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Abstract—In this work we present a way to represent contra-
diction between fuzzy sets. This representation is given in terms of
the notion of f -weak contradiction. Unlike other approaches, we
do not define contradiction just by using one of the relations of f -
weak-contradiction, but by considering the whole set of relations.
This consideration avoids the need to fix an operator beforehand
in order to take into account all the information between two
fuzzy sets. As a result, we characterize the contradiction between
fuzzy sets and define a family of measures of contradiction
satisfying four interesting properties: symmetry, antitonicity, if
the intersection is empty then the measure is one; and if there
is an element in the intersection with degree of membership 1
then the measure is zero.

Index Terms—N-Contradiction, Fuzzy Sets, Measure of Con-
tradiction.

I. INTRODUCTION

The notion of contradiction plays an important role in
almost every field of human knowledge, since contradiction
usually underlies the development of Sciences: in Physics,
apparent contradictions between observed and expected con-
sequences of one experiment evolves in new theories [21]; in
Mathematics, the notion of contradiction is also in the basis
of the so-called reductio ad absurdum method for proving
statements.

Contradictions appear in Computer Science as well. Ac-
tually, their occurrences seem to be unavoidable in many
frameworks, and therefore, formal approaches to deal with
them are certainly necessary. In this line of thought, we can
find several practical approaches. For instance, [14] describes
ways to recognize contradictions in text mining; [6] analyses
sets of inputs causing contradictions in medical databases; [7]
defines a logic calculus in a database formed by contradictory
sources of information; in decision making approaches [3],
[11], where the notion of incomparability plays a crucial role
in preference structures.

In a purely theoretical treatment of contradiction, we can
find out also different approaches. For instance, [24] defines a
relation to represent the contradiction between fuzzy sets; this
approach is extended to Atanassov’s intuitionistic fuzzy setting
in [10]; [9] provides an axiomatic definition of measures of
contradiction on fuzzy sets; and, if we establish a link between
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contradiction and inconsistency, in [13], [23], [18] the reader
can find several measures of inconsistency under different
logics.

Contradictions between two statements are usually related
to negations [22], mainly in the sense that, if one is true then
other cannot be true. In some cases the negation appears ex-
plicitly (as in the contradiction concerning with the statements
“x is small” and “x is not small”) and in others implicitly (as
in “x is tiny” and “x is huge”). Therefore, it is not strange
that most of the approaches are built upon negation operators.
In fact, our approach is based on one of those; specifically
on the notion of N -contradiction given in [24]. However, we
show that considering negation operators in such an approach,
entails an unexpected behavior with the idea of symmetry
between contradictory statements (see Section II). For this
reason, our first goal in this work is to present and motivate
an extension of the notion of N -contradiction, which is called
f -weak-contradiction. Hence, we interpret the contradiction
between two fuzzy-sets simply as: the greater the membership
value of one, the lesser the membership value of the other.

But our main contribution is not just the definition of the
weak-contradiction. We focus on a deeper interpretation and
treatment of contradiction. In most approaches, contradiction
is defined as a crisp relation, in the sense that two statements
either are or are not contradictory. We believe that contra-
diction is not a crisp notion, since it involves degrees. For
instance, in some cases it is really strong, as in the case of
considering the statements “to be a dog” and “to be a tree”,
but in others is slight, as between the statements “to have
short stature” and ”to be a professional basketball player”.
Fuzziness is introduced within our approach by considering the
whole set of f -weak contradiction relations instead of fixing
one. Hence we do not represent the notion of contradiction
as a binary relation, but as a set of binary relations. In this
way, the contradiction between two fuzzy sets is determined by
taking into account just the information provided by the fuzzy
sets involved; i.e. without the need of taking any preliminary
assumption.

The structure of the paper is as follows: In Section II we
motivate and present the notion of f -weak contradiction as
we are going to understand it in this paper. Section III is
devoted to the idea of measure of contradiction, whereas in
Section IV we discuss the definition of such measures in terms
of negations. We finish with some conclusions and comments
on future works, as well as the references.



II. ON THE NOTION OF f -WEAK-CONTRADICTION

The family of measures of contradiction defined in this
paper are based on the idea of f -weak-contradiction. That
notion was presented originally in [2] as a slight generalization
of the notion of N -contradiction given by Trillas et al. in [24].

Definition 1: Let A and B be two fuzzy sets defined over a
nonempty universe U and let f : [0, 1]→ [0, 1] be an antitonic
mapping such that f(0) = 1. We say that A is f -weak-
contradictory w.r.t. B if and only if A(x) ≤ f(B(x)) holds
for all x ∈ U .

The idea underlying the notion of f -weak-contradiction is
to manage contradictory information provided by two fuzzy
sets via a mapping f . Fixed f and a value of B(x) (for some
x ∈ U), the f -weak-contradiction determines an upper bound
on the value of A(x). Note that, as f is antitonic, the greater
the value of B(x), the smaller the upper bound, and then also
the smaller the value of A(x). Moreover, as f(0) = 1, we have
that if B(x) = 0, then there is no restriction on the value of
A(x). Note that the restriction depends strongly on the chosen
mapping; therefore, different mappings f somehow determine
“different kinds of contradictions.” Notice that every negation
N allows to define N -weak contradiction, too.

In the rest of this section, we provide some motivations
for this generalization of the notion of N -contradiction, and
introduce some properties of f -weak-contradiction which fa-
cilitate the understanding of how such a notion represents the
contradiction, besides of being used in the rest of the paper.

A. Motivating f -weak contradiction.

As we have said, the difference of our approach w.r.t. [24]
is simple: we impose weaker conditions on mappings f used
to determine the kind of contradiction. Specifically, Trillas
et al. considered involutive negations (i.e antitonic mappings
N : [0, 1] → [0, 1] such that N(0) = 1, N(1) = 0 and
verifying N(N(x)) = x for all x ∈ [0, 1]), whereas our
approach considers antitonic mappings f : [0, 1]→ [0, 1] such
that f(0) = 1.

The following facts motivate our choice to weaken these
requirements:
• Removing the symmetry imposed by involutions. The

consideration of involutive negations involves an “exces-
sive” symmetry on the representation of contradiction.
That is because if A and B are two fuzzy sets such
that A is N -contradictory w.r.t. B (with N involutive),
then necessarily B is N -contradictory w.r.t. A as well.
This feature entails that for all element in the universe,
if a degree α of A contradicts a degree β of B, then
necessarily a degree β of A contradicts a degree α of B.
In our opinion, in general, the notion of contradiction
need not have this kind of symmetry. Consider the
following situation:

– The good behavior of one TV set can be measured
according to two parameters: the quality of the image
and the quality of the audio. Specifically, the more
quality of audio and image, the better behavior of
the TV set.

– Under the above consideration, it is obvious that a
high degree of good behavior in TV contradicts a
low degree of audio quality.

– However, a low degree of good behavior in TV does
not necessarily contradict a high degree of quality in
audio (since the bad behavior in TV could be due to
a bad image quality).

Therefore, this example shows that although the degree α
of A contradicts a degree β of B, the degree β in A does
not necessarily contradict a degree α of B (i.e. they can
coexist). The following simple example shows the same
behavior in a formal framework.
Example 1: Two gas tanks A and B in a factory, by some
requirement, should have the same pressure; however, we
can only control the pressure of tank A which, in addition,
can be modified only by controlling the injector. More-
over, by safety reasons, there exists a control mechanism
which limits the pressure gain in A when its pressure
is over certain threshold value. Assume that PA(t) and
PB(t) are two fuzzy sets denoting the pressure in A and
B, respectively, at time t, then the pressure injected in A
could be given by a fuzzy set of the following form:

IA(t) = min{PB(t), 2− 2 · PA(t)}

Then, if we assume that the control system is working
well, the values PA(t) = 0.9 and IA(t) = 0.5 represent
a clear contradiction, since those values cannot be given
by the control system (i.e. be given by the formula which
defines the value of IA). However, the values PA(t) = 0.5
and IA(t) = 0.9 do not represent any contradiction since
if PB(t) = 0.9, the formula above explains the value of
IA(t). As a result, in this context, the symmetry imposed
by the use of involutive negations need not hold. �
We considered that the situations above, albeit extremely
simplified, are enough to motivate, at least, the consid-
eration of arbitrary negations in the definition of N -
contradiction, since the requirement of the involution (i.e.
n2 = id) is the responsible of this perplexing symmetry.

