

Satisfiability testing for Boolean formulas using ∆-trees ∗

G. Gutiérrez, I.P. de Guzmán, J. Mart́ınez, M. Ojeda-Aciego and
A. Valverde
({gloriagb,guzman,javim,aciego,a valverde}@ctima.uma.es)
Dept. Matemática Aplicada. Universidad de Málaga, P.O. Box 4114. E-29080
Málaga, Spain.

Abstract. The tree-based data structure of ∆-tree for propositional formulas is
improved and optimised. The ∆-trees allow a compact representation for negation
normal forms as well as for a number of reduction strategies in order to consider
only those occurrences of literals which are relevant for the satisfiability of the
input formula. These reduction strategies are divided into two subsets (meaning-
and satisfiability-preserving transformations) and can be used to decrease the size
of a negation normal form A at (at most) quadratic cost. The reduction strategies
are aimed at decreasing the number of required branchings and, therefore, these
strategies allow to limit the size of the search space for the SAT problem.

Keywords: Algorithms and data structures, automated deduction.

MSC2000: 68T15 (03B35 68P05)

1. Introduction

Efficient representations for negation normal form (nnfs) are necessary
in order to describe and implement efficient algorithms on this kind of
formulas. The ability to reason on specifications written in a language
as close as possible to natural language is important for information
sciences; thus, reasoning efficiently on nnf (negation normal form) is in-
teresting because these formulas are easier to obtain from specifications
given in natural language.

Formulas in cnf are usually interpreted as lists of clauses, and for-
mulas in dnf are interpreted as lists of cubes; these interpretations
allow efficient descriptions and implementations of algorithms to study
satisfiability (e.g. Davis-Putnam procedures, and linear ordered reso-
lution). In this work we use the generalization of these interpretations
to nnfs given by the ∆-trees, that is, we use trees of clauses and cubes.
Specifically, nnfs are represented as trees of clauses and cubes such
that each clause-node in the tree is an implicant of the formula rep-
resented by its scope and, similarly, each cube-node is an implicate of
the formula represented by its scope. The data structure of ∆-tree is so
named because its nodes are built up from ∆-lists [1]. After defining the
∗ Partially supported by Spanish DGI project BFM2000-1054-C02-02.

c© 2001 Kluwer Academic Publishers. Printed in Spain.

gutierrez.tex; 30/03/2001; 14:04; p.1

2

notion of ∆-tree, the operators nnf and ∆Tree are introduced which,
respectively, associate a nnf to each ∆-tree and vice versa. In addition,
it can be shown that this correspondence preserves equivalence and,
therefore, we can easily extend the concepts of validity and satisfiability
to ∆-trees.

We introduce the concept of restricted ∆-tree (generalizing the well-
known concept of restricted cnf in which clauses with repeated or con-
tradictory literals are not allowed and subsumed clauses are omitted),
which involves only restricted clauses and cubes in the representation
and, in addition, prohibits that a single literal is both an implicant
and an implicate of the same subformula. Other representations for
nnf formulas have been proposed in the literature: For example, in [7]
graphs are used, however, their representation does not differ substan-
tially from the standard one, and it is only useful for the search of
links which is the main part of the dissolution method they propose.
Another widespread alternative representation are the BDDs and its
variants [2, 10], but they are not useful for the study of satisfiability
because although they make straightforward the testing of satisfiability,
the construction of a restricted BDD for a given formula is exponential
in the worst case.

Later, we describe some meaning- and satisfiability-preserving trans-
formations in terms of ∆-trees, some of which were introduced in [1]

described using the so-called ∆̂-sets. This fact that ∆̂-sets are no longer
necessary when working with ∆-trees is extremely interesting when
implementing the method, since the simple data structure of ∆-tree
stores both the information about the structure of the formula and its
associated ∆̂-sets. Finally, the last section includes some experimental
results from a ∆-trees based implementation of the method described
in [1].

This paper improves the presentation of the results in [5] in that
a more compact definition of ∆-trees is introduced. This results in
simpler statements of the theorems and, as a consequence, the simpli-
fying transformations are more adequately described in terms of rewrite
rules. Specifically, no intermediate operators such as Φ⊥ and Φ> are
required.

2. Preliminary Concepts and Definitions

Throughout the rest of the paper, we will work with a classical propo-
sitional language over a denumerable set of propositional variables, V,
and connectives {¬,∧,∨}, the semantics for this language being the
standard one.

gutierrez.tex; 30/03/2001; 14:04; p.2

3

− An assignment I is an application from the set of propositional
variables V to {0, 1}; the domain of an assignment is uniquely
extended to the whole language with the usual definition of the
classical connectives.

− A formula A is said to be satisfiable if there exists an assignment
I such that I(A) = 1; in this case I is said to be a model for A.

− Two formulas A and B are said to be equisatisfiable, denoted A ≈
B, if A is satisfiable iff B is satisfiable.

− Two formulas A and B are said to be equivalent, denoted A ≡ B,
if I(A) = I(B) for all assignment I.

− We use the symbols > and ⊥ to denote truth and falsity.

We will also use the usual notions of literal (propositional variable or
the negation of a propositional variable), clause (disjunction of literals)
and cube (conjunction of literals). A negation normal form (denoted
nnf) is a formula in which the negations are only in the literals, it is
said to be conjunctive/disjunctive if its main connective is a conjunc-
tion/disjunction. If ` is a literal, ` denotes its opposite literal; if Γ is a
set of literals, Γ = {`; ` ∈ Γ}. The following two definitions will play an
important rule in the sequel:

− A literal ` is an implicant of a formula A if ` |= A.

− A literal ` is an implicate of a formula A if A |= `.

We will use the standard notions of list and tree. Finite lists are
written in juxtaposition, with the standard notation, nil, for the empty
list; if λ and λ′ are lists, ` ∈ λ denotes that ` is an element of λ; the
concatenation of two lists λ and λ′ is written as either λ〈〉λ′ or λ ∪ λ′;
the inclusion and intersection of lists are defined in the usual way.

