
Restricted∆-trees and Reduction Theorems in
Multiple-Valued Logics�

I.P. de Guzḿan, M. Ojeda-Aciego, and A. Valverde

Dept. Mateḿatica Aplicada
Universidad de Ḿalaga

{aciego,guzman,a valverde}@ctima.uma.es

Abstract. In this paper we continue the theoretical study of the possible applic-
ations of the∆-tree data structure for multiple-valued logics, specifically, to be
applied to signed propositional formulas. The∆-trees allow a compact represent-
ation for signed formulas as well as for a number of reduction strategies in order
to consider only those occurrences of literals which are relevant for the satisfiab-
ility of the input formula. New and improved versions of reduction theorems for
finite-valued propositional logics are introduced, and a satisfiability algorithm is
provided which further generalise the TAS method [1, 5].

1 Introduction

Automated deduction in multiple-valued logic has been based on the notions ofsignand
signed formula, which allow one to apply classical methods in the analysis of multiple-
valued logics. The main idea is to apply the following bivalued metalinguistic interpret-
ation of multiple-valued sentences: For example, in a 3-valued logic with truth-values
{0, 1/2, 1} and with{1} as the designated value, the satisfiability of a formulaϕ can be
expressed as:Is it possible to evaluateϕ in {1}? In the same way, the unsatisfiability of
ϕ is expressed by:Is it possible to evaluateϕ in {0, 1/2}? These questions correspond
to the study of validity of the signed formulas{1}:ϕ and{0,1/2}:ϕ, which are evaluated
on the set{0, 1}. In other words, the formulas in a signed logic are constructions of the
form S:ϕ, whereS is a set of truth-values of the multiple-valued logic, called thesign,
andϕ is a formula of that logic.

Although there are interesting works on automated deduction for infinitely-valued
logics [2, 8], we will only be concerned withn-valued logics. The reason for focussing
only on the finitely-valued case is that “fuzzy” truth-values (or human preferences)
are usually described in a granulated way, by steps in the degree of perception. This is
connected to the well-known fact that people can only distinguish finitely many degrees
of quality (closeness, cheapness,. . . ) or quantity in control.

The first works to provide a systematic treatment of sets of truth-values as signs
were due to Ḧahnle in [7] and Murray and Rosenthal in [9]. There, the notion ofsigned
formula is formally introduced. In [7] these tools are used in the framework of truth

� Research partially supported by Spanish DGI project BFM2000-1054-C02-02 and Junta de
Andalućıa project TIC-115.



tables, while in [9] they are used to develop another nonclausal proof methoddissol-
ution. As aresult of these works, the use of signed formulas in the field of automated
deduction has been extended, and has led to significant advances in this method; there-
fore, efficient representations for signed formulas are necessary in order to describe and
implement efficient algorithms on this kind of formulas.

An approach to the efficient handling of signed formulas that one finds in the lit-
erature is the clause form, which allow the extension of classical techniques such as
resolution, or Davis-Putnam procedures. Another approach is that of Multiple-Valued
Decision Diagrams (MDDs) and its variants [3], but they are not useful for the study of
satisfiability because, although they make straightforward its testing, the construction
of a restricted MDD for a given formula requires exponential space in the worst case.

Our approach to automated deduction for signed logics follows the TAS methodo-
logy [1, 5], that is, the application of as much reduction theorems with low complexity
as possible before applying a branching rule. The main aim of the paper is of theoretical
nature, to provide a TAS-based satisfiability algorithm for signed formulas.

To work with signed formulas, we will follow the approach introduced in [4, 6],
interpreting signed formulas by means of∆-trees, that is, trees of clauses and cubes. In
this paper, we will be concerned with the metatheory of multiple-valued∆-trees, not
with implementation issues.

2 Reduced signed logics and multiple-valued∆-trees

The notion ofreduced signed logicis a generalisation of previous approaches, and it is
developed in a general propositional framework without reference either to an initially
given multiple-valued logic or to a specific algorithm, ie. the definition is completely
independent of the particular application at hand. The generalisation consists in intro-
ducing apossible truth values function, denotedω, to restrict the truth values for each
variable. These restrictions can be motivated by the specific application and they can be
managed dynamically by the algorithms. For example, in [10] are used to characterize
non-monotonic reasoning systems.