• Mappings f as variables. Maybe the most important
difference with respect to the approaches [5], [8] lies on
the conceptual understanding of how to measure contra-
dictions. In such approaches, a specific f -contradiction is
fixed a priori. Subsequently, the measures of contradic-
tion are defined with respect to the fixed f -contradiction.
Contrariwise, we believe that the best way to measure
the contradiction is by fixing the mapping f a posteriori.
Specifically, given two fuzzy sets A and B, we study
which is the best f -weak-contradiction to represent the
contradiction between A and B. Thus, contradiction is
determined by the information provided by the fuzzy sets
themselves, without any a priori assumption. In other
words, whereas in [5], [8] the notion of contradiction is
modeled by a specific N -contradiction, in our approach
the contradiction is represented by the whole set of
different f -weak-contradictions.
Note that this difference changes completely the con-
ceptualization of the notion of contradiction: under this



approach “the notion of contradiction” is not just a
relation between fuzzy sets, but a set of relations.
Summarizing, and roughly speaking, we need to consider
mappings f as variables instead of constants. Note that,
under this assumption, the structure of the set of map-
pings considered to define f -weak-contradictions is now
crucial.

• But what about symmetry? We recall that in the
first motivational item we have removed the symmetry
imposed by involutions. However, everybody has in mind
that the idea of contradiction is, somehow, symmetric.
That idea can be roughly described by: if A is “con-
tradictory” w.r.t. B then B must be, somehow, also
“contradictory” w.r.t. A as well; although possibly under
different f -weak-contradictions. Unfortunately, consider-
ing only negation operators is not enough to guarantee
that feature, since there are fuzzy sets A and B such
that A is n1-weak-contradictory w.r.t. B but B is not n2-
weak-contradictory w.r.t. A for any negation n2; as the
example below shows.
Example 2: It is not difficult to check that, by assuming
that the control system in Example 1 works good, IA is
n1-weak-contradictory w.r.t. PA, where:

n1(x) =

{
1 if x ≤ 1

2
2− 2 · x otherwise

Note that n1 is effectively a negation operator, since
is antitonic and satisfies n1(0) = 1 and n1(1) = 0.
Nevertheless, there is no negation n2 satisfying that PA is
n2-weak-contradictory w.r.t. IA. If such a negation would
exist, then the values PA(t) > 0 and IA(t) = 1 could
not be given by the restriction imposed by the n2-weak-
contradiction. However, the values IA(t) = 1, PB(t) = 1
and PA(t) = 1

4 can be clearly given by the control
system. �

• Something weaker than negations. By the previous
items, it is not feasible to consider just the class of
negation operators. Therefore, we have two options:
either imposing more restrictions on negation operators
(considering a subclass) or reducing them (considering
operators weaker than a negation).
Let us recall that N -contradiction is based on the idea that
two logic predicates ϕ and ψ are considered contradictory
if the logic statement “If ψ is true, then ϕ is not
true” holds. Now, if this implication is interpreted as a
residual implication, and the negation is interpreted with
a negation operator n, we obtain that “If ψ is true then ϕ
is not true” holds if and only if the inequality ψ ≤ n(ϕ)
holds.1

As a result, there are no reasons to restrict the use of any
negation in modeling contradictions, since any negation
operator can be linked to the idea underlying the notion
of N -contradiction. Therefore, the reasonable approach
is to consider something weaker than a negation, since it
makes no sense to restrict to a subclass of negations.

• Towards symmetry in f -weak-contradiction. Once the

1Note that this inequality coincides with that used in Definition 1.

need of considering the whole set of negations to deal
with contradictions has been motivated, let us study how
to recover the symmetry in f -weak-contradiction. Recall
that the symmetry consist in the idea: if A is f1-weak-
contradictory w.r.t. B, then B is f2-weak-contradictory
w.r.t. A for some operator f2. It easy to check that this
kind of symmetry does not hold if for an element in the
universe t ∈ U we have A(t) = 1 and B(t) = α 6= 0;
since in that case α = B(t) � n(A(t)) = n(1) = 0 for
all negation n. Note that the reason of this behavior is
that every negation operator n assigns n(1) = 0.
Therefore, we have chosen to substitute the require-
ment f(1) = 0 (imposed on negation operators) by
f(1) ∈ [0, 1). This weakening still allows us to prove of
Proposition 5 (in next section), which relates the weak-
contradiction of A w.r.t. B with the weak-contradiction
of B w.r.t. A.
Example 3: Continuing with Examples 1 and 2, we have
seen that IA is n1-weak-contradictory w.r.t. PA, with n1

a negation operator. Now, if we consider the operator

f2(x) =

{
3
2 −

1
2 · x if x ≤ 1

2

1
2 otherwise

it is not difficult to check that PA is f2-weak-
contradictory w.r.t. IA. Note that f2 is not a negation
operator since f2(1) = 1

2 6= 0 and recall that, as we saw
above, there is no negation n satisfying that PA is n-
weak-contradictory w.r.t. IA. �
In general, assuming the condition f(1) ∈ [0, 1) for our
class of operators, will allow us for proving that if A is
f1-weak-contradictory w.r.t. B, then there exists f2 such
that B is f2-weak-contradictory w.r.t. A.

• A final (technical) requirement. The last point concerns
one practical technicality. In the items above we have
justified considering antitonic mappings f : [0, 1]→ [0, 1]
such that f(0) = 1 and f(1) ∈ [0, 1) (that is, f(1) 6= 1).
This family of mappings, by considering the point-wise
ordering, forms a lattice which is not complete: it is easy
to note that the supremum of the whole family is the
constant function 1, which does not belong to the family.
Including the constant function 1 has two interesting
consequences: on the one hand, it provides the structure
of complete lattice; on the other hand, it allows us to
consider non-contradiction as a special case of weak-
contradiction. Hence every pair of fuzzy sets can be
considered contradictory up to some degree, including
the zero degree.
As it will be used later, we state here the following result
on the set Ω which consists of the antitonic mappings
f : [0, 1]→ [0, 1] such that f(0) = 1.
Lemma 1: The set Ω is a complete lattice with the usual
pointwise ordering between mappings.

B. Properties of f -weak-contradiction

In the rest of the section we provide some theoretical results
on the notion of f -weak-contradiction. Such results will be
used later to define measures of contradiction and to prove



some of their properties. The first result shows that f -weak-
contradiction is preserved when considering subsets of f -
weak-contradictory fuzzy sets.

Proposition 1: Let A,B,C and D be four fuzzy sets such
that A ≤ C and B ≤ D. If C is f -weak-contradictory w.r.t.
D then A is f -weak-contradictory w.r.t. B for any mapping f .

Proof: It is a consequence of the following chain of
inequalities, for all x ∈ U :

A(x) ≤ C(x) ≤ f(D(x)) ≤ f(B(x))

As we explained in the section above, the mappings f in
the definition of f -weak-contradiction can be considered as
variables. The following result provides a relationship between
f -weak-contradictory fuzzy sets w.r.t. different mappings.

Proposition 2: Let A and B be two fuzzy sets and let f1

and f2 be two mappings in Ω such that f1 ≤ f2. If A is f1-
weak-contradictory w.r.t. B then A is f2-weak-contradictory
w.r.t. B as well.