We will work with the usual representation of nnfs as string of sym-
bols and its representation as syntactic tree [4]; this way, an address η
in the syntactic tree of a formula A will also mean, when no confusion
arises, the subformula of A corresponding to the node of address η in
the tree.

Let A and C be two formulas, let B be a subformula of A and let η be
an address in the syntactic tree of A. By A[B/C] we denote the result
of substituting in A any occurrence of B by C and, similarly, A[η/C]
denotes the result of substituting in A the subformula rooted at η by C.
If Γ is a set of literals, A[Γ/>] denotes the result of substituting in A
any occurrence of literals in Γ by > and any occurrence of literals in Γ
by ⊥.

gutierrez.tex; 30/03/2001; 14:04; p.3

4

3. The ∆-trees

DEFINITION 1.

1. A ∆-list is either the symbol] or a list of literals without repeated
propositional variables.

2. A ∆-tree T is a tree with labels in the set of ∆-lists.

EXAMPLE 1. The following are two examples of ∆-trees:

q

qr

p

p

qr

nil

pq pq

r

pq

nil

q

pr

]

p

pr

r

nil

A given ∆-tree always represents a conjunctive nnf, however, its sub-
trees are alternatively interpreted as either conjunctive or disjunctive
nnfs, i.e. the immediate subtrees of a conjunctive ∆-tree are disjunctive,
and vice versa. It is well-known the identification of the empty clause
with the constant ⊥ and the empty cube with the constant >, that is,
the same symbol for the empty list, nil, has different conjunctive and
disjunctive interpretations. Similarly, we will use the same symbol,], to
represent the constants ⊥ and > with the conjunctive and disjunctive
interpretation respectively.

To improve the efficiency of operators defined on ∆-lists and ∆-trees
it is convenient to work with lists of literals ordered wrt the lexicograph-
ic order, but the soundness of the transformations is independent from
this order and it will not be considered in this theoretical development.

The nnf formula represented by a ∆-tree is determined by the op-
erator nnf defined below.

DEFINITION 2. The operators nnf and dnnf over the set of ∆-trees
are defined as follows:

1. nnf(nil) = >
2. nnf(]) = ⊥

3. nnf

(
`1 . . . `n

T1 . . . Tm

)
= `1 ∧ · · · ∧ `n ∧ dnnf(T1) ∧ · · · ∧ dnnf(Tm)

4. dnnf(nil) = ⊥
5. dnnf(]) = >

gutierrez.tex; 30/03/2001; 14:04; p.4

5

6. dnnf

(
`1 . . . `n

T1 . . . Tm

)
= `1 ∨ · · · ∨ `n ∨ nnf(T1) ∨ · · · ∨ nnf(Tm)

EXAMPLE 2. The ∆-trees in the previous example are interpreted as
nnfs as follows:

nnf




q

qr

p

p

qr

nil

pq pq

r

pq




=

= q ∧ (q ∨ r ∨ (p ∧ (p ∨ (q ∧ r)))) ∧ (⊥ ∨ (p ∧ q) ∨ (p ∧ q)) ∧ (r ∨ (p ∧ q))

nnf




nil

q

pr

]

p

pr

r

nil




=

= > ∧ (q ∨ (p ∧ r)) ∧ (> ∨ (p ∧ (p ∨ r)) ∨ (r ∧ ⊥))

Obviously, the logical constants introduced are simplified by using the
0-1 laws.

REMARK 1. In the rest of the work we will use a simpler notation
for the nnfs constructed from the previous operators:

∧
T = nnf(T)

∨
T = dnnf(T)

In particular, if T = λ = `1 . . . `n:

∧
λ = `1 ∧ · · · ∧ `n and

∨
λ = `1 ∨ · · · ∨ `n

The notions of validity, satisfiability, equivalence, equisatisfiability or
model are defined by means of the nnf operator; for example, a ∆-tree,
T is satisfiable if and only if nnf(T) is satisfiable and the models of T
are just the models of nnf(T).

DEFINITION 3. The operators Union and Inters are defined on the
set of ∆-lists as follows. If λ1, . . . , λn are ∆-lists then:

1. Union(λ1, . . . , λn) =] if either there exists i such that λi =] or
there exists i, j and a literal ` such that ` ∈ λi and ` ∈ λj.
Union(λ1, . . . , λn) =

⋃n
i=1 λi otherwise.

gutierrez.tex; 30/03/2001; 14:04; p.5

6

2. ` ∈ Inters(λ1, . . . , λn) if and only if ` ∈ λi for all λi 6=].

Now we need to prove that any nnf can be represented by a ∆-tree.
To do that we associate to each nnf A a pair of ∆-lists denoted ∆0(A)
and ∆1(A), the associated ∆-lists of A. In a nutshell, ∆0(A) and ∆1(A)
are, respectively, lists of implicates and implicants of A.

DEFINITION 4. Given a nnf A, the ∆-lists ∆0(A) and ∆1(A) are
defined recursively as follows:

∆0(`) = ` ∆1(`) = `

∆0(⊥) =] ∆1(⊥) = nil

∆0(>) = nil ∆1(>) =]

∆0

(∧n

i=1
Ai
)

= Union(∆0(A1), . . . ,∆0(An))

∆1

(∧n

i=1
Ai
)

= Inters(∆1(A1), . . . ,∆1(An))

∆0

(∨n

i=1
Ai
)

= Inters(∆0(A1), . . . ,∆0(An))

∆1

(∨n

i=1
Ai
)

= Union(∆1(A1), . . . ,∆1(An))

THEOREM 1. Let A be a nnf and ` be a literal in A then:

1. If ` ∈ ∆0(A), then A |= ` and, equivalently, A ≡ ` ∧A.
If ∆0(A) =], then A ≡ ⊥.

2. If ` ∈ ∆1(A), then ` |= A and, equivalently, A ≡ ` ∨A.
If ∆1(A) =], then A ≡ >.

Proof. We only prove the first item, the second follows similarly.
By induction. For literals and logical constants the result is trivial.