The formulas in the reduced signed logicSω, the signed logic valued inn by ω,
are built by using the connectives∧ and∨ on ω-signed literals(or simply, literals): if
n = {1, . . . , n} is a finite set of truth-values,V is the set of propositional variables and
ω : V → (2n

� ∅) is a mapping, called thepossible truth-values function, then the set
of ω-signed literalsis LITω = {S:p | S ⊆ ω(p), p ∈ V} ∪ {⊥,�}.

In a literal� = S:p, thesetS is called thesign of� andp is thevariable of�. The
complement of a signed literalS:p is (ω(p) � S):p and will be denotedS:p.

The semantics ofSω is defined using theω-assignments. The ω-assignments are
mappings from the language into the set{0, 1} that interpret∨ as maximum,∧ as
minimum,⊥ as falsity,� as truth and, in addition, satisfy:

1. For everyp there exists a uniquej ∈ S such thatI({j}:p) = 1
2. I(S:p) = 1 if and only if there existsj ∈ S such thatI({j}:p) = 1

These conditions arise from the objective for which signed logics were created: the
ω-assignmentI overS:p is 1 if the variablep is assigned a value inS; this value must be



unique for every multiple-valued assignment and thus unique for everyω-assignment.
This is why we sometimes will writeI({j}:p) = 1 asI(p) = j.

An important operation in the sequel will be thereductionof a signed logic. This
operation decreases the possible truth-values set for one or more propositional variables.
The reduction will be forced during the application of an algorithm but it can also
help us to specify a problem using signed formulas. Specifically, we will use two basic
reductions: to prohibit a specific value for a given variable,[p 	= j], and to force a
specific value for a given variable,[p = j]: If ω is a possible truth-values function, then
the possible truth-values functionsω[p 	= j] andω[p = j] are defined as follows:

ω[p 	= j](v) =

{
ω(p) � {j} if v = p

ω(v) otherwise
ω[p = j](v) =

{
{j} if v = p

ω(v) otherwise

If A is a formula inSω, we define the following substitutions:

– A[p 	= j] is a formula inSω[p�=j] obtained fromA by replacing{j}:p by⊥, {j}:p by
�, S:p by (S � {j}):p and, in addition, the constants are deleted using the 0-1-laws.

– A[p = j] is a formula inSω[p=j] obtained fromA by replacing every literalS:p
satisfyingj ∈ S by � and every literalS:p satisfyingj /∈ S by ⊥; in addition, the
constants are deleted using the 0-1-laws.

An immediate consequence is the following: ifI is a model of A in Sω andI(p) 	=
j, then (the restriction of)I is also a model ofA[p 	= j] in Sω[p�=j]; if I is a model ofA
in Sω andI(p) = j, then I is a model of A[p = j] in Sω[p=j].

Throughout the rest of the paper, we will use the following standard definitions. A
signed formulaA in Sω is said to besatisfiableif there is anω-assignmentI such that
I(A) = 1; in this caseI is said to be amodelfor A. Two signed formulasA andB are
said to beequisatisfiable, denotedA ≈ B, if A is satisfiable iffB is satisfiable. Two
formulasA andB are said to beequivalent, denotedA ≡ B, if I(A) = I(B) for all
ω-assignmentI. We will also use the usual notions of clause (disjunction of literals) and
cube (conjunction of literals). Given a set of formulasΩ, thenotationΩ |= A means
that all models forΩ are also models forA. A literal � is animplicantof a formulaA if
� |= A. A literal � is animplicateof a formulaA if A |= �.

