context.

1 2 3

1 0 0.25 0.75

2 1 0.5 1

3 0 1 0.25
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Fig. 1 Demonstration of a reduction of concept lattice for all complete ∨-subsemilattices
K1 of the 5-element chain in means of Proposition 1. Nodes contain reduced concept lattices
obtained by application of different K1s, edges represent hierarchy described in Corollary 2 (b).

We use the following setting: L1, L2, L3 are 5-element chains {0, 0.25, 0.5, 0.75, 1}, &s

are the  Lukasiewicz conjunctions, and φ1, φ2, ψ1, ψ2 are the identities. By use of each

complete ∨-subsemilattice K1 instead of L1 in a way described in Proposition 1, we

obtain 16 concept lattices hierarchically ordered with a complete lattice structure (see

Fig. 1).

The following proposition says that by selection of complete ∨-subsemilattices of

both L1 and L2 we obtain a reduction of the size as well. However, the preservation of

extents (or intents) is lost, see Remark 1(c).

Remark 2 Now, consider a little more general setting of concept-forming operators as

in the Proposition 1 where we have different K1 for each attribute.1 Note that in this

more general setting the Proposition 1 still holds true, i.e. we still obtain extent reduct

of the original multi-adjoint concept lattice.

Furthermore, note that putting K1 = {⊥} has the same effect as removal of the

corresponding column. In that way, Proposition 1 generalizes [11, Propositions 30 and

31].

Finally, Note that in the crisp setting the method of reduction becomes equivalent to

selection of attributes.

Proposition 2 Let A = (L1, L2, L,&1, . . . ,&n),A′ = (K1,K2, L,&
′
1, . . . ,&

′
n) be multi-

adjoint frames, s.t. K1 is a complete ∨-subsemilattice of L1, K2 is a complete ∨-

subsemilattice of L2, and &
′
1, . . . ,&

′
n are restrictions of &1, . . . ,&n to K1 ×K2, and

φ′1 = ∗K1
◦ φ1, φ

′
2 = ∗K2

◦ φ2. Then we have |MA′ | ≤ |MA|.

1 To make this formally correct, we would require to extend the framework of multi-adjoin
frames to allow individual lattice for each attribute and/or object. To keep the framework
simpler we do not make this extension and limit ourselves to this verbal description.
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Proof (sketch) By applying Proposition 1 and Remark 1 we obtain the result. ut

Remark 3 Continuing the argument made in Remark 2, Proposition 2 generalizes [11,

Proposition 32].

In the next result we show how to generate new adjoint triples using hedges.

Lemma 4 Assume (&,↙,↖) is an adjoint triple with respect to L1, L2, P , and

∗1 : L1 → L1, ∗2 : L2 → L2 are hedges, then x&
∗ y = ∗1(x) & ∗2(y) has two resid-

uated implications ↙∗,↖∗ which form a new adjoint triple with respect to L1, L2, P ,

if and only if the following equalities hold:

∗1(z ↙ ∗2(y)) = ∗1(
∨
{x | x&

∗ y ≤ z}) (11)

∗2(z ↖ ∗1(x)) = ∗2(
∨
{y | x&

∗ y ≤ z}) (12)

Proof “⇒”: Let (&
∗,↙∗,↖∗) be an adjoint triple. We have

x&
∗ y ≤ z iff y �2 z ↖∗ x

by definition. In particular, we obtain

∗1(x) &
∗ ∗2(y) ≤ z iff ∗2 (y) �2 z ↖∗ ∗1(x)

and ∗1(x) &
∗ ∗2(y) = ∗1(∗1(x)) & ∗2(∗2(y)) = ∗1(x) & ∗2(y) = x&

∗ y. Hence, we have

x&
∗ y ≤ z iff ∗2 (y) �2 z ↖∗ ∗1(x)

From (3) and (4) we obtain that

∗2(y) �2 z ↖∗ ∗1(x) implies ∗2 (y) �2 ∗2(z ↖∗ ∗1(x))

and due to (2) we have

∗2(y) �2 ∗2(z ↖∗ ∗1(x)) implies ∗2 (y) �2 z ↖∗ ∗1(x)

