Restricted A-trees and Reduction Theorems in
Multiple-Valued Logics*

I.P. de Guzran, M. Ojeda-Aciego, and A. Valverde

Dept. Matenatica Aplicada
Universidad de Mlaga
{aci ego, guzman, a_val verde}@t i na. una. es

Abstract. In this paper we continue the theoretical study of the possible applic-
ations of theA-tree data structure for multiple-valued logics, specifically, to be
applied to signed propositional formulas. Thetrees allow a compact represent-
ation for signed formulas as well as for a number of reduction strategies in order
to consider only those occurrences of literals which are relevant for the satisfiab-
ility of the input formula. New and improved versions of reduction theorems for
finite-valued propositional logics are introduced, and a satisfiability algorithm is
provided which further generalise the TAS method [1, 5].

1 Introduction

Automated deduction in multiple-valued logic has been based on the notisig;mahd
signed formulawhich allow one to apply classical methods in the analysis of multiple-
valued logics. The main idea is to apply the following bivalued metalinguistic interpret-
ation of multiple-valued sentences: For example, in a 3-valued logic with truth-values
{0, 12,1} and with{1} as the designated value, the satisfiability of a formutzan be
expressed ads it possible to evaluate in {1}7? In the same way, the unsatisfiability of

¢ is expressed byis it possible to evaluate in {0, 1/2}? These questions correspond
to the study of validity of the signed formulas}: and{o, ~}:¢, which are evaluated

on the sef{0, 1}. In other words, the formulas in a signed logic are constructions of the
form S:¢, whee S is a set of truth-values of the multiple-valued logic, calledstuys,
ande is a formula of that logic.

Although there are interesting works on automated deduction for infinitely-valued
logics [2, 8], we will only be concerned with-valued logics. The reason for focussing
only on the finitely-valued case is that “fuzzy” truth-values (or human preferences)
are usually described in a granulated way, by steps in the degree of perception. This is
connected to the well-known fact that people can only distinguish finitely many degrees
of quality (closeness, cheapness,) or quaitity in control.

The first works to provide a systematic treatment of sets of truth-values as signs
were due to Hhnle in [7] and Murray and Rosenthal in [9]. There, the notiosigfied
formulais formally introduced. In [7] these tools are used in the framework of truth

* Research partially supported by Spanish DGI project BFM2000-1054-C02-02 and Junta de
Andaluda project TIC-115.

tables, while in [9] they are used to develop another nonclausal proof mditsal-

ution. As aresult of these works, the use of signed formulas in the field of automated
deduction has been extended, and has led to significant advances in this method; there-
fore, efficient representations for signed formulas are necessary in order to describe and
implement efficient algorithms on this kind of formulas.

An approach to the efficient handling of signed formulas that one finds in the lit-
erature is the clause form, which allow the extension of classical techniques such as
resolution, or Davis-Putnam procedures. Another approach is that of Multiple-Valued
Decision Diagrams (MDDs) and its variants [3], but they are not useful for the study of
satisfiability because, although they make straightforward its testing, the construction
of a restricted MDD for a given formula requires exponential space in the worst case.

Our approach to automated deduction for signed logics follows the TAS methodo-
logy [1, 5], that is, the application of as much reduction theorems with low complexity
as possible before applying a branching rule. The main aim of the paper is of theoretical
nature, to provide a TAS-based satisfiability algorithm for signed formulas.

To work with signed formulas, we will follow the approach introduced in [4, 6],
interpreting signed formulas by meansftrees, that is, trees of clauses and cubes. In
this paper, we will be concerned with the metatheory of multiple-valiiedees, not
with implementation issues.

2 Reduwed signed logics and multiple-valuedA-trees

The notion ofreduced signed logits a generalisation of previous approaches, and it is
developed in a general propositional framework without reference either to an initially
given multiple-valued logic or to a specific algorithm, ie. the definition is completely
independent of the particular application at hand. The generalisation consists in intro-
ducing apossible truth values functipdenotedw, to redrict the truth values for each
variable. These restrictions can be motivated by the specific application and they can be
managed dynamically by the algorithms. For example, in [10] are used to characterize
non-monotonic reasoning systems.