Multiple-valued ∆-trees The satisfiability algorithm we will describe is based on
the structure of multiple-valued∆-trees. In the classical case, nodes in the∆-trees
correspond to lists of literals; in the multiple-valued case we will exploit a duality in
the representation of signed literals in terms of literals whose sign is a singleton. To
better understand this duality, let us consider the literal{1,4}:p in the signed logicSω

whereω(p) = {1, 2, 4, 5}, then: {1,4}:p ≡ {1}:p∨ {4}:p and{1,4}:p ≡ {2}:p∧ {5}:p. This
way, we have both a disjunctive and a conjunctive representation of signed literals using
the literals{j}:p and{j}:p, which are calledbasic literals. In the sequel, we will use a
simpler representation for these literals:pj =def {j}:p andpj =def {j}:p.

The basic literalspj are thepositive literalsand their complements,pj, are the
negative literals. In the∆-tree representation we work with lists of positive literals.



Definition 1.

1. A list/set of positive literals,λ, is saturatedfor the variablep if pj ∈ λ for all
j ∈ ω(p). (Thiskind of lists/sets will be interpreted as logical constants.)

2. A∆-list is either the symbol� or a list of positive literals such that it does not have
repeated literals and it is non-saturated for any propositional variable.

3. A∆-treeT is a tree with labels in the set of∆-lists.

In order to define the operatorsgf which interprets a∆-tree as a signed formula,
we should keep in mind that:

1. The empty list,nil, has different conjunctive and disjunctive interpretations, since
it is well-known the identification of the empty clause with⊥ and the empty cube
with �; but anyway it corresponds to the neutral element for the corresponding
interpretation. Similarly, we will use a unique symbol,�, to represent the absorbent
elements,⊥ and�, under conjunctive and disjunctive interpretation, respectively.

2. A ∆-tree will always represent a conjunctive signed formula, however, its subtrees
are alternatively interpreted as either conjunctive or disjunctive signed formulas,
i.e. the immediate subtrees of a conjunctive∆-tree are disjunctive, and vice versa.

Definition 2. The operatorsgf over the set of∆-trees is defined as follows:

1. sgf(nil) = �, sgf(�) = ⊥, sgf(�1 . . . �n) = �1 ∧ · · · ∧ �n

2. sgf

(
λ

T1 . . . Tm

)
= sgf(λ) ∧ dsgf(T1) ∧ · · · ∧ dsgf(Tm)

where the auxiliary operatordsgf is defined as follow:

1. dsgf(nil) = ⊥, dsgf(�) = �, dsgf(�1 . . . �n) = �1 ∨ · · · ∨ �n

2. dsgf

(
λ

T1 . . . Tm

)
=dsgf(λ) ∨ sgf(T1) ∨ · · · ∨ sgf(Tm)

In short, we will write
∧
T = sgf(T ) and

∨
T = dsgf(T ); in particular, if T = λ =

�1 . . . �n we have:
∧
λ = �1 ∧ · · · ∧ �n and

∨
λ = �1 ∨ · · · ∨ �n.

An important feature of the structure of∆-tree is that it gives us a means to calculate
implicants and implicates, to be used in the reduction transformations below.

Proposition 1. If T is rooted withλ andpj ∈ λ, then:

sgf(T ) |= pj and pj |= dsgf(T )

The notions of validity, satisfiability, equivalence, equisatisfiability or model are
defined on∆-trees by means of thesgf operator; for example, a∆-tree,T is satisfiable
if and only if sgf(T ) is satisfiable and the models ofT are the models ofsgf(T ).

In [6] we formally introduced operators to define the converse translation: specific-
ally, operatorsc∆List, d∆List and∆Tree are defined. The first two are auxiliary
operators (the inverse of the base cases ofsgf anddsgf) and∆Tree constructs the
∆-tree associated to a general signed formula.



Example 1. In the logicSω with ω(p) = {1, 2, 4, 5}, ω(q) = {1, 2, 3}, ω(r) = {2, 5}.

– d∆List({1,4}:p ∨ {1,2}:q) = p1 p4 q1 q2
– c∆List({1,4}:p ∧ {1,2}:q) = p2 p5 q3
– d∆List({1,4}:p ∨ {2}:r ∨ {2,4,5}:p) = �, for {p1, p2, p4, p5, r2} is saturated forp.
– c∆List({1}:q ∧ {1,2,4}:p ∧ {2}:q) = �, for {p5, q1, q2, q3} is saturated forq.