Therefore, we have

x&
∗ y ≤ z iff ∗2 (y) �2 ∗2(z ↖∗ ∗1(x)). (13)

Analogously, we obtain

∗1(x) & ∗2(y) ≤ z iff ∗2 (y) �2 ∗2(z ↖ ∗1(x)) (14)

By setting y = (z ↖ ∗1(x)), in Equation (13), and y = (z ↖∗ ∗1(x)), in Equation (14),

we obtain equivalent inequalities ∗2(z ↖ ∗1(x)) � ∗2(z ↖∗ ∗1(x)), ∗2(z ↖ ∗1(x)) �
∗2(z ↖∗ ∗1(x)) respectively. Thus we have

∗2(z ↖ ∗1(x)) = ∗2(z ↖∗ ∗1(x)).

Which is equal to (12). The first equation (11) can be obtained dually.

“⇐”: Assume that (12) holds true. By properties of adjointness, to show that &
∗

generates an adjoint triple we need to show that

R = {y | ∗1(x) & ∗2(y) ≤ z}
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has a greatest element.

In the previous part, we proved that

∗1(x) & ∗2(y) ≤ z iff ∗2 (y) �2 ∗2(z ↖ ∗1(x)) (15)

hence R = {y | ∗2(y) � ∗2(z ↖ ∗1(x))}. Now, if R has no greatest element, i.e.∨
R /∈ R, then we have ∗2(

∨
R) 6� ∗2(z ↖ ∗1(x)) which is a contradiction with the

assumption. By the contradiction we proved that R has a greatest element. ut

Proposition 3 Let A = (L1, L2, P,&1, . . . ,&n) be a multi-adjoint frame, let ∗1, ∗2
be hedges on L1 and L2, respectively. Let A′ = (fix(∗1),fix(∗2), P,&

′
1, . . . ,&

′
n) s.t.

&
′
1, . . . ,&

′
n are restrictions of &1, . . . ,&n to fix(∗1) × fix(∗2), and φ′1 = ∗1 ◦ φ1, φ

′
2 =

∗2 ◦φ2. Let A∗ = (L1, L2, P,&
∗
1, . . . ,&

∗
n) be a multi-adjoint frame where &

∗
i is defined

by a&
∗
i b = ∗1(a) &i ∗2(b), for all i ∈ {1, . . . , n}, and the conditions in Lemma 4 are

satisfied. Then (MA′ ,�′) and (MA∗ ,�∗) are isomorphic.

Proof Let K = (A,B,R, σ) be a formal context, denote by ↑, ↓ concept-forming oper-

ators induced by K and A′ and denote by ⇑, ⇓ concept-forming operators induced by

K and A∗. Furthermore, denote compositions ψ1 ◦ ∗1 ◦ φ1 and ψ2 ◦ ∗2 ◦ φ2 by •1 and

•2 respectively.

For each mapping g : B → L we have

•1(g⇑(a)) = •1(ψ1

∧
1
(R(a, b)↙∗ φ2(g(b))))

= ψ1 ∗1 (φ1ψ1

∧
1
(R(a, b)↙∗ (φ2(g(b)))))

= ψ1

∧
1
∗1 (
∨

1
{x | ∗1(x) & ∗2(φ2(g(b))) ≤ R(a, b))})

(∆)
= ψ1

∧
1
(
∨

1
{∗1(x) | ∗1(x) & ∗2(φ2(g(b))) ≤ R(a, b))})

= ψ1

∧
1
(
∨

1
{x ∈ fix(∗1) | x& ∗2(φ2(g(b))) ≤ R(a, b))})

= ψ1

∧
1
(R(a, b)↙′ ∗2(φ2(g(b))))

= ψ1

∧
1
(R(a, b)↙′ φ2ψ2 ∗2 (φ2g(b)))

= ψ1

∧
1
(R(a, b)↙′ φ2 •2 (g(b)))