Proof: Consider the following chain of inequalities:

A(x) ≤ f1(B(x)) ≤ f2(B(x))

for all x ∈ U .
From the previous result, we can consider the mapping f in

Definition 1 as a degree of contradiction. Note that if A is f -
weak-contradictory w.r.t. B, then A is g-weak-contradictory
w.r.t. B for all f ≤ g, as a consequence of the proposition
above. In other words, “the lesser the mapping f , the greatest
the number of weak-contradictions.” Furthermore, the map-
pings

f>(x) = sup(Ω)(x) = 1 and

f⊥(x) = inf(Ω)(x) =

{
1 if x = 0
0 otherwise

determine the weakest and strongest degree of f -weak-
contradiction, respectively. In what follows, we introduce
a brief study of these two extremal cases of f -weak-
contradiction. Let us begin by considering the greatest degree
of contradiction; i.e. f⊥-weak-contradiction.

Corollary 1: Let A and B be two fuzzy sets such that
A is f⊥-weak-contradictory w.r.t. B. Then A is f -weak-
contradictory w.r.t. B for all f ∈ Ω.

The following result determines the structure of f⊥-weak-
contradictory fuzzy sets.

Proposition 3: Let A and B be two fuzzy sets. A is f⊥-
weak-contradictory w.r.t. B if and only if B(x) > 0 implies
A(x) = 0 for all x ∈ U .

Proof: Assume that A is f⊥-contradictory w.r.t. B. Thus,
if B(x) > 0, then A(x) ≤ f⊥(B(x)) = 0; hence B(x) > 0
implies A(x) = 0.

To prove the converse, firstly, note that if B(x) = 0 then the
inequality A(x) ≤ f⊥(B(x)) holds, since A(x) ≤ f⊥(0) = 1.
Secondly, if B(x) > 0, then A(x) = 0 and the inequality
A(x) ≤ f⊥(B(x)) holds straightforwardly.

We focus now on the least degree of contradiction. To begin
with, let us note that f>-weak-contradiction does not impose
any restriction.

Lemma 2: Let A and B be two fuzzy sets, then A is f>-
weak-contradictory w.r.t. B.

Proof: The inequality A(x) ≤ f>(B(x)) = 1 trivially
holds for all A and B.

The really interesting case arises when f>-weak-
contradiction is the only weak-contradiction which holds,as
this turns out to be an alternative representation of non-
contradiction. The following result establishes the structure of
a pair of non-contradictory fuzzy sets.

Proposition 4: Let A and B be two fuzzy sets. f>-weak-
contradiction is the only weak-contradiction of A w.r.t. B if
and only if there exists a sequence {xi}i∈N ⊆ U such that
B(xi) = 1 for all xi and limA(xi) = 1.

Proof: Let us assume firstly that there exists a se-
quence {xi}i∈N ⊆ U such that B(xi) = 1 for all xi and
limA(xi) = 1. In addition, assume that A is f -weak-
contradictory w.r.t. B for some f , that is A(xi) ≤ f(B(xi)) =
f(1) for all xi. As limA(xi) = 1, we have that f(1) = 1
and, by antitonicity of f , it should coincide with f>.

For the converse, we prove the reciprocal statement and,
thus, assume

(Hyp) for all sequence {xi}i∈N ⊆ U such that B(xi) = 1
for all xi we have limA(xi) 6= 1.

Consider the mapping

f(x) =

{
sup{A(x) | x ∈ U and B(x) = 1} if x = 1
1 otherwise

It is not difficult to check that f ∈ Ω, that f 6= f> (since
f(1) 6= 1 by definition of f and the additional assump-
tion (Hyp)) and that A is f -weak-contradictory w.r.t. B (by
definition of f ).

Note that the case where there is no sequence {xi}i∈N ⊆ U
such that B(xi) = 1 is covered in the proof above; in such a
case, the mapping f collapses to:

f(x) =

{
0 if x = 1
1 otherwise

If the universe where the fuzzy sets has been considered is
finite, then the result above can be rewritten is a simpler way.

Corollary 2: Let A and B be two fuzzy sets defined on
a finite universe U . f>-weak-contradiction is the only weak-
contradiction of A w.r.t. B if and only if there exists x ∈ U
such that A(x) = B(x) = 1.

The two final results of this section are related to the
symmetry described in Section II-A. As we discussed above,
the contradiction of A w.r.t. B is not necessarily the same
that the contradiction of B w.r.t. A but this does not mean
that they are unrelated. Assume that f, g ∈ Ω, respectively,
are the mappings defining these weak-contradictions.

The following proposition will relate them in terms of the
theory of Galois connections. Recall that a pair of mappings,
f, g : [0, 1]→ [0, 1] in our case, forms a Galois connection [12]
if and only if the equivalence below holds for all x, y ∈ [0, 1]:

y ≤ f(x) ⇐⇒ x ≤ g(y). (1)



Proposition 5: Let (f, g) be a Galois connection in [0, 1],
and let A and B be two fuzzy sets. Then, A is f -weak-
contradictory w.r.t. B if and only if B is g-weak-contradictory
w.r.t. A.

Proof: Assume that (f, g) is a Galois connection, then f
and g are in Ω, namely, are antitonic and f(0) = g(0) = 1. On
the one hand, antitonicity is straightforward from (1), see [12].
On the other hand, the equality f(0) = 1 comes from the fact
that g(1) ≥ 0, since by the definition of Galois connection we
have:

0 ≤ g(1) ⇐⇒ 1 ≤ f(0)

So, taking into account that f(x) ∈ [0, 1], we obtain f(0) = 1,
(similarly g(0) = 1).

The equivalence between both weak-contradictions is just a
rephrasing of (1), since A is f -weak-contradictory w.r.t. B if
and only if A(x) ≤ f(B(x)) if and only if B(x) ≤ g(A(x))
if and only if B is g-weak-contradictory w.r.t. A.

The previous result establishes an interesting relationship
between the f -weak-contradiction of A w.r.t. B and the one
of B w.r.t. A. However, not every f -weak contradiction is
defined from mappings belonging to one Galois connection,
as it is well-known [12] that f is part of a Galois connection
in [0, 1] if and only if the equality f(sup(X)) = inf f(X)
holds for all X ⊆ [0, 1].

Even in the case that A is f -weak-contradictory w.r.t. B
with f not being part of a Galois connection, we can always
associate an f̄ (not necessarily equal to f>) such that B is
f̄ -weak-contradictory w.r.t. A.

Proposition 6: Let A and B be two fuzzy sets such that
A is f -weak-contradictory w.r.t. B. Then B is f -weak-
contradictory w.r.t. A, where f is defined by

f(x) = sup{y ∈ [0, 1] | f(y) ≥ x}.

Proof: Certainly, f is well-defined and belongs to Ω. So,
let us show that B(u) ≤ f(A(u)) for all u ∈ U .

As A is f -weak-contradictory w.r.t. B we have the in-
equality A(u) ≤ f(B(u)); now, using antitonicity of f̄ , we
obtain f̄

(
f(B(u))

)
≤ f̄

(
A(u)

)
. Therefore, if we prove that

B(u) ≤ f
(
f(B(u))

)
the proof is finished; but this is just a

consequence of the definition of f , since

f(f(B(u))) = sup{y ∈ [0, 1] | f(y) ≥ f(B(u))} ≥ B(u).