Recall that, as established in [6], a∆-tree will always be interpreted as a conjunctive
signed formula and arbitrary signed formulas are represented by means of lists of∆-
trees;1 this way, the study of satisfiability can be performed in parallel.

Example 2.The following examples are fromS3, where 3 denotes the constant map-
ping defined as3(p) = 3 for all p.

∆Tree(({1,2}:p ∨ {2}:q) ∧ ({2,3}:p ∨ {1,3}:r)=

[
nil

p1p2q2 p2p3r1r3

]

∆Tree({2,3}:q ∨ ({1,2}:p ∧ ({1,2}:q ∨ {2,3}:p) ∧ ({3}:q ∨ {1}:p)))

=

[
q1,

p3

p2p3q1q2 p1q3

]

It is interesting to recall the intrinsic parallelism between the usual representation
of cnfs as lists of clauses and our representation of signed formulas as lists of∆-trees.

3 Restricted ∆-trees

In multiple-valued logic there is not a notion which captures the well-known definition
of restricted clauses of classical logic, in which complementary literals and logical con-
stants are not allowed. We can say that restricted∆-trees are∆-trees withouttrivially
redundant information. In this section we give a suitable generalisation built on the no-
tion of restricted multiple-valued∆-tree which is built from its classical counterpart [4].

Definition 3. The operatorsUni andInt are defined on the set of∆-lists as follows. If
λ1, . . . , λn are∆-lists then:

1. Uni(λ1, . . . , λn) = � if either there existsi such thatλi = � or
⋃n

i=1 λi is saturated
for some variablep. Otherwise,Uni(λ1, . . . , λn) =

⋃n
i=1 λi.

2. Int(λ1, . . . , λn) = � if λi = � for all i.
Otherwise,Int(λ1, . . . , λn) =

⋂
λi �=� λi.

The following definition gathers the specific situations that will not be allowed in a
restricted form: nodes in the∆-tree which, in some sense, can be substituted by either
⊥ or� without affecting the meaning, and also leaves with only one propositional vari-
able; in addition, our restricted trees must have explicitly the implicants and implicates
of every subtree in order to perform the reductions based in these objects (see [5]).

1 To help the reading, we will write these lists with the elements separated by commas and
using square brackets as delimiters. This way, for example,p1j1 . . . pnjn is a ∆-list, and
[p1j1, . . . , pnjn] is a list of∆-trees (in which each∆-tree is a leaf, which turns out to be a
singleton∆-list).



Rule C1 �

T1 . . . Tm

� �

Rule C2 λ

T1 . . . Tm �

� λ

T1 . . . Tm

Rule C3 λ

T1 . . . Tm nil

� �

Rule C4 λ1

T1 . . . Tn nil

λ2

Tn+1 . . . Tm

� Uni(λ1, λ2)

T1 . . . Tn Tn+1 . . . Tm

Rule C5 If λ2 ⊆ λ1 then λ1

T1 . . . Tn λ2

� �

Rule C6 If Uni(λ1, λ2) = � then
λ1

T1 . . . Tn λ2

Tn+1 . . . Tm

� λ1

T1 . . . Tn

Rule S λ

T1 . . . Tm pji1 . . . pjik

� Uni(λ, pjik+1 . . . pjin)

T1 . . . Tm

provided thatω(p) = {ji1 , . . . , jik , jik+1 , . . . , jin}.
Rule U λ

T1 . . . Tn λ′

λ1

. . .

. . . λm

. . .

� Uni(λ, µ)

T1 . . . Tn λ′

λ1

. . .

. . . λm

. . .

if nil �= µ =

{
Int(λ1, . . . , λm) if λ′ = nil

Int(λ1, . . . , λm, pjik+1 . . . pjin) if λ′ = pji1 . . . pjik

provided thatω(p) = {ji1 , . . . , jik , jik+1 , . . . , jin}.

Fig. 1.Rewriting rules to obtain the restricted form

Definition 4. LetT be a∆-tree.