= (•2 ◦ g)↑(a)

where (∆) is due to Lemma 1 (6) and the fact that & generates adjoint triple and

thus
∨

1{x | ∗1(x) & ∗2(φ2(g(b))) ≤ R(a, b)}) has a greatest element. Dually, we have

•2 ◦ (f⇓) = (•1 ◦ f)↓ for each mapping f : A→ L. From that we have

g↑ = •1 ◦ (g⇑) and f↓ = •2 ◦ (f⇓)

for each g : B → fix(•2), f : A → fix(•1). As a result of the previous equalities, we

have that •2 is a surjective mapping Ext(MA∗) → Ext(MA′) and •1 is a surjective
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mapping Int(MA∗)→ Int(MA′). In addition, for g ∈ Ext(MA∗) we have

•2(g)⇑(a) = ψ1

∧
1
R(a, b)↙∗ φ2ψ2 ∗2 φ2(g(b))

= ψ1

∧
1

∨
2
{x | ∗1(x) & ∗2 ∗2 (φ2(g(b))) ≤ R(a, b)}

= ψ1

∧
1

∨
2
{x | ∗1(x) & ∗2(φ2(g(b))) ≤ R(a, b)}

= ψ1

∧
1
R(a, b)↙∗ φ2(g(b)))

= g⇑(a)

and dually •1(f)⇓ = f⇓. Putting it together, we have g = g⇑⇓ = •1(g⇑)⇓ = •2(g)↑⇓

showing that ↑⇓ is injective; whence •1, •2 are bijections.

To show that •1, •2 are order-preserving let 〈g1, f1〉 , 〈g2, f2〉 ∈MA∗ . An extent of

〈g1, f1〉 ∧ 〈g2, f2〉 is equal to ψ2φ2(g1 ∧ g2) by the main Theorem in [25].

For g1, g2 ∈ Ext(MA∗) we have

•2ψ2φ2(g1 ∧ g2) = ψ2 ∗2 φ2ψ2φ2(g1 ∧ g2)

= ψ2 ∗2 φ2(g1 ∧ g2)

= ψ2 ∗2 φ2 •2 (g1 ∧ g2)

(∆)
= ψ2φ

′
2(•2(g1) ∧ •2(g2))

Equality (∆) is due to Corollary 1(b) since g1, g2 are fixpoints of ψ2 ◦ φ2.

Now, let g1, g2 ∈ Ext(MA′). We have

(ψ2φ
′
2(g1 ∧ g2))↑⇓ = (ψ2 ∗2 φ2(g1 ∧ g2))↑⇓

= (•1(g1 ∧ g2))↑⇓

= (•1(g↑↓1 ∧ g
↑↓
2 ))↑⇓

= (•1(•1(g↑⇓1 ) ∧ •1(g↑⇓2 ))↑⇓

(∆)
= (•1 •1 (g↑⇓1 ∧ g

↑⇓
2 ))↑⇓

= (•1(g↑⇓1 ∧ g
↑⇓
2 ))↑⇓

= (g↑⇓1 ∧ g
↑⇓
2 )⇑⇓

(∇)
= ψ2φ2(g↑⇓1 ∧ g

↑⇓
2 )

Equality (∆) is due to Corollary 1(b) since g1, g2 are fixpoints of ψ2 ◦φ2; equality (∇)

is due to [25, Lemma 21].

This proves that •1, •2, ↑⇓, and ↓⇑ are order-preserving. ut

Example 2 Consider the multi-adjoint frame depicted in Fig. 2 (structures are the same

as in [25, Example 3 (Fig. 2)] where all &i’s coincide). Figure 3 depicts a formal con-

text with two objects and two attributes, together with their associated multi-adjoint

concept lattice.

In this final part, we follow the way in which the hedges are used in [6], i.e. we

generalize concept-forming operators using intensifying hedges. Then we show how this

is related to the theory described above.
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α

β

γ

δ

x

y
z

t
u

v

a

cb

d

a b c d
ψ1 x t u v

α β γ δ
ψ2 x y t v

x y z t u v
φ1 a b a b c d

x y z t u v
φ2 α β γ γ δ δ

& α β γ δ
a x x x x
b x y v v
c x y y t
d x y v u

↙ α β γ δ
t d d c c
u d d d d
v d d d b
x d a a a
y d d c a
z d a a a

↖ a b c d
t δ β δ β
u δ δ δ δ
v δ δ γ γ
x δ α α α
y δ β γ β
z δ α α α

Fig. 2 L1 (top left), L (top middle), L2 (top right), connection operators φ1, φ2, ψ1, ψ2 (mid-
dle), adjoint triple (〈&,↖,↙〉) (bottom).