C. On the set of weak-contradictions of A w.r.t. B.

We present here, perhaps, the most important properties of
f -weak contradiction, since form the basis of the measures
of contradiction introduced later in this paper. The results are
similar to those presented in [19] on the framework of fuzzy
logic programming, but considering mappings in Ω instead of
negations. Specifically, in this section we study the structure
of the set:

F(A,B) =
{
f ∈ Ω | A is f -weak-contradictory w.r.t. B

}
and we show that F(A,B) can be characterized by the least
operator f such that A is f -weak-contradictory w.r.t. B. Two
previous remarks:

• F(A,B) is not empty by Lemma 2.
• We can guarantee the existence of the infimum of
F(A,B) thanks to the complete lattice structure of Ω
(Lemma 1).

We start by proving that F(A,B) is closed under infima,
hence, in particular, inf(F(A,B)) ∈ F(A,B).

Proposition 7: Let A and B be two fuzzy sets and let
{fi} ⊆ Ω. If A is fi-weak-contradictory w.r.t. B for any fi,
then A is inf{fi}-weak-contradictory w.r.t. B.

Proof: It is straightforward to check that f = inf{fi}
is given by f(x) = inf{fi(x)} for all x ∈ [0, 1]. More-
over, as A is fi-weak-contradictory w.r.t. B for all fi then
A(u) ≤ fi(B(u)) for all u ∈ U . This implies that A(u) ≤
inf{fi(B(u)))} = f(B(u)) for all u ∈ U ; therefore, A is
inf{fi}-weak-contradictory w.r.t. B.

As a straightforward consequence of the above result, for
all fuzzy sets A and B, there exists the least mapping f ∈ Ω
verifying that A is f -weak-contradictory w.r.t. B; hereafter,
such mapping will be denoted by fA,B . Moreover, thanks to
Proposition 2, we can characterize the set F(A,B) as follows:

Corollary 3: Let A and B be two fuzzy sets, then:

F(A,B) = {f ∈ Ω such that fA,B ≤ f}

where fA,B = min{F(A,B)}.
Therefore, determining the set F(A,B) is equivalent to

determining the least mapping f ∈ Ω verifying that A
is f -weak-contradictory w.r.t. B. In the remainder of this
section, we present the analytic expression of the minimum
of F(A,B), which will be used later to prove the symmetry
of the measures of contradiction given in Section III.

Theorem 1: Let A and B be two fuzzy sets. Then the
minimum of F(A,B) is given by the mapping fA,B defined
by the formula

fA,B(x) = sup
u∈U
{A(u) | x ≤ B(u)}. (2)

Proof: We split the proof into three different phases in
which we will show that

(A) fA,B is in Ω;
(B) A is fA,B-weak-contradictory w.r.t. B;
(C) there is not a mapping f ∈ Ω satisfying that f < fA,B

and such that A is f -weak-contradictory w.r.t. B.
Note that these three statements above imply that fA,B is

the least element in F(A,B).
Proof of (A): The operator fA,B is obviously well-defined

and satisfies the boundary condition fA,B(0) = 1. Thus, we
only have to show that fA,B is antitonic.

Consider x, y ∈ [0, 1] such that x ≤ y. Then,

{u ∈ U | y ≤ B(u)} ⊆ {u ∈ U | x ≤ B(u)}

Therefore, by definition of supremum:

fA,B(y) = sup
u∈U
{A(u) | y ≤ B(u)}

≤ sup
u∈U
{A(u) | x ≤ B(u)}

= fA,B(x).

In other words, fA,B is antitonic.



Once we have proved that fA,B is in Ω, we can consider
the fA,B-weak-contradictory relation.

Proof of (B): Let u ∈ U , by definition of fA,B and properties
of supremum:

fA,B(B(u)) = sup
v∈U
{A(v) | B(u) ≤ B(v)} ≥ A(u)

That is, A is fA,B-weak-contradictory w.r.t. B.
Proof of (C): Let f ∈ Ω such that f < fA,B and let us

show that A is not f -weak-contradictory w.r.t. B.
As f < fA,B , there exists α ∈ [0, 1] such that f(α) <

fA,B(α). In fact, we will prove that the inequality holds for
some element from the image of B, that is, there exists u ∈ U
such that f(B(u)) < fA,B(B(u)).

Let us assume by reductio ad absurdum that for all v ∈ U
such that α ≤ B(v) we have f(B(v)) = fA,B(B(v)). In such
a case, by antitonicity of f , for all v ∈ U such that α ≤ B(v)
we have that f(α) ≥ f(B(v)) = fA,B(B(v)). Therefore we
have the following inequality:

f(α) ≥ sup
v∈U
{fA,B(B(v)) | α ≤ B(v)}

(by definition of fA,B)

= sup
v∈U

{
sup
u∈U
{A(u) | B(v) ≤ B(u)} | α ≤ B(v)

}
(by properties of suprema)
= sup
u∈U
{A(u) | α ≤ B(u)}

(by definition again)
= fA,B(α)

and we obtain f(α) ≥ fA,B(α), contradicting our assumption.
Hence, we have proved that there exists u ∈ U such that:

f(B(u)) < fA,B(B(u)).

Now, as fA,B(B(u)) = supv∈U{A(v) | B(u) ≤ B(v)},
the previous inequality implies that f(B(u)) cannot be an
upper bound of {A(v) | B(u) ≤ B(v)}v∈U . Thus, there
exists w ∈ U such that both B(u) ≤ B(w) and f(B(u)) <
A(w). Now, by antitonicity of f , we have f(B(w)) ≤
f(B(u)). So, by using also the other inequality we obtain
that f(B(w)) ≤ f(B(u)) < A(w). In other words, A is not
f -weak-contradictory w.r.t. B.

Now that we have the analytic expression of fA,B , it is
worth to compare fA,B and fB,A. Recalling Proposition 5,
one might ask whether these two mappings form a Galois
connection. We show below that, in general, the answer is
negative; and then study the conditions under which the answer
is affirmative.

Example 4: Consider U = [0, 1], and the two following
fuzzy sets

A(u) =

{
1 if 0 ≤ u < 0.5

0 otherwise
B(u) =

{
u if 0 ≤ u ≤ 0.5

0 otherwise

It is easy to check that

fA,B(x) =

{
1 if 0 ≤ u < 0.5

0 otherwise
and fB,A(x) = 0.5

The values x = 0.9 and y = 0.5, for instance, form a
counterexample for the equivalence

x ≤ fA,B(y) ⇐⇒ y ≤ fB,A(x)

since the second inequality holds whereas the first one fails. �
The previous example provides a clue to obtain a sufficient

condition to obtain a Galois connection: the key fact is that the
supremum in the definition of fA,B and fB,A should always
be a maximum.

Proposition 8: If the images of A and B are finite, then the
pair

(
fA,B , fB,A) forms a Galois connection.

III. MEASURES OF CONTRADICTION

In this section, we introduce a family of measures to
determine how contradictory two fuzzy sets A and B are. The
idea underlying all these measures is “the more f ’s in Ω such
that A is f -weak-contradictory w.r.t. B, the more contradiction
between A and B.” With this idea, measuring contradiction
between two fuzzy sets A and B is equivalent to measuring the
subset F(A,B) ⊆ Ω. Moreover, in Section II-B we have seen
that F(A,B) can be characterized by the least mapping f such
that A is f -weak-contradictory w.r.t. B (denoted by fA,B).
And without any doubt, the best way to measure mappings
defined from [0, 1] to [0, 1] is by definite integrals. Actually,
the following measure of contradiction between two fuzzy sets
was defined in [2] by using this idea.

Definition 2: Let A and B be two fuzzy sets, let fA,B be
the least element of F(A,B). The measure of contradiction C
between A and B is defined by:

C(A,B) = 1−
∫ 1

0

fA,B(x)dx

The measure of contradiction C satisfies the following
properties [2]:
• symmetry; i.e C(A,B) = C(B,A).
• antitonicity; i.e. A1 ≤ A2 implies C(A1, B) ≥ C(A2, B).
• C(A,B) = 1 if and only if B(x) > 0 implies A(x) = 0

for all x ∈ U .
• C(A,B) = 0 if and only if there exists a sequence
{xi}i∈N ⊆ U such that limA(xi) = limB(xi) = 1.