− If A = A1 ∨ · · · ∨ An and ` ∈ ∆0(A), then ` ∈ Ai for all Ai with
∆0(Ai) 6=]. Thus, by induction hypothesis, for every i, either
Ai ≡ ⊥ or ` ∈ ∆0(Ai) and therefore A |= `.

− If A = A1 ∧ · · · ∧ An and ` ∈ ∆0(A), then there is i such that
` ∈ ∆0(Ai) and A |= Ai |= `.
If ∆0(A) =] then either there is i such that ∆0(Ai) =] and then
Ai ≡ ⊥ and A ≡ ⊥ or there are i and j such that ` ∈ ∆0(Ai) and
` ∈ ∆0(Aj), for some `, and then A |= Ai |= `, A |= Aj |= ` and
A ≡ ⊥.

The following proposition, which is the key to the construction of
the ∆-tree associated to a nnf, follows trivially from the definition of
the operator nnf.

gutierrez.tex; 30/03/2001; 14:04; p.6

7

PROPOSITION 1. If λ is the root of a ∆-tree T then

∆0(nnf(T)) ⊃ λ ∆1(dnnf(T)) ⊃ λ

Given a nnf A, the operator ∆Tree generates a list of ∆-trees; the
nodes are the ∆-lists associated to subformulas of A. Note that the
∆Tree operator treats differently clauses and cubes, in that the ∆-tree
of a cube is considered to be a singleton list whose label is the whole
list ∆0(A) and the ∆-tree of a clause is considered to be the list of
literals understood as a list of ∆-trees (each one being a single literal).

DEFINITION 5. Let A be a nnf, we define the operators ∆Tree and
d∆Tree as follows:

1. If A 6= > is a clause, then ∆Tree(A) = d∆Tree(A) = ∆1(A).

2. If A 6= ⊥ is a cube, then

∆Tree(A) = [∆0(A)] and d∆Tree(A) = ∆0(A)

3. If A is a disjunctive nnf, and A1, . . . , An (n ≥ 1) are the non-literal
disjuncts of A, then

∆Tree(A) = ∆1(A)〈〉[∆Tree(A1), . . . ,∆Tree(An)]

d∆Tree(A) =
∆1(A)

∆Tree(A1) . . . ∆Tree(An)

4. Let A be a conjunctive nnf, and let A1, . . . , An (n ≥ 1) be the
non-literal conjuncts of A, then

∆Tree(A) =
∆0(A)

d∆Tree(A1) . . . d∆Tree(An)

The reason why it is interesting to consider lists of ∆-trees is that the
study of satisfiability of disjunctive formulas leads to a parallel study
of the satisfiability of each disjunct. On the other hand, it is interesting
to recall the intrinsic parallelism between the usual representation of
cnfs as lists of clauses and our representation of nnfs as lists of ∆-trees.

Clause ; List of literals Cnf ; List of clauses

∆-tree ; Tree of clauses/cubes Nnf ; List of ∆-trees

The next example shows some subtleties of the definition of the
∆-trees operator.

EXAMPLE 3.

gutierrez.tex; 30/03/2001; 14:04; p.7

8

1. ∆Tree(p ∧ q) = [pq].

2. ∆Tree(p ∨ q) = [p, q].

3. ∆Tree((p ∧ q) ∨ (q ∧ (r ∨ p))) =


pq,

q

rp


.

EXAMPLE 4. Consider A = ((p∧(p∨(q∧r)))∨q∨r)∧((p∧q)∨(p∧q))∧
((q∧ p)∨ r), where every node η has associated the pair (∆0(η),∆1(η))

∧ (q,nil)

∨ (nil,qr)

∧ (p,nil)

p ∨ (nil,p)

p ∧ (qr,nil)

q r

q r

∨ (q,nil)

∧ (pq,nil)

p q

∧ (pq,nil)

p q

∨ (nil,r)

∧ (pq,nil)

q p

r

For the formula A above we have that ∆Tree(A) is:

q

qr

p

p

qr

nil

pq pq

r

pq

Note that for the previous example nnf(∆Tree(A)) is not equal
to A, for a new literal q is attached as an immediate successor of the
root node, making explicit that q is an implicate of the formula.

The next theorem shows that the operators nnf and ∆Tree are
inverse, up to equivalence.

THEOREM 2.

1. Let A be a nnf and ∆Tree(A) = [T1, . . . , Tn]. Then A ≡
∧
T1∨· · ·∨

∧
Tn.

2. If A is disjunctive, then dnnf(d∆Tree(A)) ≡ A.
Proof. We prove simultaneously the two items by induction on the

degree n of A.

i) The basic cases n = 0 and n = 1 correspond to logical constants,
clauses and cubes and thus the proofs are trivial.

gutierrez.tex; 30/03/2001; 14:04; p.8

9

ii) Consider that the result is true for 1 ≤ n < k with k ≥ 1, and let
us prove it for n = k.

a) Let A be a disjunctive nnf; we can assume that A = `1 ∨ . . . ∨
`n∨A1∨. . .∨Am with Ai conjunctive and non-literal nnf. In this
case, ∆Tree(A) = ∆1(A)〈〉[T1, . . . Tn], where Ti = ∆Tree(Ai).
By the induction hypothesis Ai ≡ nnf(Ti) for 1 ≤ i ≤ m; in
this case, the two items say the same thing, whose proof is:

dnnf(d∆Tree(T)) = dnnf(∆1(A)) ∨
∧
T1 ∨ · · · ∨

∧
Tn

≡ dnnf(∆1(A)) ∨A1 ∨ · · · ∨An
(1)≡ dnnf(∆1(A)) ∨A (2)≡ A

The equivalence (1) follows from the fact that the literal succes-
sors of A are elements of ∆1(A); and the equivalence (2) follows
by Theorem 1.

b) Let A be a conjunctive nnf; we can assume that A = `1 ∧ . . . ∧
`n ∧ A1 ∧ . . . ∧ Am with Ai conjunctive and non-literal nnf. In
this case,

∆Tree(A) =
∆0(A)

d∆Tree(A1) . . . d∆Tree(An)

By the induction hypothesis Ai ≡ dnnf(d∆Tree(Ai)) for 1 ≤
i ≤ m, and thus

nnf(∆0(A)) ∧ dnnf(d∆Tree(A1)) ∧ · · · ∧ dnnf(d∆Tree(An)) =

≡ nnf(∆0(A)) ∧A1 ∧ · · · ∧An
(1)≡ nnf(∆0(A)) ∧A (2)≡ A

From this result we have that, in some sense, the structure of ∆-tree
allows to substitute reasoning with literals by reasoning with clauses
and cubes.