1. A node ofT is said to beconclusiveif it satisfies any of the following conditions:

– It is labelled with�, provided thatT 	= �.
– It is either a leaf or a monary node labelled withnil, provided that it is not

the root node.
– It is labelled withλ, it has an immediate successorλ′ which is a leaf and

λ′ ⊆ λ.
– It is labelled withλ andUni(λ, λ′) = �, whereλ′ is the label of its predecessor.

2. A leaf inT is said to besimpleif the literals in its label share a common proposi-
tional variable.

3. Letλ be the label of a node ofT ; let λ′ be the label of one immediate successor of
λ and letλ1, . . . , λn be the labels of the immediate successors ofλ′. We saythatλ
can be updatedif it satisfies some of the following conditions:

– λ′ = nil andInt(λ1, . . . , λm) 	⊂ λ.



– λ′ = pji1 . . . pjik
and Int(λ1, . . . , λm, pjik+1 . . . pjin

) 	⊂ λ, provided that
ω(p) = {ji1 , . . . , jik

, jik+1 , . . . , jin
}.

We say thatT is updatedif it has no nodes that can be updated.
4. If T is updated and it has neither conclusive nodes nor simple leaves, then it is said

to berestricted.

The rewriting rules in Fig. 1 (up to the order of the successors) allow to delete the
conclusive nodes and simple leaves of a∆-tree and in addition, to update the updatable
nodes. Note that the rewriting rules have a double meaning; since they need not apply
to the root node, the interpretation can be either conjunctive or disjunctive. This is just
another efficiency-related feature of∆-trees: duality of connectives∧ and∨ gets sub-
sumed in the structure and it is not necessary to determine the conjunctive/disjunctive
behaviour to decide the transformation to be applied.

Theorem 1. If T is a∆-tree, there exists a list of restricted∆-trees,[T1, . . . , Tn], such

thatsgf(T ) ≡
∧
T1 ∨ · · · ∨

∧
Tn.

The proof of the theorem allows to specify a procedure to obtain[T1, . . . , Tn]. Let
T ′ be the∆-tree obtained fromT by exhaustively applying the rules C1, C2, C3, C4,
C5, C6, S, and U till none of them can be applied any more, then the list of restricted
∆-trees[T1, . . . , Tn], denoted byRestrict(T ), is defined as:2

1. If T ′ =

nil

nil

T1 . . . Tn

thenRestrict(T ) = [T1, . . . , Tn]

2. If T ′ =

nil

λ

T1 . . . Tn

, anddsgf(λ) = S1:p1 ∨ · · · ∨ Sk:pk with pi 	= pj for every

i 	= j, then Restrict(T ) = [c∆List(S1:p1), . . . , c∆List(Sk:pk), T1, . . . , Tn]
3. Otherwise,Restrict(T ) = [T ′].

4 Reduction of ∆-trees

In this section we introduce the reduction theorems used by the TAS algorithm to be
given later, which motto is to apply as much reductions with low complexity as possible
before applying a branching rule.

In the statements of the reductions we will use the substitutions[p = j] and[p 	= j],
defined on∆-trees as follows:

Definition 5. LetT be a∆-tree.

2 These patterns correspond to the elimination of a conclusive node at the root, which cannot be
deleted by rule C4.



1. [p 	= j]T is the∆-tree inSw[p�=j] obtained fromT deleting every occurrence ofpj
in T and, in addition, if a node is saturated for some variable, it is substituted by�.

2. [p = j]T is the ∆-tree in Sw[p=j] obtained fromT by the applications of the
following transformations:
(a) If pj is in the root ofT , then [p = j]T = � (that is,sgf([p = j]T ) = ⊥).
(b) Otherwise, every subtree rooted with a listλ such thatpj ∈ λ is deleted and

any occurrence of a literalpj′ with j 	= j′ is also deleted.
In addition, if a node is saturated for some variable, it is substituted by�.

Obviously, these operations on∆-trees are the same to those on signed formulas:

Lemma 1. If T is a∆-tree, then:
sgf([p = j]T ) ≡ sgf(T )[p = j], sgf([p 	= j]T ) ≡ sgf(T )[p 	= j].