It is worth to note that, although F(A,B) 6= F(B,A)
(see Section II-B), the values C(A,B) and C(B,A) coincide.
Moreover, those properties imply that C satisfies the axiomatic
definition for measures of incompatibility given in [4] in the
context of Atanassov Intuitionistic fuzzy sets.

We will introduce a family of measures of contradiction
based on the idea underlying the definition above and, nat-
urally, extending C. The key feature of the extension, not
developed in [2], is that C assumes that every pair of values
(α, β) ∈ [0, 1]2 somehow “contains the same amount contra-
diction.” The following example elaborates on this idea.

Example 5: Let us consider the following four fuzzy sets
defined on a singleton universe {t}:

A1(t) = 0.3 A2(t) = 0.3 B1(t) = 1 B2(t) = 0.09

Then
C(A1, A2) = 1− 0.3 · 0.3 = 0.91



C(B1, B2) = 1− 1 · 0.09 = 0.91

since

fA1,A2
(x) =

 1 if x = 0
0.3 if 0 < x ≤ 0.3
0 otherwise

fB1,B2
(x) =

{
1 if 0 ≤ x ≤ 0.09
0 otherwise

The reason for the equality C(A1, A2) = C(B1, B2) is that
every element in the sets {(x, y) ∈ [0, 1]2 | x ≤ 1 and y ≤
0.09} and {(x, y) ∈ [0, 1]2 | x ≤ 0.3 and y ≤ 0.3} has the
same density of contradiction. Hence, the area of both sets
(and therefore also the measure of C) coincides. �

The behavior presented in the example above can be ac-
ceptable in some frameworks but not in others. Consider for
instance a Fuzzy Answer Set framework [20], [16], [17] where
a negation operator is fixed a priori to determine the inconsis-
tency of a Normal Logic Program. In such a framework, the
pair (1, 0.09) could be assumed to be completely inconsistent
(since it is close to the crisp case (0, 1)), whereas the pair
(0.3, 0.3) can be considered just partially inconsistent (since
there is a considerable membership degree in both fuzzy sets).
To deal with this goal, we introduce the notion of density of
contradiction of a point in the unit square [0, 1]2:

Definition 3: A density of contradiction is any mapping
m : [0, 1]2 → R+ such that:
• m(x, y) = m(y, x) for all x, y ∈ [0, 1]

•

∫
[0,1]2

m(x, y)dxdy = 1

The set of densities of contradiction is denoted by D.
The first condition is considered because of the expected

symmetry of the measure of contradiction it generates, see
below. On the other hand, the second requirement is natural,
as in any density distribution. Technically, this second require-
ment really does not impose a strong condition, and could be
substituted by the finiteness of the integral and normalization.

Definition 4: Given two fuzzy sets A and B and a density
of contradiction m, we define the measure of contradiction
between A and B w.r.t. m as:

Cm(A,B) = 1−
∫ 1

x=0

∫ fA,B(x)

y=0

m(x, y)dydx

Some remarks about the “measure” Cm:
• Note that Cm is well-defined for all pair of fuzzy sets
A and B since, firstly, the mapping m is integrable by
the second item in Definition 3 and, secondly, because
the mapping fA,B is antitonic and bounded and, hence,
Riemann integrable.

• As with C, we compute the complement w.r.t. 1 of the
definite integral, since the lesser the mapping fA,B , the
more contradictory A w.r.t. B is (i.e the greater F(A,B)).

• Again as with C, the measure of contradiction Cm(A,B)
is not symmetric a priori. However, we show below that,
although the contradiction of A w.r.t. B is not necessarily
the same as the contradiction of B w.r.t. A (in terms of the
sets of weak-contradictions F(A,B) and F(B,A)), the
measure of contradiction coincides in both cases. In other

words, we show that Cm is symmetric; i.e. Cm(A,B) =
Cm(B,A) for all fuzzy sets A and B and all density of
contradiction m.

One of the first requirements for a measure of contradiction
to make sense is that Cm is antitonic for all m ∈ D. This is
established in the following result.

Proposition 9: Let A,B,C and D be four fuzzy sets such
that A ≤ C and B ≤ D. Then Cm(A,B) ≥ Cm(C,D) for all
m ∈ D.

Proof: By using Proposition 1 we have that:

F(A,B) ⊇ F(C,D)

and by Corollary 3, that is equivalent to fA,B ≤ fC,D. So,

Cm(A,B) = 1−
∫ 1

x=0

∫ fA,B(x)

y=0

m(x, y)dydx =

≥ 1−
∫ 1

x=0

∫ fC,D(x)

y=0

m(x, y)dydx = Cm(C,D)

As a consequence of the previous result, we obtain that the
value of Cm(A,B) is always in [0, 1].

Corollary 4: Let m be a density of contradiction and let A
and B be two fuzzy sets. Then Cm(A,B) ∈ [0, 1].

Proof: Let us see that Cm(A,B) ≥ 0. Let T be the fuzzy
set defined by T (x) = 1 for all x ∈ U . Then, by Proposition 9
we have:

Cm(A,B) ≥ Cm(T, T )

By Proposition 4, it easy to see that F(T, T ) = {f>}, hence:

Cm(A,B) ≥ 1−
∫ 1

x=0

∫ f>(x)

y=0

m(x, y)dydx =

= 1−
∫ 1

x=0

∫ 1

y=0

m(x, y)dydx = 1− 1 = 0

The inequality Cm(A,B) ≤ 1 is obtained similarly by con-
sidering the fuzzy set defined by O(x) = 0 for all x ∈ U .

Let us prove now the last statement given in the remarks;
i.e. the symmetry of the measure Cm.

Theorem 2: Let A and B be two fuzzy sets and let m be
a density of contradiction. Then Cm(B,A) = Cm(A,B).

Proof: Note that Cm(A,B) and Cm(B,A) determine the
volume of the sets:

SA,B = {(x, y, z) ∈ [0, 1]3 | y ≤ fA,B(x), z ≤ m(x, y)}

SB,A = {(x, y, z) ∈ [0, 1]3 | y ≤ fB,A(x), z ≤ m(x, y)}

respectively. Let us prove that both volumes coincide.
The idea is to show that SB,A is so closely related to

the mirror image of SA,B w.r.t. the plane π ≡ x = y that
their volumes coincide (since mirror images do no modify
volumes). Specifically, if τπ(SA,B) denotes the mirror image
of SA,B w.r.t. the plane π, we will prove that
• int(SB,A) ⊆ τπ(SA,B)
• int(τπ(SA,B)) ⊆ SB,A



where int denotes the interior operator of a subset in R3. This
result would imply that the difference between τπ(SA,B) and
SB,A is a null set, and both volumes would coincide.

Now, for proving int(SB,A) ⊆ τπ(SA,B) we will show

int(SB,A) ⊆ {(x, y, z) ∈ [0, 1]3 | y < fB,A(x), z < m(x, y)}
⊆ {(x, y, z) ∈ [0, 1]3 | x ≤ fA,B(y), z ≤ m(y, x)}
= τπ(SA,B)

Firstly, by symmetry of m ∈ D we have that z < m(x, y)
is more restrictive than z ≤ m(y, x). To finish this part, it is
enough to show that y < fB,A(x) implies x ≤ fA,B(y) for
all x, y ∈ [0, 1]:

From y < fB,A(x) = supu∈U{B(u) | x ≤ A(u)} we have
that there exists v ∈ U such that y < B(v) and x ≤ A(v);
therefore, x ≤ supu∈U{A(u) | y ≤ B(u)} = fA,B(y).