1 2
1 u v
2 v y

(v, v)(u, x)

(u, v)(v, x)
(v, u)(u, t)

(u, u)(v, t)
(v, y)(u, v)

(u, y)(v, v)

Fig. 3 Multi-adjoint formal context with two objects and two attributes (left) and the multi-
adjoint concept lattice associated to the context (right).

Following the way how the truth-stressing hedges are used in [6] we can define the

concept-forming operators as

gM(a) = ψ1

∧
1b∈B

R(a, b)↙ ∗2(φ2(g(b)))

fO(b) = ψ2

∧
2a∈A

R(a, b)↖ ∗1(φ1(f(a)))

Note that this is not strictly the same as approach used in Proposition 3 since ↙
and ↖ are residua of the original adjoint operators &, not the altered operators &

∗.
In fact, generally there is no base operation & such that (·) ↙ ∗2(·) and (·) ↖ ∗1(·)
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α

β

γ

δ

a

cb

d

(v, v)(x, x)

(v, x)(x, t)(x, t)(y, x)

(x, x)(t, t)

(v, v)(x, x)

(v, x)(x, y)(x, v)(y, x)

(x, x)(v, v)

Fig. 4 Intensifying hedge on L1 (left) and L2 (right); concept lattices MA′ (center left),
MA∗ (center right) of the formal context in Fig. 3; labels of nodes of MA′ and MA∗ represent
characteristic vectors of corresponding extents and intents.

are its residua, since we do not generally have

x ≤ z ↙ ∗2(y) iff y ≤ z ↖ ∗1(x)

for each x ∈ L1, y ∈ L2, z ∈ L.

Proposition 4 Assume (&,↙,↖) is an adjoint triple, ∗1, ∗2 are intensifying hedges,

and ↙�,↖� being defined as z ↙� y = z ↙ ∗2(y), and z ↖� x = z ↖ ∗1(x); then

↙�,↖� are part of an adjoint triple with conjunctor &
� if and only if for all x, y the

following equality holds

x& ∗2(y) = ∗1(x) & y

and, in this case the previous value is the definition of &
�.

Proof For all x, y, z, on the one hand, we have

∗1(x) & y ≤ z iff y �2 z ↖ ∗1(x) iff y �2 z ↖� x

On the other hand, we have

x& ∗2(y) ≤ z iff x �1 z ↙ ∗2(y) iff x �1 z ↙� y

Thus we have

y �2 z ↙� x iff x �1 z ↖� y

is equivalent to

x& ∗2(y) ≤ z iff ∗1 (x) & y ≤ z,

which is equivalent to x& ∗2(y) = ∗1(x) & y. ut
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Given the frame A = (L1, L2, P,&1, . . . ,&n), we denote

M∗L = {〈g, f〉 | g ∈ LB , f ∈ LA, gM = f, g = fO}

a set of fixed points of M, O. As usual, an ordering �∗ can be defined to obtain a

complete lattice (M∗L,�
∗).

This lattice is isomorphic to (MA′ ,�′), where A′ = (fix(∗1), fix(∗2), P,&
′
1, . . . ,&

′
n),

as we will show below. First of all, we need the following technical result.

Lemma 5 Given (M∗L,�
∗) and (MA′ ,�′), the equalities •1(gM) = g↑ and •2(fO) =

f↓ hold.