The formulas in the reduced signed lodg, the signed logic valued im by w,
are built by using the connectivesand Vv on w-signed literals(or simply, literals): if
n = {1,...,n} is afinite set of truth-value3; is the set of propositional variables and
w: V — (2™ \ @) is a mapping, called thegossible truth-values functiothen he set
of w-signed literalss LIT, = {S:p | S Cw(p),p e VIU{L, T}

In a literal/ = S:p, thesetS is called thesign of/ andp is thevariable of¢. The
complement of a signed liter&tp is (w(p) ~ S):p and will be denoted:p.

The semantics o8, is defined using the-assignmentsThe w-assignments are
mappings from the language into the 46t 1} that interpretv as maximuma as
minimum, | as falsity, T as truth and, in addition, satisfy:

1. For everyp there exists a uniquge S such that/ ({j}:p) = 1
2. I(S:p) = 1ifand only if there existg € S such that/ ({j}:p) =1

These conditions arise from the objective for which signed logics were created: the
w-assignment overS:p is 1 if the variablep is assigned a value if§; this value must be

unigue for every multiple-valued assignment and thus unique for evagsignment.
This is why we sometimes will writé({;}:p) = 1 asI(p) = j.

An important operation in the sequel will be thregluctionof a signed logic. This
operation decreases the possible truth-values set for one or more propositional variables.
The reduction will be forced during the application of an algorithm but it can also
help us to specify a problem using signed formulas. Specifically, we will use two basic
reductions: to prohibit a specific value for a given varialjle # j], and to force a
specific value for a given variablg = j]: If w is a possible truth-values function, then
the possible truth-values functioagp # j| andw[p = j] are defined as follows:

w[p;éj](v):{w(p)\{j} ifo=p W[p:j](v):{{j} ifv=p

w(v) otherwise w(v) otherwise

If AisaformulainS,, we define the following substitutions:

— Alp # j]is aformulainS,,.; obtained fromA by replacing;}:p by L, {j}:p by
T,S:pby (S~ {j}):pand, in addition, the constants are deleted using the 0-1-laws.

— Alp = j] is a formula inS,,,—; obtained fromA by replacing every literab:p
satisfyingj € S by T and every literalS:p satisfyingj ¢ S by L; in addtion, the
constants are deleted using the 0-1-laws.

An immediate consequence is the followingf ifs a modéof A in S, andI(p) #
J» then (the restriction of is also a model ofi[p # j] in S, ,;); if I is a model ofA
in S, andI(p) = j, then I is a modeéof Ap = j]in S,,,—j;.
Throughout the rest of the paper, we will use the following standard definitions. A
signed formulad in S, is said to besatisfiablef there is anv-assignmenf such that
I(A) = 1; in thiscasel is said to be anodelfor A. Two signed formulasA andB are
said to beequisatisfiabledenoted A ~ B, if A is satisfiable iffB is satisfiable. Two
formulas A and B are said to bequivalent denotedA = B, if I(A) = I(B) for all
w-assignment. We will also use the usual notions of clause (disjunction of literals) and
cube (conjunction of literals). Given a set of formul@sthe notations? = A means
that all models fot2 are also models faA. A literal £ is animplicantof a formulaA if
¢ = A. Aliteral ¢ is animplicateof a formulaA if A = ¢.

Multiple-valued A-trees The satisfiability algorithm we will describe is based on
the structure of multiple-valuedi-trees. In the classical case, nodes in thdrees
correspond to lists of literals; in the multiple-valued case we will exploit a duality in
the representation of signed literals in terms of literals whose sign is a singleton. To
better understand this duality, let us consider the literal:p in the signed logicS,,
wherew(p) = {1, 2,4, 5}, then: {1,43:p = {1}:p V {4}:p and{1,4}:p = {2}:p A {5}:p. This
way, we have both a disjunctive and a conjunctive representation of signed literals using
the literals{;}:p and{5}:p, which are calledasic literals In the sguel, we will use a
simpler representation for these literalg:=4. ¢ {;}:p andpj =acs G¥p-

The basic literalg;j are thepositive literalsand their complementsyj, arethe
negative literalsIn the A-tree representation we work with lists of positive literals.

Definition 1.

1. A list/set of positive literals), is saturatedor the variablep if pj € X for all
j € w(p). (Thiskind of lists/sets will be interpreted as logical constants.)

2. AA-listis either the symbdi or a list of positive literals such that it does not have
repeated literals and it is non-saturated for any propositional variable.