The proof of int(τπ(SA,B)) ⊆ SB,A is similar.
Let us consider some examples to become familiar with the

family of measures {Cm}m∈M. These examples are aimed
at introducing the study of the extreme cases (i.e. the cases
Cm(A,B) = 0 and Cm(A,B) = 1), where the density of
contradiction considered plays a crucial role.

Example 6: The measure C(A,B) defined in [2] (and given
in Definition 2) can be considered as a special case of the
family of measures C(A,B)m. Specifically when m(x, y) = 1
for all x ∈ [0, 1], since:

Cm(A,B) = 1−
∫ 1

x=0

∫ fA,B(x)

y=0

1 dydx =

= 1−
∫ 1

0

fA,B(x) dx = C(A,B)

�
Example 7: The following example is related to approaches

where a negation operator to determine the contradiction is
fixed a priori [5], [8], [15], [18]. We can link our measure of
contradiction to those approaches by assuming the following
equivalence: two fuzzy sets are contradictory if fA,B ≤ n,
where n is the negation operator chosen to represent the
contradiction (i.e. the n-weak-contradiction). We can measure
the contradiction under such idea by using the family of
measures {Cm}m∈D, just considering the following density
of contradiction:

m(x, y) =

{
α if y ≥ n(x)
0 otherwise

where the value α ∈ R is defined as:

α =
1

1−
∫ 1

0
n(x) dx

Under the consideration above, it is not difficult to verify that
the extreme case Cm(A,B) = 1 is equivalent to fA,B ≤ n,
that is, the A and B are fully contradictory if and only if
fA,B ≤ n. �

This example shows that our approach also deals with
frameworks in which specific cases of contradictions are fixed
a priori. In the example below, we show that we can also deal
with a family of points considered non-contradictory, this is,
we can cover hypothetic frameworks where not only pairs of

values “close” to lines x = 0 and y = 0 are considered
fully contradictory, but neighborhoods to the point (1, 1) are
considered not contradictory.2

Example 8: Consider two convex sets V and W in [0, 1]2,
such that {(x, y) ∈ [0, 1]2 | x = 0 or y = 0} ⊆ V and
(1, 1) ∈W . Then, if we consider the density of contradiction:

m(x, y) =

{
α if (x, y) /∈ V ∪W
0 otherwise

where the value α ∈ R is defined as:

α =
1

1−
∫
V c∩W c∩[0,1]2

1 dxdy

we obtain the following two equivalences for extreme cases
when U is discrete. On the one hand, Cm(A,B) = 1 if and
only if for all u ∈ U we have that (A(u), B(u)) ∈ V ; i.e. for
all element in the universe the values given by A and B are
fully contradictory. On the other hand, Cm(A,B) = 0 if and
only if there is at least one v ∈ U such that (A(v), B(v)) ∈W ;
i.e.there is an element in the universe such that the values given
by A and B are not contradictory. �

Note that in the previous examples, the densities of contra-
diction considered have always been piecewise constant. How-
ever it is also possible to consider any density function d(x, y).
If the domain of such a density function is contained in [0, 1]2,
then it can be used directly, otherwise it is necessary to restrict
the domain to [0, 1]2 and to proceed with a normalization; i.e.
by considering a density of contradiction such as

m(x, y) =
d(x, y)

1−
∫

[0,1]2
d(x, y) dxdy

Example 9: In the case of the normal density distribution
function N (µ,Σ) given by

N (µ,Σ)(x) =
1√

(2π)2|Σ|
e−

1
2 (x−µ)TΣ−1(x−µ)

for all x ∈ R2, the density of contradiction from it is:

m(x, y) =
N (µ,Σ)(x, y)

1−
∫

[0,1]2
N (µ,Σ)(x, y) dxdy

In the case of considering the normal distribution, the char-
acterization of the extreme cases coincide with those given in
[2] for the measure C. �

As we have seen, the characterization of the extreme cases
in the measures Cm depends strongly on the density of con-
tradiction considered; specifically, on the support of m(x, y).
Let us begin by characterizing the case Cm(A,B) = 1.

Proposition 10: Let A and B be two fuzzy sets and let m
be a density of contradiction. Then Cm(A,B) = 1 if and only
if for each u ∈ U , the set

Ξu = {(x, y) ∈ supp(m) | x ≤ A(u) and y ≤ B(u)} (3)

is a null set.

2The idea underlying these neighborhood considerations is that the rule
p → ¬q holds if p = 0 or q = 0 whereas does not if p = 1 and q = 1.



Proof: We will prove that Cm(A,B) 6= 1 if and only
if there is u ∈ U such that Ξu is not a null set. Note that
Cm(A,B) 6= 1 is equivalent to say that∫ 1

x=0

∫ fA,B(x)

y=0

m(x, y)dydx 6= 0

which, assuming D = {(x, y) ∈ supp(m) | y ≤ fA,B(x)}, is
equivalent to ∫

D

m(x, y)dydx 6= 0

which is equivalent to

Area(D) 6= 0.

So, let as show that the area of D is not zero if and only if
there exists u ∈ U such that the set Ξu defined in (3) is not
null.

If the area of D is not zero, then, by the antitonicity of fA,B
and how D is defined, there is a non-empty ball contained in
the interior of D.So, there is (α, β) ∈ D and ε > 0 such that

[α− ε, α]× [β − ε, β] ⊆ int(D).

It is not difficult to check that there exists u ∈ U such that
the ball above is included in Ξu: in effect, as (α, β) ∈ int(D),
we have that α < fA,B(β) = supu∈U{A(u) | β ≤ B(u)}, so
there is u ∈ U such that α < A(u) y β ≤ B(u). In other
words, there is u ∈ U such that

[α− ε, α]× [β − ε, β] ⊆
⊆ {(x, y) ∈ supp(m) | x ≤ α and y ≤ β}
⊆ {(x, y) ∈ supp(m) | x ≤ A(u) and y ≤ B(u)}
= Ξu

As a result, we have Ξu is non-null for certain value of u.
To prove the converse, let us assume that there is u ∈ U such

that Ξu is non-null. Now, using that x ≤ A(u) and y ≤ B(u)
implies y ≤ B(u) ≤ fB,A(A(u)) ≤ fB,A(x), we have that

Ξu
(3)
= {(x, y) ∈ supp(m) | x ≤ A(u) and y ≤ B(u)}
⊆ {(x, y) ∈ supp(m) | y ≤ fB,A(x)}

Finally, by symmetry of Cm (Theorem 2) we have that

Area
(
{(x, y) ∈ supp(m) | y ≤ fB,A(x)}

)
= Area(D)

and D is non-null.
In what follows, in order to characterize the case

Cm(A,B) = 0, we will write

Em = int(supp(m))

that is, the closure of the interior of the support of the density
of contradiction m; basically, this is the application of a
morphological filter to the support of m, which amounts to
deleting isolated points and lines.

Note that Em is not empty because of the equality∫ 1

x=0

∫ 1

y=0
m(x, y)dydx = 1 (required by definition of density

of contradiction). In the statement of the following result, we
will consider that Em inherits the pointwise ordering within
the real unit square and, therefore, makes sense to consider

its maximal elements (which exist since Em is closed by
definition).

Proposition 11: Let A and B be two fuzzy sets and let m be
a density of contradiction. Then Cm(A,B) = 0 if and only if
for all maximal (α, β) in Em there is a sequence {ui}i∈N ⊆ U
such that limA(ui) ≥ α and limB(ui) ≥ β.

Proof: Firstly, by symmetry of Cm (Theorem 2), we have
Cm(A,B) = Cm(B,A). In addition, Cm(B,A) = 0 if and
only if

∫ 1

x=0

∫ fB,A(x)

y=0
m(x, y)dydx = 1.