The next corollary states some simple conditions for the satisfiability
of the nnf represented by a ∆-tree T .

COROLLARY 1. Consider A =
∧
T1 ∨ · · · ∨

∧
Tn. If Ti is a tree-leaf, λ,

then A is satisfiable and a model for A is given by any assignment I
such that I(`) = 1 for all ` ∈ λ.

In fact the test for satisfiability given in the last section works by
transforming the list of ∆-trees until one of them (if any) gets reduced
to a single leaf, otherwise the input formula is unsatisfiable.

gutierrez.tex; 30/03/2001; 14:04; p.9

10

4. Restricted ∆-trees

The aim of this section is to generalise the well-known definition of
restricted clauses, in which opposite literals and logical constants are
not allowed. We can say that restricted ∆-trees are ∆-trees without
trivially redundant information.

Conclusive nodes

DEFINITION 6. A node of a ∆-tree T is said to be conclusive if it
satisfies any of the following conditions:

− It is labelled with], provided that T 6=].

− It is either a leaf or a monary node labelled with nil, provided
that it is not the root node.

− It is labelled with λ, it has an immediate successor λ′ which is a
leaf and λ′ ⊆ λ.

− It is labelled with λ and Inters(λ, λ′) 6= nil, where λ′ is the label
of its predecessor.

Intuitively, the previous definition detects those nodes in the ∆-tree
which, in some sense, can be substituted by either ⊥ or > without
affecting the meaning. The effective deletion of those nodes is made by
the rewriting rules introduced in Theorem 3 below.

Note that the rewriting rules have a double meaning; since they
needn’t apply to the root node, the interpretation can be either con-
junctive or disjunctive. This is just another efficiency-related feature
of ∆-trees: duality of connectives ∧ and ∨ gets subsumed in the struc-
ture and it is not necessary to determine the conjunctive/disjunctive
character to decide the transformation to be applied.

THEOREM 3. The following rewriting rules (up to the order of the
successors) allows to delete the conclusive nodes of a ∆-tree.

Rule C1]

T1 . . . Tm

³]

Rule C2 λ

T1 . . . Tm]

³ λ

T1 . . . Tm

Rule C3 λ

T1 . . . Tm nil

³]

gutierrez.tex; 30/03/2001; 14:04; p.10

11

Rule C4 λ1

T1 . . . Tn nil

λ2

Tn+1 . . . Tm

³ Union(λ1, λ2)

T1 . . . Tn Tn+1 . . . Tm

Rule C5 If λ2 ⊆ λ1 then λ1

T1 . . . Tm λ2

³]

Rule C6 If Inters(λ1, λ2) 6= nil then
λ1

T1 . . . Tn λ2

Tn+1 . . . Tm

³ λ1

T1 . . . Tn

Proof. To prove the soundness of the rules it is enough to establish
the semantics of each one of them:

C1 nnf

(
]

T1 . . . Tm

)
= ⊥ ∧

∨
T1 ∧ · · · ∧

∨
Tn ≡ ⊥ = nnf(])

dnnf

(
]

T1 . . . Tm

)
= > ∨

∧
T1 ∨ · · · ∨

∧
Tn ≡ ⊥ = dnnf(])

C2 nnf

(
λ

T1 . . . Tm]

)
=
∧
λ ∧

∨
T1 ∧ · · · ∧

∨
Tn ∧ >

≡
∧
λ ∧

∨
T1 ∧ · · · ∧

∨
Tn = nnf

(
λ

T1 . . . Tm

)

dnnf

(
λ

T1 . . . Tm]

)
=
∨
λ ∨

∧
T1 ∧ · · · ∨

∧
Tn ∨ ⊥

≡
∨
λ ∨

∧
T1 ∨ · · · ∨

∧
Tn = dnnf

(
λ

T1 . . . Tm

)

In the rest of the proof we will not write the evaluation of the nnf and
dnnf operators, that is the first and last members of the equality will
be not shown.

C3
∧
λ ∧

∨
T1 ∧ · · · ∧

∨
Tn ∧ ⊥ ≡ ⊥∨

λ ∨
∧
T1 ∨ · · · ∨

∧
Tn ∨ > ≡ >

C4
∧
λ1 ∧

∨
T1 ∧ · · · ∧

∨
Tn ∧ (⊥ ∨ (

∧
λ2 ∧

∨
Tn+1 ∧ · · · ∧

∨
Tm))

≡
∧
λ1 ∧

∨
T1 ∧ · · · ∧

∨
Tn ∧

∧
λ2 ∧

∨
Tn+1 ∧ · · · ∧

∨
Tm

≡
∧
λ1 ∧

∧
λ2 ∧

∨
T1 ∧ · · · ∧

∨
Tn ∧

∨
Tn+1 ∧ · · · ∧

∨
Tm

≡ nnf(Union(λ1, λ2))∧
∨
T1 ∧ · · · ∧

∨
Tn ∧

∨
Tn+1 ∧ · · · ∧

∨
Tm

∨
λ1 ∨

∧
T1 ∨ · · · ∨

∧
Tn ∨ (> ∧ (

∨
λ2 ∨

∧
Tn+1 ∨ · · · ∨

∧
Tm))

gutierrez.tex; 30/03/2001; 14:04; p.11

12

≡
∨
λ1 ∨

∧
T1 ∨ · · · ∨

∧
Tn ∨

∨
λ2 ∨

∧
Tn+1 ∨ · · · ∨

∧
Tm

≡
∨
λ1 ∨

∨
λ2 ∨

∧
T1 ∨ · · · ∨

∧
Tn ∨

∧
Tn+1 ∨ · · · ∨

∧
Tm

≡ dnnf(Union(λ1, λ2))∨
∧
T1∨ · · ·∨

∧
Tn∨

∧
Tn+1∨ · · ·∨

∧
Tm

C5 We can assume that λ1 = `1 . . . `s`s+1 . . . `r and λ2 = ¯̀
1 . . . ¯̀

s;
then:
`1 ∧ · · · ∧ `s ∧ `s+1 ∧ · · · ∧ `r ∧

∨
T1 ∧ · · · ∧

∨
Tn ∧ (¯̀

1 ∨ · · · ∨ ¯̀
s)