3. AA-treeT is a tree with labels in the set af-lists.

In order to define the operategf which interprets aA-tree as a signed formula,
we should keep in mind that:

1. The empty listnil, has different conjunctive and disjunctive interpretations, since
it is well-known the identification of the empty clause withand the empty cube
with T; but anyway it corresponds to the neutral element for the corresponding
interpretation. Similarly, we will use a unique symbglto represent the absorbent
elements,. and T, under conjunctive and disjunctive interpretation, respectively.

2. A A-tree will always represent a conjunctive signed formula, however, its subtrees
are alternatively interpreted as either conjunctive or disjunctive signed formulas,
i.e. the immediate subtrees of a conjunctitdree are disjunctive, and vice versa.

Definition 2. The operatorsgt over the set ofA-trees is defined as follows:
1. sgf(nil) = T,sgf() = L,sgf(ly...0y) =l A ALy,

A
2. sgf(T~):sgf()\)/\dsgf(T1)/\---/\dsgf(Tm)
n ... Tp

where the auxiliary operatadsgf is defined as follow:

1. dsgf(nil) = L, dsgf(f) = T,dsgf({1...4,) =01V -~V L,
A
2.dsgf | _—~_ |=dsgf(\) Vvsgft(T1)V - - Vsgf(Tn)
T, ... T

In short, we will write?' = sgf(T) and7T = dsgf(T); in particular, if T = X\ =
ly... 0, wehaved =0 A---Alp,andA =01V ---V L,

An important feature of the structure dftree is that it gives us a means to calculate
implicants and implicates, to be used in the reduction transformations below.

Proposition 1. If T'is rooted withA andpj € A, then:
sgf(T) = pj and pj |- dsgt(T)

The notions of validity, satisfiability, equivalence, equisatisfiability or model are
defined onA-trees by means of thegf operator; for example, a-tree,T" is satisfiable
if and only if sgf(T) is satisfiable and the models Bfare the models ofgf (7).

In [6] we formally introduced operators to define the converse translation: specific-
ally, operatorsc AList, dAList and ATree are defined. The first two are auxiliary
operators (the inverse of the base casesgdfanddsgf) and ATree constructs the
A-tree associated to a general signed formula.

Example 1. InthelogicS, withw(p) = {1,2,4,5}, w(q) = {1,2,3},w(r) = {2,5}.

dAList({1,4}:p V {1,2}:q) = pl pd ql ¢2

cAList({1,43:p A {1,2}:¢) = p2p5¢3

dAList({1,4:p V {2} V {2,4,5%:p) = {, for {pl, p2, p4, p5,r2} is saturated fop.
cAList({1}:q A {1,2,4}:p A {2}:q) = t, for {p5, q1, ¢2, ¢3} is saturated foy.

Recall that, as established in [6]/&tree will always be interpreted as a conjunctive
signed formula and arbitrary signed formulas are represented by means of lists of
trees! this way, the study of satisfiability can be performed in parallel.

Example 2.The following examples are frori;, where 3 denotes the constant map-
ping defined a8(p) = 3 for all p.

ATree(({1,2}:p V {23:q) A ({2,3}:p V {1,3}r) =

nil
/\
plp2q2 p2p3rlr3
ATree({2,3}:q V ({1,2}:p A ({1,2h: V {2,3}:p) A ({3%:q V {1}:p)))

p3
= ql’ T~
p2p3qlq2 plg3
It is interesting to recall the intrinsic parallelism between the usual representation
of cnfs as lists of clauses and our representation of signed formulas as listgeds.

3 Resticted A-trees

In multiple-valued logic there is not a notion which captures the well-known definition
of restricted clauses of classical logic, in which complementary literals and logical con-
stants are not allowed. We can say that restrictetiees areA-trees withoutrivially
redundant information. In this section we give a suitable generalisation built on the no-
tion of restricted multiple-valued-tree which is built from its classical counterpart [4].

Definition 3. The operator&ni andInt are defined on the set af-lists as follows. If
A1, ..., A\, are A-lists then:

1. Uni(Aq,...,\,) = tif either there existssuch that\; = f or | J;__, \; is saturated
for some variable. Otherwise,Uni (A1, ...,) = Ui, Ai.

2. Int(Ag,..., \n) = #if X\, = forall .
OtherwiseInt(A1, ..., Ay) = ﬂki# A

The following definition gathers the specific situations that will not be allowed in a
restricted form: nodes in thd-tree which, in some sense, can be substituted by either
L or T without affecting the meaning, and also leaves with only one propositional vari-
able; in addition, our restricted trees must have explicitly the implicants and implicates
of every subtree in order to perform the reductions based in these objects (see [5]).