Recalling that we have
∫ 1

x=0

∫ 1

y=0
m(x, y)dydx = 1 by

definition of m, we can conclude that Cm(B,A) = 0 if and
only if

∫ 1

x=0

∫ 1

y=fB,A(x)
m(x, y)dydx = 0.

For any maximal element (α, β) ∈ Em, we have that β ≤
fB,A(α). In effect, assuming it does not hold, there would
exist3 a non-null subset Eα,β containing (α, β) such that

Eα,β ⊆ {(x, y) ∈ [0, 1]2 | y > fB,A(x)} ∩ supp(m),

and, as a result, we would have∫ 1

x=0

∫ 1

y=fB,A(x)

m(x, y)dydx ≥
∫
Eα,β

m(x, y)dxdy > 0

contradicting
∫ 1

x=0

∫ 1

y=fB,A(x)
m(x, y)dydx = 0.

Now, as β ≤ fB,A(α) = supu∈U{B(u) | α ≤ A(u)} we
can assume that there is a sequence {ui}i∈N ⊆ U such that
limA(ui) ≥ α and limB(ui) ≥ β.

For the converse, firstly, let us remark that, by definition of
Em, we have

∫∫
Em

m =
∫∫

[0,1]2
m = 1. If we denote the set

of maximal elements in Em by M , then obviously we have

Em ⊆
⋃

(α,β)∈M

{(x, y) ∈ [0, 1]2 | x ≤ α, y ≤ β}

Secondly, given a maximal (α, β) ∈ Em, and δ < α, by the
hypothesis, we have that β ≤ fB,A(δ). For the proof of this
fact, consider a sequence {ui}i∈N ⊆ U such that limA(ui) ≥
α and limB(ui) ≥ β, then there exists u ∈ U such that
A(u) ≥ δ and B(u) ≥ β. Now, the inequality β ≤ fB,A(δ) =
supu∈U{B(u) | δ ≤ A(u)} is obvious.

We only need to note the following chain of inclusions

int(Em) ⊆
⋃

(α,β)∈M

{(x, y) ∈ [0, 1]2 | x < α, y ≤ β}

⊆{(x, y) ∈ [0, 1] | y ≤ fB,A(x)}

where the second one follows from β ≤ fB,A(δ), by substi-
tuting x for δ. Therefore∫ 1

x=0

∫ fB,A(x)

y=0

m(x, y)dydx ≥
∫
Em

m(x, y)dydx = 1,

which concludes the proof.
The statement of the two proposition above can be combined

and rephrased in terms of the set Em as in the next corollaries.
In our framework, the existence of values of (A(u), B(u))
close enough to (1, 1) implies zero degree of contradiction
between A and B. Dually, if all the values are close enough
to (0, 0), the measure of contradiction should be equal to 1.

3This follows from topological considerations due to the particular con-
struction of Em as the closure of the interior.



Corollary 5: Let A and B be two fuzzy sets and let m be a
density of contradiction such that Em 6= [0, 1]2. Let {Vi}i∈I be
the family of maximal rectangles in Emc such that (0, 0) ∈ Vi
for all i ∈ I , and {Wi}i∈I the family of maximal rectangles
in Emc such that (1, 1) ∈Wi for all i ∈ I . Then:
• Cm(A,B) = 1 if and only if for all u ∈ U we have

(A(u), B(u)) ∈ Vi for some i ∈ I.
• Cm(A,B) = 0 if and only if for all i ∈ I there exists a

sequence {un}n∈N ⊆ U such that

(limA(un), limB(un)) ∈Wi.

Proof: By Proposition 10 we know that Cm(A,B) = 1 if
and only if for all u ∈ U the set

{(x, y) ∈ supp(m) | x ≤ A(u) and y ≤ B(u)}

is a null set. This is equivalent to the fact that for all u ∈ U :

{(x, y) ∈ [0, 1]2 | x ≤ A(u) and y ≤ B(u)} ⊆ Emc

Finally, as the set above is a rectangle containing (0, 0), and
the inclusion is equivalent to (A(u), B(u)) ∈ Vi for some
i ∈ I.

To prove the other statement just note that, on the one hand,
for all maximal (α, β) ∈ Em, the set

{(x, y) ∈ [0, 1] | x ≥ α, y ≥ β}

is a rectangle containing (1, 1) and is included in Em
c.

Moreover, on the other hand, for each Wi it is easy to check
that there is a maximal element (α, β) ∈ Em which also
belongs to Wi, since otherwise Wi would not be maximal.
Finally, one has just to note that the statements below are
equivalent:
• for all maximal (α, β) ∈ Em there exists a sequence
{ui}i∈N ⊆ U satisfying that limA(ui) ≥ α and
limB(ui) ≥ β

• for all Wi there exists a sequence {un}n∈N ⊆ U such
that (limA(un), limB(un)) ∈Wi.

The corollary above required the fact Em 6= [0, 1]2. If this
would not be the case, that is Em = [0, 1]2, the resulting
statements are greatly simplified.

Corollary 6: Let A and B be two fuzzy sets and let m
be a density of contradiction such that Em = [0, 1]2 for all
(x, y) ∈ [0, 1]2. Then:
• Cm(A,B) = 1 if and only if either A(u) = 0 or B(u) =

0 for all u ∈ U .
• Cm(A,B) = 0 if and only if there exists a sequence
{ui}i∈N ⊆ U such that limA(ui) = limB(ui) = 1.
Proof: For the first statement, Proposition 10 states that

Cm(A,B) = 1 if and only if the sets of the form {(α, β) ∈
supp(m) | α ≤ A(u), β ≤ B(u)} are null-sets. We have just
to note that if Em = [0, 1]2, then Cm(A,B) = 1 if and only
if either A(u) = 0 or B(u) = 0.

For the second statement, just note that the only maximal
element in Em is the pair (1, 1). So applying Proposition 11
the result is straightforward.

As seen in Example 7, there are frameworks in which a
negation operator is fixed before studying weak-contradiction.

We can also deal with this idea by considering a density of
contradiction m which assigns 0 to those pairs satisfying the
weak-contradiction requirement. In such a case we have the
following result.

Corollary 7: Let A and B be two fuzzy sets and let mf be
a density of contradiction such that mf (x, y) = 0 if and only
if x > f(y) with f ∈ Ω. Then:
• Cm(A,B) = 1 if and only if A is f -weak contradictory

w.r.t. B.
• Cm(A,B) = 0 if and only if there exists a sequence
{ui}i∈N ⊆ U such that limA(ui) = limB(ui) = 1.
Proof: The first statement follows directly from Proposi-

tion 10, and the second one from Corollaries 5 and 6.
Another interesting framework (which, to the best of our

knowledge, has not appears in the literature) would be to fix
a priori two operators in Ω to represent contradiction: one to
determine when two fuzzy sets are contradictory and the other
to represent when not. In that way, given f1, f2 ∈ Ω we can
consider that two fuzzy sets A and B are fully contradictory
if they are f1-weak-contradictory, and zero-contradictory if
f2 ≤ fA,B , that is, if A is f -weak-contradictory w.r.t. B then
f ≥ f2. Note that is essential to require the inequality f1 < f2.

Corollary 8: Let A and B be two fuzzy sets, let f1, f2 ∈ Ω
with f1 < f2 and let m be a density of contradiction such that
m(x, y) = 0 if and only if x < f1(y) or x < f2(y). Then:
• Cm(A,B) = 1 if and only if A is f1-weak contradictory

w.r.t. B.
• Cm(A,B) = 0 if and only if f2 ≤ fA,B

Proof: The first statement follows directly from Proposi-
tion 10, and the second one from Corollaries 5 and 6.

It is worth to note that Proposition 11, and also the second
items in Corollaries 5, 6, and 7 are given in terms of sequences
in the universe U . Hence, if the universe considered would be
finite, the sequences can be substituted by the existence of two
elements in the universe satisfying the property.