≡ (`1∧· · ·∧`s)∧`s+1∧· · ·∧`r∧
∨
T1∧· · ·∧

∨
Tn∧¬(`1∧· · ·∧`s)

≡ ⊥
`1 ∨ · · · ∨ `s ∨ `s+1 ∨ · · · ∨ `r ∨

∧
T1 ∨ · · · ∨

∧
Tn ∨ (¯̀

1 ∧ · · · ∧ ¯̀
s)

≡ (`1∨· · ·∨`s)∨`s+1∨· · ·∨`r∨
∧
T1∨· · ·∨

∧
Tn∨¬(`1∨· · ·∨`s)

≡ >
C6 Let ` be a literal such that ` ∈ Inters(λ1, λ2); then

∧
λ1 ≡ ` ∧ C1,

∧
λ2 ≡ ` ∧ C2,

∨
λ1 ≡ ` ∨D1 and

∨
λ2 ≡ ` ∨D2 and, by the absorption

rules we have:∧
λ1 ∧

∨
T1 ∧ · · · ∧

∨
Tn ∧ (

∨
λ2 ∨

∧
Tn+1 ∨ · · · ∨

∧
Tm)

≡ `∧C1 ∧
∨
T1 ∧ · · · ∧

∨
Tn ∧ (`∨D2 ∨

∧
Tn+1 ∨ · · · ∨

∧
Tm)

≡
∧
λ1 ∧

∨
T1 ∧ · · · ∧

∨
Tn∨

λ1 ∨
∧
T1 ∨ · · · ∨

∧
Tn ∧ (

∧
λ2 ∧

∨
Tn+1 ∧ · · · ∧

∨
Tm)

≡ `∨D1 ∨
∧
T1 ∨ · · · ∨

∧
Tn ∨ (`∧C2 ∧

∨
Tn+1 ∧ · · · ∧

∨
Tm)

≡
∨
λ1 ∨

∧
T1 ∨ · · · ∨

∧
Tn

Note that, for each rule, the resulting ∆-tree is strictly smaller than
the input, therefore the application of these rules always terminates.

Simple leaves

As we are considering a tree of lists of literals, it might happen that
some of the lists of literals in the leaves are singletons. In this case,
those leaves are redundant, for they are not proper clauses or cubes,
but literals.

DEFINITION 7. Let T be a non-leaf ∆-tree, a leaf in T is said to be
simple if it is labelled with just one literal.

THEOREM 4. The following rewriting rule (up to the order of succes-
sors) delete the simple leaves of a ∆-tree.

Rule S λ

T1 . . . Tm `

³ Union(λ, `)

T1 . . . Tm

gutierrez.tex; 30/03/2001; 14:04; p.12

13

Proof. The interpretations of the transformation is stated below:

∧
λ ∧

∨
T1 ∧ · · · ∧

∨
Tm ∧ ` =

∧
λ ∧ ` ∧

∨
T1 ∧ · · · ∧

∨
Tm

= nnf(Union(λ, `)) ∧
∨
T1 ∧ · · · ∧

∨
Tm

∨
λ ∨

∧
T1 ∨ · · · ∨

∧
Tm ∨ ` =

∨
λ ∨ ` ∨

∧
T1 ∨ · · · ∨

∧
Tm

= dnnf(Union(λ, `)) ∨
∧
T1 ∨ · · · ∨

∧
Tm

Note that some situations in the rewrite rules (actually, C1–C4
and S) are not possible for a well-formed input formula, but may well
arise after applying some rules.

Updatable nodes

A third source for redundant information can be stated in terms of the
relationship between the common information in consecutive ∆-lists in
a single branch.

DEFINITION 8. Let T be a ∆-tree, and λ be the label of a node of T .
Let λ′ be the label of one immediate successor of λ and let λ1, . . . , λn
be the labels of the immediate successors of λ′. We say that λ can be
updated if it satisfies some of the next conditions:

1. λ′ = nil and Inters(λ1, . . . , λm) 6⊂ λ.

2. λ′ = `, ` 6∈ λ and ` ∈ Inters(λ1, . . . , λm).

We say that T is updated if it has no nodes that can be updated.

In order to obtain an updated ∆-tree, we have to drive upwards all
those literals that can be generated by intersections; this operation is
done by the rewriting rules introduced in the following theorem.

THEOREM 5. The following rewriting rules (up to the order of suc-
cessors) update every non-updated node of a ∆-tree.

Rule U1 If ` ∈ Inters(λ1, . . . , λm),
λ

T1 . . . Tn `

λ1

. . .

. . . λm

. . .

³ Union(λ, `)

T1 . . . Tn

gutierrez.tex; 30/03/2001; 14:04; p.13

14

Rule U2 If µ = Inters(λ1, . . . , λm) 6= nil.
λ

T1 . . . Tn nil

λ1

. . .

. . . λm

. . .

³ Union(λ, µ)

T1 . . . Tn nil

λ1

. . .

. . . λm

. . .

;

Proof. The soundness of each rule is proved below. We will simply
prove the conjunctive interpretation of the rules, the other follow easily
by duality.