1 To help the reading, we will write these lists with the elements separated by commas and
using square brackets as delimiters. This way, for examplg, . . . p»j. is a A-list, and
[p1j1, .- -, pnjn] is @ list of A-trees (in which eack\-tree is a leaf, which turns out to be a
singletonA-list).

Rule C1 # — f
/\
T ... T
Rule C2 A — A
/\ /\
T ... Tm T Tm
Rule C3 A — f
) .
Ty ... Tm nil
Rule C4 A1 — Uni(A1, A2)
P N
Ty ... T, nil T .. T Ther ... T,
\
A2
/\
Toy1 .. T
Rule C5 If A2 C)\ then A1 — 4
D
T ... Th X
Rule C6 If Uni(A1, A2) = f then
A —» A1
P S
T ... Th X T ... T,
/\
Toy1 .. Thm
Rule S A = Uni(A, Djigyy - - Diin)
/\
T ... Twm Py - Dl T ... Tm
provided thato(p) = {ji,, - - -, Jixs Jirgrs- - - Jin }-
Rule U A — Uni(\, p)
P
T ... T, X T ... Tn XN
S
Al oo A Al oo Am
. Int(A1,..., Am if ' =nil
il # o= § A . T
Int(Ats oy Am,y Pigyy -+ -Plin) IF N =pjiy .. pjiy
provided thab.)(p) = {jn . 1jlkvjlk+| yee ey Jin }

Fig. 1. Rewriting rules to obtain the restricted form

Definition 4. LetT be aA-tree.

1. A node ofl" is said to beconclusivef it satisfies any of the following conditions:

— ltis labelled withg, provided thatT" # .
— It is either a leaf or a monary node labelled withi 1, provided hat it is not
the root node.
— It is labelled with), it has an immediate successdr which is a leaf and
N CA
— Itis labelled with\ andUni(A, \') = 4, where)’ is the label of its predecessor.
2. Aleaf inT is said to besimpleif the literals in its label share a common proposi-
tional variable.
3. Let) be the label of a node d@f; let \’ be the label of one immediate successor of
Aandlet)y, ..., A\, be the labels of the immediate successors ofVe saythat A\
can be updatet it satisfies some of the following conditions:

— XN =nilandInt(\y,...,A\m) € A

- XN = pji, -.-pji, and Int(A1, ..., A, DJigy, ---PJi,) € A, provided that
W) = {Jirs- - Jirs Jingrs - -+ Jin }-
We sg thatT is updatedf it has no nodes that can be updated.
4. If T'is updated and it has neither conclusive nodes nor simple leaves, then it is said
to berestricted

The rewriting rules in Fig. 1 (up to the order of the successors) allow to delete the
conclusive nodes and simple leaves afdree and in addition, to update the updatable
nodes. Note that the rewriting rules have a double meaning; since they need not apply
to the root node, the interpretation can be either conjunctive or disjunctive. This is just
another efficiency-related feature dftrees: duality of connectives andV gets sub-
sumed in the structure and it is not necessary to determine the conjunctive/disjunctive
behaviour to decide the transformation to be applied.

Theorem 1. If T is a A-tree, there exists a list of restrictefi-trees,[T1, ..., T,], sud
thatsgf(T) =T,V ---VT,.

The proof of the theorem allows to specify a procedure to olfin .., T,,]. Let
T’ be theA-tree obtained fronT" by exhaustively applying the rules C1, C2, C3, C4,
C5, C6, S, and U till none of them can be applied any more, then the list of restricted
A-trees[Ty, ..., T,], dended byRestrict(T), is defined as:

nil
|
1. f7T = nil thenRestrict(T) = [T, ..., T}
/\

Ty ... T,
nTl
2. fT" = A ,anddsgf(A) = Si:p1 V- -+ V Sgip With p; # p; for every
/\
T ... T,
i # j,thenRestrict(T) = [cAList(S1:p1),. .., cAList(Skpk), 11, - - - Th)

3. OtherwiseRestrict(T) = [T"].

4 Reduction of A-trees

In this section we introduce the reduction theorems used by the TAS algorithm to be
given later, which motto is to apply as much reductions with low complexity as possible
before applying a branching rule.