The main result to prove the soundness of the reductions on signed formulas is given
below. The theorem allows to drive literals downwards to force either contradictions or
tautologies, which can be deleted. In the subsequent corollary we apply the theorem to
delete several occurrences of literals; this result is the theoretical support of both the
subreductionand thecomplete reduction.

Theorem 2. LetA be a signed formula andη a subformula ofA.

1. If A |= pj, then A ≡ pj ∧ A[η/η ∧ pj].
2. If pj |= A, then A ≡ pj ∨ A[η/η ∨ pj].

Corollary 1. LetA be a signed formula.

1. If A |= pj, then A ≡ pj ∧ A[p 	= j], and alsoA ≈ A[p 	= j].
2. If pj |= A, then A ≡ pj ∨ A[p = j].

The ∆-tree representation is very adequate to apply these properties, because the
basic literals in the nodes are either implicants or implicates of the corresponding
subformula, as stated in Proposition 1. All the transformations performed by operator
Restrict use just the information of a node and its immediate successors. The next
transformation uses “ascending” information, in that nodes are simplified according to
information from its ascendants.

Definition 6 (Subreduction). Let T be a restricted∆-tree.SubRed(T ) is the∆-tree
obtained formT performing the following transformations in a depth-first traverse:

1. If the union of the ascendant nodes ofη (includingη itself) is saturated for a vari-
ablep, then thesubtree rooted atη is deleted.

2. Otherwise, in a node labelled withλ we delete a literalpj ∈ λ if pj occurs in some
proper ascendant of the node.

Theorem 3. LetT be a∆-tree, thenSubRed(T ) ≡ T .

The following proposition, which follows easily from the definition of subreduction,
states that only the dominant occurrences of literals are present in a subreduced∆-tree.



Proposition 2. Let T be a∆-tree. In every branch ofSubRed(T ) there is at most one
occurrence of each propositional variable. In particular, if� is a literal in SubRed(T ),
then there is no occurrence of� under�.

Example 3.We are going to apply theSubRed operator to the following∆-tree inSω

with ω(p) = 5, ω(q) = {1, 3, 5}, ω(r) = {1, 2}, ω(s) = {1, 4, 5}.

p1p5r2

q3

q1

p1p4q3 q3s4

r1s4s5

SubRed� p1p5r2

q3

q1

p1 p4 q3 q3s4

SubRed� p1p5r2

q3

q1

p4 q3 s4

SubRed� p1p5r2

q3

q1

p4 s4

S� p1p5r2

q3

p1 p2p3 p5 q1s1s5

SubRed� p1p5r2

q3

p2p3q1s1s5

Now we introduce a satisfiability-preserving transformation which, essentially, is
a refinement of the subreduction of the∆-list of the root. Theorem 4 is the∆-tree
formulation of Corollary 1, item 1 (2nd assertion).

Definition 7. A ∆-tree with non-empty root is said to becompletely reducible.

Theorem 4 (Complete reduction).If λ 	= nil is the root ofT and pj ∈ λ, then
T ≈ [p 	= j]T . If I is a model of[p 	= j]T in Sw[p�=j], then I is a model ofT in Sω.

Example 4.Let us consider the initial∆-tree,T , in Example 3 with the same signed
logic. The∆-tree is completely reducible and thus it is satisfiable iff[p 	= 1, p 	=
5, r 	= 2]T is satisfiable inSω′ with ω′(p) = {2, 3, 4}, ω′(q) = {1, 3, 5}, ω′(r) = {1},
ω′(s) = {1, 4, 5}. (In fact, it is satisfiable, because the first element in the list is a
clause, andI(q) = 3 is a model for it).

p1p5r2

q3

q1

p1 p4q3 q3s4

r1s4s5

comp. red.
� nil

q3

q1

p4q3 q3s4

�

C2,Restrict
� 

q1q5,
q1

p4q3 q3s4




The TAS Algorithm for Signed Logics: One cannot hope that the reduction strategies
are enough to prove the satisfiability of any signed formula. This is only possible after
adding a suitable branching strategy, which is based on the Davis-Putnam procedure.