Corollary 9: Let A and B be two fuzzy sets and let m be a
density of contradiction. Then Cm(A,B) = 0 if and only if for
all maximal (α, β) ∈ Em there is u ∈ U such that A(u) ≥ α
and B(u) ≥ β.

A similar consequence can be obtained if the membership
functions of A and B are continuous.

Corollary 10: Let m be a density of contradiction, let U
be a bounded set of R and let A and B be two fuzzy sets
defined on U with continuous membership functions. Then
Cm(A,B) = 0 if and only if for all maximal (α, β) ∈ Em
there is u ∈ U such that A(u) ≥ α and B(u) ≥ β.

Proof: Assume that C(A,B) = 0. By Proposition 11,
we know that there exists a sequence {ui}i∈N ⊆ U such that
limA(ui) = limB(ui) = 1. Let us show that there exists an
element u ∈ {ui}i∈N such that A(u) = B(u) = 1. As U is
bounded, then {ui}i∈N is bounded as well. Thus we can ensure
there exists a convergent subsequence of {ui}i∈N; let us denote
such subsequence by {vi}i∈N. Let us show that u = lim vi is
the searched element. Firstly, let us show that u ∈ U . As
[0, 1] is a closed set of R and the membership function of A
is continuous, the set U = A−1([0, 1]) is closed. Therefore,
as {vi}i∈N ⊆ U then u = lim vi ∈ U . On the other hand,



by continuity we have A(u) = A(lim vi) = limA(vi) = 1.
Similarly we can prove that B(u) = 1.

The converse implication is a direct consequence of Propo-
sition 11.

To finish with, if we assume the requirement assumed either
in Corollary 9 or 10 (i.e. either finite universes or continuous
memberships), the second item in Corollaries 5, 6, and 7 can
be rewritten, respectively, as:
• Cm(A,B) = 0 if and only if for all Wi there exists ui ∈
U such that (A(ui), B(ui)) ∈Wi.

• Cm(A,B) = 0 if and only if there exists u ∈ U such that
A(u) = B(u) = 1.

• Cm(A,B) = 0 if and only if there exists u ∈ U such that
A(u) = B(u) = 1.

IV. ON THE DEFINITION OF Cm IN TERMS OF NEGATIONS

In Section II we introduced and motivated the set of
operators Ω to represent the idea of contradiction via the
notion of f -weak-contradiction. The question now is, is it
really necessary to consider the set of operators Ω to define
the measures Cm? What would happen if we define a measure
of contradiction by using just negation operators or involutive
negation operators? In this section, we answer these questions
and motivate the use of operators in Ω with this study.

First of all, take into account that in the definition of Cm
we required the existence of the least operator f such that A
is f -weak-contradictory w.r.t. B. Besides, to guarantee the
existence of such an operator, the structure of complete lattice
is needed. However, the set of involutive negation operators
with the usual order does not have such a complete lattice
structure. Contrariwise, the set of negation operators does have
a complete lattice structure with the usual ordering.

We redefine the measure Cm in terms of negations as
follows: Let A and B be two fuzzy sets, consider then the
infimum nA,B of the set of negations n such that A is n-weak-
contradictory w.r.t. B. Let m be a density of contradiction.
Then we can define the measure of contradiction C∗m as
follows:

C∗m(A,B) = 1−
∫ 1

x=0

∫ nA,B(x)

y=0

m(x, y)dydx (4)

An interesting feature is that, given two fuzzy sets A and
B, the set of negations n such that A is n-weak-contradictory
w.r.t. B could be the emptyset. That would happen if and
only if there exists u ∈ U such that A(u) > 0 and B(u) = 1.
Curiously enough, we have the following result:

Proposition 12: Let A and B be two fuzzy sets and let m
be a density of contradiction. Then:

C∗m(A,B) =

{
Cm(A,B) if B(u) = 1 implies A(u) = 0

0 otherwise

Proof: Assume firstly that B(u) = 1 implies A(u) = 0.
Let us denote by F∗(A,B) the set of negations such that
A is n-weak-contradictory with respect to B. As Ω contains
all the negations, we have that F∗(A,B) ⊆ F(A,B). This
implies that fA,B ≤ nA,B . To see the other inclusion, we only
have to note that, thanks to Theorem 1, the operator fA,B

is actually a negation operator, so fA,B = nA,B and then
C∗m(A,B) = Cm(A,B).

To prove the other case, note that there is no negation n
such that A is n-weak-contradictory with respect to B. So
F∗(A,B) = ∅; since the infimum of the empty set is the
supremum of the set, we have that

nA,B =

{
0 if x = 1
1 otherwise

Now, the rest is straightforward.
The result above presents a clear difference between defin-

ing the measure of contradiction by using either negation
operators or operators in Ω. However, note that in most cases,
both definitions coincide. Note that, in the cases where both
measures of contradiction differ, C∗m has a non-continuous
behavior, as the following example shows.

Example 10: Consider the family of fuzzy sets Aε given
by Aε(u) = ε for all u ∈ U and the fuzzy set B defined by
B(u) = 1 for all u ∈ U . Then, given a density of contradiction
m such that m(x, y) 6= 0 for all (x, y) ∈ [0, 1]2, the measures
C∗m(Aε, B) are given by:4

C∗m(Aε, B) =

{
1 if ε = 0
0 otherwise

Note the highly unstable behavior of the measure for values
close to 0. This behavior occurs because the set F∗(A,B)
can be empty, whereas this never happens with F(A,B).
Specifically, for the measures Cm(Aε, B), in the case that
m(x, y) = 1 for all (x, y) ∈ [0, 1]2, are:

Cm(Aε, B) = 1− ε

�
Another consequence of Proposition 12 is that the new

measure of contradiction C∗m is not symmetric. This can be
easily seen.

Example 11: Consider the sets Aε and B introduced in the
previous example, then for 1 6= ε 6= 0 we have

C∗m(Aε, B) = 0 6= 1− ε = C∗m(B,Aε)

�
Summarizing, should we have used negation operators in the

definition of Cm, some undesirable behavior can arise such as
the instability of the measure and the loss of symmetry.

V. CONCLUSION AND FUTURE WORK

In this paper we have presented a measure of contradic-
tion between fuzzy sets based on the notion of f -weak-
contradiction. The measure has been defined in three steps.
First, we have introduced and motivated the notion of f -
weak-contradiction. Moreover, some results concerning with
such a notion have been presented; among them we stress
on those showing that mappings f can be considered as
degrees of contradictions. The second step lied in defining
formally the measure Cm(A,B). Such definition is motivated
by the idea of considering the least mapping f ∈ Ω verifying

4The results of the measures follow easily by using Proposition 12 and
Corollary 6.



that A is f -weak-contradictory w.r.t. B and we have proved
two interesting properties, namely, antitonicity and symmetry.
In addition, we have related the measure Cm(A,B) with
different frameworks by fixing a specific kind of density of
contradiction. In that way, we have characterized the two
extremal cases of the measure Cm(A,B) according to the
density of contradiction considered.

Finally, in the third step, we have seen that, although a
similar measure of contradiction can be defined by using the
notion of N -contradiction, two unexpected features appear in
such a case: non-symmetry and a non-continuous behavior.
Therefore, the consideration of the set of mappings Ω used to
define the notion of f -weak-contradiction, seems to be crucial
in the definition of Cm.

As a future work we would like to use the same idea
underlying in Cm(A,B) to measure another relationships be-
tween fuzzy sets like inclusion or similarity. Moreover, some
preliminaries results led us to foresee a strong relationship
between the measure Cm(A,B) and the notion of overlap
index [1], which measures up to what extent two fuzzy sets
share information.
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[9] S. Cubillo and E. Castiñeira. Measuring contradiction in fuzzy logic.
International Journal of General Systems, 34(1):39–59, 2005.
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