In the statements of the reductions we will use the substitufjoas;] and[p # j],
defined onA-trees as follows:

Definition 5. LetT be aA-tree.

2 These patterns correspond to the elimination of a conclusive node at the root, which cannot be
deleted by rule C4.

1. [p # j]T is the A-tree inS,,,.;) obtained fronil” deleting every occurrence pf
in T"and, in addition, if a node is saturated for some variable, it is substituted by
2. [p = j]T is the A-tree in S] obtained fromT by the applications of the
following transformations:
(@) If pjisinthe root ofT’, then [p = j]T = £ (thatis,sgf([p = j]T) = 1).
(b) Otherwise, every subtree rooted with a llssuch thatp; € X is deleted and
any occurrence of a literghj’ with j # 5’ is also deleted.
In addition, if a node is saturated for some variable, it is substitutefl by

wp=j

Obviously, these operations alrtrees are the same to those on signed formulas:

Lemma 1. If T is a A-tree, then:
sgf([p = jIT) = sgf(T)[p = j,sgt([p # j|T) = sgf(T)[p # jl.

The main result to prove the soundness of the reductions on signed formulas is given
below. The theorem allows to drive literals downwards to force either contradictions or
tautologies, which can be deleted. In the subsequent corollary we apply the theorem to
delete several occurrences of literals; this result is the theoretical support of both the
subreductiorand thecomplete reduction

Theorem 2. Let A be a signed formula ang a subformula ofA.

1. If A = pj, then A = pj A Aln/n A pjl.
2. Ifpj E A then A=pj VvV Aln/n V pjl.

Corollary 1. Let A be a signed formula.

1. If A pj, then A = pj A Alp # j], and alsoA ~ Alp # jl.
2. Ifpj = A then A=pj Vv Alp = j].

The A-tree representation is very adequate to apply these properties, because the
basic literals in the nodes are either implicants or implicates of the corresponding
subformula, as stated in Proposition 1. All the transformations performed by operator
Restrict use just the information of a hode and its immediate successors. The next
transformation uses “ascending” information, in that nodes are simplified according to
information from its ascendants.

Definition 6 (Subreduction).LetT be a restrictedA-tree. SubRed(T') is the A-tree
obtained formil" performing the following transformations in a depth-first traverse:

1. If the union of the ascendant nodes;dincluding itself) is saturated for a vari-
ablep, then thesubtree rooted at is deleted.

2. Otherwise, in a node labelled withwe delete a literapj € A if pj occurs in some
proper ascendant of the node.

Theorem 3. LetT be aA-tree, therSubRed(T) = T.

The following proposition, which follows easily from the definition of subreduction,
states that only the dominant occurrences of literals are present in a subrebitresd

Proposition 2. LetT be aA-tree. In every branch dubRed(T') there is @ mog one
occurrence of each propositional variable. In particular/ifs a literal in SubRed(T),
then there is no occurrence étunder’.

Example 3.We are going to apply th8ubRed operator to the followingA-tree inS,,
with w(p) = 5, w(g) = {1,3,5}, w(r) = {1,2}, w(s) = {1,4,5}.
SubRed SubRed SubRed S SubRed
plp5r2 7 plp5r2 77 plpbr2 7 plp5r2 77 plpbr2 77 plpb5r2
I I I I I I
a3 q3 q3 q3 q3 q3
T I I I !

|
ql [risdss 1 1 1 1 p2p3] p5 q1s1s5 p2p3qlslss
/\ /q\ /q\ /q\pqsszJpqss
plpdg3 g3s4 4 g3s4 pd [g3Jsd pd s4

Now we introduce a satisfiability-preserving transformation which, essentially, is
a refinement of the subreduction of th&list of the root. Theorem 4 is the\-tree
formulation of Corollary 1, item 1 (2nd assertion).

Definition 7. A A-tree with non-empty root is said to lsempletely reducible

Theorem 4 (Complete reduction).If A\ # nil is the root of " and pj € A, then
T =~ [p# j]T.If Iisamodel ofp # j]T'in S, then I is a model of" in S,,,.