Proof Given a ∈ A, the following equalities are obtained:

•1(gM(a)) = •1(ψ1

∧
b∈B

R(a, b)↙ ∗2φ2(g(b)))

= ψ1 ∗1 (
∧

1b∈B
R(a, b)↙ ∗2(φ2(g(b))))

= ψ1

∧
1b∈B

∗1 (R(a, b)↙ ∗2(φ2(g(b))))

= ψ1

∧
1b∈B

∗1
∨

1
{x | x& ∗2(φ2(g(b))) ≤ R(a, b)}

= ψ1

∧
1b∈B

∨
1
{∗1(x) | x& ∗2(φ2(g(b))) ≤ R(a, b)}

(∆)
= ψ1

∧
1b∈B

∨
1
{∗1(x) | ∗1(x) & ∗2(φ2(g(b))) ≤ R(a, b)}

= ψ1

∧
1b∈B

∨
1
{x ∈ fix(∗1) | x& ∗2(φ2(g(b))) ≤ R(a, b)}

= ψ1

∧
1b∈B

∨
1
{x ∈ fix(∗1) | x&φ′2(g(b)) ≤ R(a, b)}

= ψ1

∧
1b∈B

R(a, b)↙′ φ′2(g(b))

= g↑(a)

The equality (∆) holds because each x satisfying x& y ≤ z satisfies ∗2(x) & y ≤ z as

well; and because for each ∗2(x) such that ∗2(x) & y ≤ z there is x′ (explicitly, ∗2(x))

with ∗2(x′) = ∗2(x) such that x′& y ≤ z. Dually, one can show •2(fO) = f↓. ut

The following result proves the announced isomorphism.

Theorem 2 The concept lattices (M∗L,�
∗) and (MA′ ,�′) are isomorphic.

Proof First of all, a concept 〈g, f〉 in (M∗L,�
∗) is considered and we prove that the

pair 〈•2(g), •1(f)〉 is a concept in (MA′ ,�′), that is [•2(g)]↑ = •1(f), •2(g) = [•1(f)]↓.

[•2(g)]↑(a)
(1)
= •1(ψ1

∧
b∈B

R(a, b)↙ ∗2φ2(•2(g(b))))

= •1(ψ1

∧
b∈B

R(a, b)↙ ∗2φ2ψ2 ∗2 φ2(g(b))))

= •1(ψ1

∧
b∈B

R(a, b)↙ ∗2φ2(g(b)))

= •1(gM)

(2)
= •1(f)(a)
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where (1) is given from the proof of Lemma 5 and (2) by hypothesis. Analogously, we

obtain the other equality •2(g) = [•1(f)]↓.
Secondly, given a concept 〈g, f〉 in (MA′ ,�′), the pair

〈
fO, gM

〉
needs to be a

concept in (M∗L,�
∗), that is gMO = fO, gM = fOM.

gMO(b) = ψ2

∧
a∈A

R(a, b)↖ ∗1φ1(gM(a))

(1)
= ψ2

∧
a∈A

R(a, b)↖ φ′1ψ
′
1 ∗1 φ1(gM(a))

(2)
= ψ2

∧
a∈A

R(a, b)↖ ∗1φ1ψ1 ∗1 φ1(gM(a))

(3)
= ψ2

∧
a∈A

R(a, b)↖ ∗1φ1 •1 (gM(a))

(4)
= ψ2

∧
a∈A

R(a, b)↖ ∗1φ1(g↑(a))

(5)
= ψ2

∧
a∈A

R(a, b)↖ ∗1φ1(f(a))

= fO(b)

where (1) is given because ∗1φ1(gM(a)) ∈ fix(∗1) and φ′1ψ
′
1 is the identity mapping in

fix(∗1). By definition we obtain (2) and (3). Finally, the equality (4) is obtained from

Lemma 5 and (5) by hypothesis. The other equality is obtained analogously.

Now, we prove that these mappings are mutually inverse. First of all, we need to

prove that
〈
[•1(f)]O, [•2(g)]M

〉
= 〈g, f〉, which is equivalent to prove [•1(f)]O = g.

Therefore, for each b ∈ B, we have

[•1(f)]O(b) = ψ2

∧
a∈A

R(a, b)↖ ∗1φ1 •1 (f(a))

= ψ2

∧
a∈A

R(a, b)↖ ∗1φ1ψ1 ∗1 φ1(f(a))

= ψ2

∧
a∈A

R(a, b)↖ ∗1φ1(f(a))

= fO(b)

= g(b)

Secondly the equality
〈
•2(fO), •1(gM)

〉
= 〈g, f〉 needs to be verified, which is equivalent

to •2(fO) = g, and this is straightforward from Lemma 5 and by hypothesis.