The algorithm handles a list of pairs[(T1, ω1), . . . , (Tm, ωm)], called theflow, where
theTi are∆-trees andωi are possible truth values functions. For the satisfiability of a
formulaA, we set[T1, . . . , Tn] = ∆Tree(A) and, in the initial listωi = n for all i.

Given the flow in some instant during the execution of the algorithm, the initial
∆-tree is unsatisfiable iff everyTi is unsatisfiable inSωi , that is Ti = � for all i.3

3 The actual search done by the algorithm is to obtain an element(nil, ω) in the list of tasks. In
this case, the input formula is satisfiable by any assignment inSω.



1. UPDATING: On the initial list, and after each reduction, the∆-trees are converted
to restricted form.

2. COMPLETE REDUCTION: If some of theelements of the list of tasks is completely
reducible, then the transformation is applied and the corresponding logic is reduced.

3. SUBREDUCTION: If no task is completely reducible, then the subreduction trans-
formation is applied.

4. BRANCHING: Finally, if no transformation applies to the list of tasks, then a random
task is chosen together with a literalpj to branch on, as follows:

[. . . , (T, ω), . . . ] � [. . . , ([p = j]T, ω[p = j]), ([p 	= j]T, ω[p 	= j]), . . . ]

5 Conclusions and future work

A multiple-valued extension of the results obtained for classical logic in [4] has been
introduced, which can be seen as the refined version of the results in [5]. As a result it is
possible to obtain simpler statements of the theorems and, as a consequence, reduction
transformations are more adequately described in terms of rewrite rules.

We have introduced∆-trees for signed formulas. This allows for a compact rep-
resentation for well-formed formulas as well as for a number of reduction strategies
in order to consider only those occurrences of literals which are relevant for the satis-
fiability of the input formula. The reduction theorems have been complemented by a
Davis-Putnam-like branching strategy in order to provide a decision procedure.

References

1. G. Aguilera, I.P. de Guzḿan, M. Ojeda-Aciego, and A. Valverde. Reductions for non-clausal
theorem proving.Theoretical Computer Science, 266(1/2):81–112, 2001.

2. S. Aguzzoli and A. Ciabattoni. Finiteness in infinite-valued Lukasiewicz logic.Journal of
Logic, Language and Information, 9(1):5–29, 2000.

3. C. Files, R. Drechsler, and M. Perkowski. Functional decomposition of MVL functions using
multi-valued decision diagrams. InProc. ISMVL’97, pages 7–32, 1997.

4. G. Gutíerrez, I.P. de Guzḿan, J. Mart́ınez, M. Ojeda-Aciego, and A. Valverde. Satisfiability
testing for Boolean formulas using∆-trees.Studia Logica, 72:33–60, 2002.

5. I.P. de Guzḿan, M. Ojeda-Aciego, and A. Valverde. Reducing signed propositional formulas.
Soft Computing, 2(4):157–166, 1999.

6. I.P. de Guzḿan, M. Ojeda-Aciego, and A. Valverde. Restricted∆-trees in multiple-valued
logics. InAI - Methodologies, Systems, Applications. AIMSA’02. Lect. Notes in Computer
Science 2443, 2002.

7. R. Ḧahnle. Uniform notation of tableaux rules for multiple-valued logics. InProc. Intl Symp
on Multiple-Valued Logic, pages 238–245. IEEE Press, 1991.

8. D. Mundici and N. Olivetti. Resolution and model building in the infinite-valued calculus of
Lukasiewicz.Theoretical Computer Science, 200:335–366, 1998.

9. N.V. Murray and E. Rosenthal. Improving tableau deductions in multiple-valued logics. In
Proc. 21st Intl Symp on Multiple-Valued Logic, pages 230–237. IEEE Press, 1991.

10. D. Pearce, I.P. de Guzmán, and A. Valverde. Computing equilibrium models using signed
formulas. InProc. 1st Intl Conf on Computational Logic, CL’2000, Lect. Notes in Artificial
Intelligence 1861, pages 688–702, 2000.