Example 4.Let us consider the initialA-tree, T', in Example 3 with the same signed
logic. The A-tree is completely reducible and thus it is satisfiable[iff£ 1,p #

5,7 # 2|T is satisfiable irB,,, with w'(p) = {2, 3,4}, w'(q) = {1,3,5}, ' (r) = {1},
W'(s) = {1,4,5}. (In fact, it is satisfiable, because the first element in the list is a
clause, and(¢) = 3 is a model for it).

comp. red. C2 Restrict
plp5r2 - nil - ql

I I qlgd,

q3 q3 p4q3 q3s4
— = AN
al a
— T~ PN
4q3 q3s4 p4q3 q3s4

The TAS Algorithm for Signed Logics: One cannot hope that the reduction strategies
are enough to prove the satisfiability of any signed formula. This is only possible after
adding a suitable branching strategy, which is based on the Davis-Putnam procedure.

The algorithm handles a list of paif ¥, w1), . . ., (T, wm)], called theflow, where
theT; are A-trees andv; are possible truth values functions. For the satisfiability of a
formula 4, we sef{Ty,...,T,] = ATree(A) and, in the initial listv; = n for all .

Given the flow in some instant during the execution of the algorithm, the initial
A-tree is unsatisfiable iff every; is unsatisfiable ir8,,,, thet is T; = 4 for all i.3

% The actual search done by the algorithm is to obtain an elefagntw) in the list of tasks. In
this case, the input formula is satisfiable by any assignme#itin

1. UPDATING: On the initial list, and after each reduction, thetrees are converted
to restricted form.

2. COMPLETE REDUCTION If some d the elements of the list of tasks is completely
reducible, then the transformation is applied and the corresponding logic is reduced.

3. SUBREDUCTION: If no task is completely reducible, then the subreduction trans-
formation is applied.

4. BRANCHING: Finally, if no transformation applies to the list of tasks, then a random
task is chosen together with a liteggl to branch on, as follows:

["'a(va)a"'} - [,([P:J}T,WLP:j]),([p#]]T,w[Pf‘jD,]

5 Conclusions and future work

A multiple-valued extension of the results obtained for classical logic in [4] has been
introduced, which can be seen as the refined version of the results in [5]. As aresultitis
possible to obtain simpler statements of the theorems and, as a consequence, reduction
transformations are more adequately described in terms of rewrite rules.

We have introducedA-trees for signed formulas. This allows for a compact rep-
resentation for well-formed formulas as well as for a number of reduction strategies
in order to consider only those occurrences of literals which are relevant for the satis-
fiability of the input formula. The reduction theorems have been complemented by a
Davis-Putnam-like branching strategy in order to provide a decision procedure.

References

1. G. Aguilera, I.P. de Guzém, M. Ojeda-Aciego, and A. Valverde. Reductions for non-clausal
theorem provingTheoretical Computer Scienc266(1/2):81-112, 2001.

2. S. Aguzzoli and A. Ciabattoni. Finiteness in infinite-valued Lukasiewicz logpeirnal of
Logic, Language and Informatio@(1):5-29, 2000.

3. C.Files, R. Drechsler, and M. Perkowski. Functional decomposition of MVL functions using
multi-valued decision diagrams. Rroc. ISMVL'97 pages 7-32, 1997.

4. G. Guterrez, I.P. de Guzan, J Martinez, M. Ojeda-Aciego, and A. Valverde. Satisfiability
testing for Boolean formulas using-trees.Studia Logica72:33-60, 2002.

5. I.P. de Guzran, M. Ojeda-Aciego, and A. Valverde. Reducing signed propositional formulas.
Soft Computing2(4):157-166, 1999.

6. I.P. de Guzran, M. Ojeda-Aciego, and A. Valverde. Restrictdetrees in multiple-valued
logics. InAl - Methodologies, Systems, Applications. AIMSAIOZt. Notes in Computer
Science 2443, 2002.

7. R. Hahnle. Uniform notation of tableaux rules for multiple-valued logicsioc. Intl Symp
on Multiple-Valued Logicpages 238-245. IEEE Press, 1991.

8. D. Mundici and N. Olivetti. Resolution and model building in the infinite-valued calculus of
Lukasiewicz.Theoretical Computer Scienc200:335-366, 1998.

9. N.V. Murray and E. Rosenthal. Improving tableau deductions in multiple-valued logics. In
Proc. 21st Intl Symp on Multiple-Valued Logjmages 230-237. IEEE Press, 1991.

10. D. Pearce, |.P. de Guam, and A. Valverde. Computing equilibrium models using signed
formulas. InProc. 1st Intl Conf on Computational Logic, CL'20ACect. Notes in Atrtificial
Intelligence 1861, pages 688—702, 2000.