Finally, it is not difficult to check that supreme and infima are preserved; hence,

we conclude that (M∗L,�
∗) and (MA′ ,�′) are isomorphic lattices. ut

4 A worked example

The following is an adaptation of an example taken from [28] – we refer the reader to

that paper for further motivation on the formal context.

The problem is finding a suitable target journal to submit a paper. Assume the

following sets of objects and attributes

B = {AMC,CAMWA,FSS, IEEE-FS, IJGS, IJUFKS, JIFS},
A = {Impact Factor, Immediacy Index,Cited Half-Life,Best Position}.
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We will consider a multi-adjoint frame with three different lattices:

([0, 1]20, [0, 1]8, [0, 1]100,≤,≤,≤)

Where [0, 1]m denotes a regular partition of [0, 1] into m pieces; & is discretizations of

the product.

↙ : [0, 1]100 × [0, 1]8 → [0, 1]20 and ↖ : [0, 1]100 × [0, 1]20 → [0, 1]8 are defined in

terms of floor function b c as:

z ↙ y =
b20 ·min{1, z/y}c

20
z ↖ x =

b8 ·min{1, z/x}c
8

Our input formal context is shown in Table 1.

Table 1 Fuzzy relation between the objects and the attributes.

R AMC CAMWA FSS IEEE-FS IJGS IJUFKS JIFS
I. Factor 0.34 0.21 0.52 0.85 0.43 0.21 0.09
I. Index 0.13 0.09 0.36 0.17 0.1 0.04 0.06

Cited H.L. 0.31 0.71 0.92 0.65 0.89 0.47 0.93
Best P. 0.75 0.5 1 1 0.5 0.25 0.25

The problem of choosing a suitable journal depends on the definition of “suitability”

we have in mind. For example, in the context (A,B,R, σ) where σ(b) = & for every

b ∈ B, by the fuzzy subset f : A→ [0, 1] below:

f(Impact Factor) = 0.75, f(Immediacy Index) = 0.3,

f(Cited Half-Life) = 0.55, f(Best Position) = 0.5

Now, the problem consists in finding a multi-adjoint concept which represents the

suitable journal as defined by the fuzzy set f .

f↓(AMC) = 0.375 f↓(CAMWA) = 0.25 f↓(FSS) = 0.625

f↓(JIFS) = 0 f↓(IJGS) = 0.25 f↓(IJUFKS) = 0.125

f↓(IEEE-FS) = 0.5

It turns out that the most suitable journal is FSS.

If we wanted to study entire multi-adjoint concept lattice of (A,B,R, σ), we would

have to deal with a structure containing 248 concepts.Concept lattices of this size are

not readable for a human user, so let us apply the methods of reduction described

in this paper. Instead of L1 = [0, 1]20, L2 = [0, 1]8 we use their sublattices K1 =

[0, 1]5,K2 = [0, 1]4, respectively.

Now, we obtain a multi-adjoint concept lattice with 59 concepts. The fact that FSS

and IEEE-FS are the most two suitable journals is preserved but we lost information

on which one of them is better:

f↓
′
(AMC) = 0.5 f↓

′
(CAMWA) = 0.25 f↓

′
(FSS) = 0.75

f↓
′
(JIFS) = 0 f↓

′
(IJGS) = 0.5 f↓

′
(IJUFKS) = 0

f↓
′
(IEEE-FS) = 0.75

This shows a natural behavior of the reduction.
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5 Conclusions

We have studied a merge of two separately developed generalizations of fuzzy formal

concept analysis – multi-adjoint concept lattices with heterogeneous conjunctors and

concept lattices with truth-stressing hedges. We have shown how reduction of size

of multi-adjoint concept lattice heterogeneous conjunctors can be obtained using the

approach of the hedges. We also specified conditions under which the two approaches

can be considered to be equal.

In the future the relation between proposed framework and the standard projections

of contexts and pattern structures, as described in [12, 18, 21]. Moreover, our future

research in this area includes study of geometry of multi-adjoint formal concepts and

how this geometry is affected by the use of hedges.
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