U1 In this case it is enough to show that the right-most subtree of the
input tree is equivalent to the single literal `.
` ∨ ((` ∧A1) ∨ · · · ∨ (` ∧Am)) ≡ ` ∨ (` ∧ (A1 ∨ · · · ∨Am)) ≡ `

U2 For this rule the two sides of the rule are proved to be equivalent
∧
λ ∧

∨
T1 ∧ · · · ∧

∨
Tn ∧ ((

∧
µ ∧A1) ∨ · · · ∨ (

∧
µ ∧Am))

≡
∧
λ ∧

∨
T1 ∧ · · · ∧

∨
Tn ∧ ((

∧
µ ∧ ∧µ ∧A1) ∨ · · · ∨ (

∧
µ ∧ ∧µ ∧Am))

≡
∧
λ ∧

∨
T1 ∧ · · · ∧

∨
Tn ∧ ∧µ ∧ ((

∧
µ ∧A1) ∨ · · · ∨ (

∧
µ ∧Am))

≡ nnf(Union(λ, µ))∧
∨
T1∧· · ·∧

∨
Tn∧((

∧
µ∧A1)∨· · ·∨(

∧
µ∧Am))

Restricted ∆-trees

DEFINITION 9. Let T be a ∆-tree. If T is updated and it has neither
conclusive nodes nor simple leaves, then it is said to be restricted.

THEOREM 6. If T is a ∆-tree, there exists a list of restricted ∆-trees,

[T1, . . . , Tn], such that nnf(T) ≡
∧
T1 ∨ · · · ∨

∧
Tn. Specifically, if T ′ is the

∆-tree obtained from T by exhaustively applying the rules C1, C2, C3,
C4, C5, C6, S, U1 and U2 till no one of them can be applied any more,
then the list of restricted ∆-trees is:

Restrict(T) =





λ〈〉[T1, . . . , Tn] if T ′ =

nil

λ

T1 . . . Tn
[T ′] otherwise

EXAMPLE 5. Let us consider the ∆-tree

gutierrez.tex; 30/03/2001; 14:04; p.14

15

nil

pq rs p

pq

Its restricted form is obtained as follows (the circled nodes are the nodes
to be rewritten):

nil

pq rs p

pq

U1³ p

pq rs

C6³ p

rs

EXAMPLE 6. Let us consider the ∆-tree

nil

pq

qr

pq

pq

Its restricted form is obtained as follows (the circled nodes are the nodes
to be rewritten):

nil

pq

qr

pq

pq

C5³ nil

pq

qr

³ [p, q, qr]

In a restricted ∆-tree we have that the labels contain all the infor-
mation provided by the ∆0 and ∆1 operators. Formally, the following
proposition, whose proof is straightforward, states that the ∆-lists in
a ∆-tree are the sets of implicants and implicates.

PROPOSITION 2. If T is a ∆-tree and λ is the label of the root of
Restrict(T), then

∆0(nnf(T)) = ∆1(dnnf(T)) = λ

5. Reduction of ∆-trees

In this section we introduce the reductions used by the TAS algorithm
to be given in the last section. The two first reductions are based on
the following theorem.

THEOREM 7. Let A be a nnf and let η be an arbitrary node1 of A.
1 Here, η denotes a node in the syntactic tree of A. In this way, the theorem

states properties of the substitution of just an occurrence of a subformula of A.

gutierrez.tex; 30/03/2001; 14:04; p.15

16

1. If ` ∈ ∆0(A), then

a) A ≡ A[η/η ∧ `]
b) A ≡ ` ∧A[η/η ∨ `]

2. If ` ∈ ∆1(A), then

a) A ≡ A[η/η ∨ `]
b) A ≡ ` ∨A[η/η ∧ `]

Proof. We will only prove the first item, the proof of the second is
similar.

1.a) Let I be an arbitrary assignment,

• If I(`) = 1, then I(η) = I(η ∧ `) and therefore, I(A) =
I(A[η/η ∧ `])

• If I(`) = 0, then by Theorem 1 we have I(A) = 0; in addition,
I(η) ≥ I(η∧`) = 0 and, by monotonicity of ∧ and ∨, we have
that I(A[η/η ∧ `]) ≤ I(A) = 0. Therefore,

I(A) = 0 = I(A[η/η ∧ `])
1.b) Let I be an arbitrary assignment,

• If I(`) = 1, then I(η) = I(η ∨ `) and therefore,

I(A) = I(A[η/η ∨ `]) = I(A[η/η ∨ `] ∧ `)

• If I(`) = 0, then by Theorem 1 we have I(A) = 0 and
therefore,

I(A[η/η ∨ `] ∧ `) = 0 = I(A)

As an easy consequence of the previous theorem we get the corollar-
ies below which will be used to prove the soundness of the reductions
defined in the following sections.

COROLLARY 2. Let A be a nnf and ` a literal in A. Then:

1. If ` ∈ ∆0(A), then A ≡ ` ∧A[`/>].

2. If ` ∈ ∆1(A), then A ≡ ` ∨A[`/>].

COROLLARY 3. Let A be a nnf; if ` ∈ ∆0(A), then A ≈ A[`/>].

Now, to apply the results above, we need to define the substitutions
of literals by constants in a ∆-tree. Specifically, we are going to de-
fine the substitution of a literal by >, that is, the syntactical partial
evaluation of a ∆-tree.

gutierrez.tex; 30/03/2001; 14:04; p.16

17

DEFINITION 10. If µ 6=] is a ∆-list, we define the operator [µ] over
the set of ∆-trees, as follows:

[µ]




λ

T1 . . . Tn


 =





] if Inters(µ, λ) 6= nil

λr µ

[µ]T1 . . . [µ]Tn
otherwise

where λ r µ denotes the list obtained by deleting in λ all the literals
in µ.

The following easy-to-prove lemma states that the definition we have
just given coincides with the usual meaning of substitution in formulas.

LEMMA 1. For every ∆-list µ and every ∆-tree T we have:

nnf([µ]T) ≡ nnf(T)[µ/>]

5.1. Subreduction

All the transformations performed by the operator Restrict only use
the information of a node and its immediate successors. The nex-
t transformation uses the information in a node to simplify all its
descendants.

DEFINITION 11. Operators SubReduce and dSubReduce are defined
on the set of restricted ∆-trees as follows:

1. SubReduce(λ) = dSubReduce(λ) = λ for all ∆-list λ.

2. SubReduce




λ

T1 . . . Tn


 =

λ

dSubReduce([λ]T1) . . . dSubReduce([λ]Tn)

3. dSubReduce




λ

T1 . . . Tn


 =

λ

SubReduce([λ]T1) . . . SubReduce([λ]Tn)

THEOREM 8. Let T be a ∆-tree. Then SubReduce(T) ≡ T .

gutierrez.tex; 30/03/2001; 14:04; p.17

18

Proof. The result is a consequence of the following equivalences,
which are an immediate consequence of Corollary 2:

nnf

(
λ

T1 . . . Tn

)
≡

λ

[λ]T1 . . . [λ]Tn

dnnf

(
λ

T1 . . . Tn

)
≡

λ

[λ]T1 . . . [λ]Tn

The following proposition, which follows easily from the definition
of subreduction, states that only the dominant occurrences of literals
are present in a subreduced ∆-tree.

PROPOSITION 3. Let T be a ∆-tree. In every branch of SubReduce(T)
there is at most one occurrence of each propositional variable. In par-
ticular, if ` is a literal in SubReduce(T), then there is no occurrence of
` under `.

5.2. Complete reduction

In this section we introduce a satisfiability-preserving transformation
which, in essence, is a refinement of the subreduction of the ∆-list of
the root.

DEFINITION 12. A ∆-tree with non-empty root is said to be com-
pletely reducible.

The following results is the ∆-tree formulation of the corollary 3.

THEOREM 9. If µ 6= nil is the root of T , then T ≈ [µ]T . Moreover,
if I is a model of [µ]T , the extension defined as I(`) = 1 if ` ∈ µ is a
model of T .

EXAMPLE 7. Given the first ∆-tree of Example 1

q

qr

p

p

qr

nil

pq pq

r

pq

we have that this ∆-tree, T , is equisatisfiable to [q]T . The restricted
form of [q]T is obtained as follows:

gutierrez.tex; 30/03/2001; 14:04; p.18

19

[q]T = nil

] nil

p p

r

]

C2³ nil

nil

p p

r

S³ r

]

C2³ r

As [q]T ≡ r is satisfiable and I(r) = 1 is a model; we have that,
I(r) = 1 = I(q) is a model of T .

5.3. Pure literals

The concept of pure literal for nnfs in [9] can be immediately extend-
ed for ∆-trees, by using Theorem 2. In addition, by means of the
subreduction we can define a more general concept of purity for ∆-trees.

DEFINITION 13. Let T be a ∆-tree. We say that ` is a ∆-pure literal
in T if every occurrence of ` in T is under an occurrence of `.

THEOREM 10. If ` is a ∆-pure literal in T , then T is satisfiable iff
[`]T is satisfiable. Moreover, if I is a model of [`]T , then the extension
defined as I(`) = 1 is a model of T .

Proof. It ` is ∆-pure in T , then, by proposition 3, ` is pure in
SubReduce(T); therefore:

nnf(T) ≡ nnf(SubReduce(T)) ≈ nnf([`] SubReduce(T)) ≡ nnf([`]T)

Note that, although the soundness of the ∆-pure literals deletion
has been proved by means of the subreduction, its applications will be
performed without this intermediate transformation.

EXAMPLE 8. Let us consider the following ∆-tree, T :

nil

pq

nil

qr pqs

pr ps

p

pr

Literal p is non pure in T but it is ∆-pure; then T is satisfiable if and
only if [p]T is satisfiable:

gutierrez.tex; 30/03/2001; 14:04; p.19

20

[p]T = nil

]

nil

qr qs

]]

p

r

C1³ nil

]]]

C2³ nil

This ∆-tree is valid and then T is satisfiable and I(p) = 1 is a model.

6. The TAS satisfiability algorithm

1. The information flow of the algorithm is a list of pairs such as
[(T1, µ1), . . . , (Tm, µm)], where the Ti are ∆-trees and µi are lists of
literals which, as we will see, can be used to build a countermodel
(if any).
The initial list to study the satisfiability of a single formula A is

[(T1, nil), . . . , (Tn, nil)]

where

a) [T1, . . . , Tn] = ∆Tree(A) if the satisfiability of A is to be tested.

b) [T1, . . . , Tn] = ∆Tree(¬A) if the validity of A is to be tested.

c) [T1, . . . , Tn] = ∆Tree(A1 ∧ · · · ∧An ∧ ¬A) if the validity of the
logical consequence A1, . . . , An |= A is to be tested.

In the rest of the items we will always refer to satisfiability testing
of a formula.

2. If [(T1, µ1), . . . , (Tm, µm)] is the flow in some instant during the
execution of the algorithm, then the initial ∆-tree is unsatisfiable
if and only if every Ti is unsatisfiable, that is Ti =] for all i. The
actual search done by test for satisfiability is to obtain an element in
the list of tasks which is equal to one the following possibilities:

a) (nil, µ), in this case, the input formula is satisfiable and a
model is given by assigning 1 to any element in µ.

b) (λ, µ), in this case, the input formula is satisfiable and a model
is given by assigning 1 to any element in λ ∪ µ.

3. Updating: After each reduction, the ∆-trees are converted to re-
stricted form (this step also applies to the initial list):
Given [(T1, µ1), . . . , (Tm, µm)], its updated form is

@(Restrict(T1), µ1)〈〉 · · · 〈〉@(Restrict(Tm), µm)

where the operator @(T :: list, µ) is defined as (T, µ) :: @(list, µ).

gutierrez.tex; 30/03/2001; 14:04; p.20

21

4. Complete reduction: if some of the elements of the list of tasks
is completely reducible, then the corresponding transformation is
applied:

[. . . ,

(
λ

T1 . . . Tn
, µ

)
, . . .] ³ [. . . ,

(
nil

[λ]T1 . . . [λ]Tn
, µ ∪ λ

)
, . . .]

5. ∆-Pure literals: If (T, µ) is an element of the list of tasks and
π is a (non-empty) list of ∆-pure literals of T , then the following
reduction is applied:

[. . . , (T, µ), . . .] ³ [. . . , ([π]T, µ ∪ π), . . .]

6. Subreduction: If no task is either completely reducible or has
pure literals, then the subreduction transformation is applied, and
the result is updated (obviously, only if some modification has been
made).

7. Quine: Finally, if no transformation applies to the list of tasks,
then a random task is chosen together with a literal ` to branch on,
and the following transformation is applied:

[. . . , (T, µ), . . .] ³ [. . . , ([`]T, µ ∪ {`}), ([`]T, µ ∪ {`}), . . .]

EXAMPLE 9. Let us study the satisfiability of the formula A = ((p ∧
q) ∨ (p ∧ r) ∨ ((r ∨ s) ∧ r ∧ s)) ∧ q, whose associated ∆-tree is

q

nil

pq pr rs

rs

Using rule C5 on the circled node we get the ∆-tree

q

nil

pq pr

The root can be updated, by using rule U2, obtaining a completely
reducible ∆-tree

pq

nil

pq pr

gutierrez.tex; 30/03/2001; 14:04; p.21

22

Applying complete reduction we get







nil

nil

nil r

, pq







C5³





nil

]
, pq




 C2³ [(nil, pq)]

As a result we get that the input formula is satisfiable, and a model
is given by any assignment I such that I(p) = I(q) = 1.

EXAMPLE 10. Let us study the satisfiability of the following nnf A =
(r ∨ s) ∧ (((p ∨ q) ∧ (p ∨ s)) ∨ ((r ∨ ((q ∨ p) ∧ (s ∨ q))) ∧ (q ∨ s ∨ r))) ∧
(((p ∧ r) ∨ (p ∧ s)) ∧ q) ∨ s). Its associated ∆-tree is

nil

rs pq

nil

pq ps

nil

qr

nil

pq qs

qrs

s

pq

nil

pr ps

It is not difficult to check that this is a restricted ∆-tree, it is not
completely reducible and it has not ∆-pure literals. The first applied
transformation is that given by the operator SubReduce, which outputs
the following ∆-tree

nil

rs pq

nil

s

nil

r

nil

s

rs

s

pq

nil

r nil

Rule C5 is applied to the circled node, obtaining:

gutierrez.tex; 30/03/2001; 14:04; p.22

23

nil

rs pq

nil

s

nil

r

nil

s

rs

s

pq

Now, Rule C4 is applied to the circled nodes, obtaining:

nil

rs pqs

nil

rs rs

s

pq

As this ∆-tree is neither completely reducible nor has ∆-pure literals,
operator SubReduce can be used to obtain the ∆-tree on the left and
finally, rule C5 is applied once again on the circled node to get the
∆-tree on the right:

nil

rs pqs

nil

r

s

pq

nil

rs pqrs s

pq

Here we have to branch the ∆-tree. By choosing literal s we get the
two following tasks







nil

r pqr]

pq

, s


 ,




nil

]] nil

pq

, s







Updating the tasks we obtain





r

pqr
, s


 , (pq, s)




The second task allows us to deduce the satisfiability of the input for-
mula, and any assignment I such that I(p) = I(q) = I(s) = 1 is a
model.

gutierrez.tex; 30/03/2001; 14:04; p.23

24

Table I. TAS vs Beatrix and Isabelle.

Prob. Isab. Bea. TAS Prob. Isab. Bea. TAS

ex2 1.3 0.0 0.00 mul 130.9 0.2 0.07

transp 0.2 0.0 0.00 rip02 1.6 0.0 0.03

risc 9.8 0.6 0.05 rip04 994.5 0.5 0.38

counter 68.8 0.1 0.13 rip06 - 3.0 2.75

hostint1 96.5 0.2 0.10 rip08 - 18.2 17.18

7. Experimental results

We have written a straightforward implementation for the Macintosh
port of the interpreter of Objective CAML (an ML-like functional lan-
guage) in order to obtain a rapid prototype of a theorem prover. ∆-trees
have been used to implement the reductions just described, together
with a naive branching rule based on the Davis-Putnam procedure;
namely, a formula A is split into two subformulas A[p/>] and A[p/⊥],
where p is the first variable occurring in A.

As our method is specially focused on non-cnf formulas we have
run the prover, named TAS, on the IFIP benchmarks for hardware
verification [3]. The results obtained, using a Power Macintosh G3 with
64 Mb of memory and 233 Mhz, are compared with those obtained
in [6], for he also uses there a reduction-like strategy (which he calls
simplification), in his experiments he used a Sun SuperSPARK. In
Table I, we compare our implementation with the results obtained by
Isabelle [8] (a well-known interactive prover, written in Standard ML)
and Beatrix (a sicstus Prolog implementation in the spirit of lean
tableau theorem proving). As several strategies were used in the cited
work, in fairness to Isabelle and Beatrix, we compare our running time
with their best absolute results no matter the strategy used.

It is important to remark that the results obtained are by far much
better than those of Isabelle, showing that not only the scaling factor in
problems such as rip0n can be reduced but also that absolute run time
values are comparable to those obtained by Beatrix, which shortens the
gap between lean theorem proving in Prolog and standard theorem
proving in ML-like languages. In Table II some more results are com-

gutierrez.tex; 30/03/2001; 14:04; p.24

25

Table II. Run time (seconds) on other IFIP benchmarks.

Problem Beatrix TAS Problem Beatrix TAS

d3 (satisf.) 0.1 0.17 vg2 7.0 2.82

misg 0.7 0.35 alu 7.1 3.98

ztwaalf1 0.8 0.80 x1dn 7.2 3.37

mp2d 1.1 1.03 z9sym 9.8 4.07

dk27 2.2 0.07 sqn 11.2 0.43

z4 2.3 1.53 add1 12.2 1.20

rom2 2.5 3.03 dc2 12.5 0.40

table 2.8 2.72 mul03 20.1 1.03

dk17 3.0 0.38 rd73 30.4 1.27

z5xpl 4.1 0.38 root 33.7 0.67

f51m 5.7 0.48 alupla20 618.1 31.72

pitch 5.7 2.55

pared with the run time of Beatrix, where an important speed-up when
using TAS can be noticed.

To make the comparison more interesting we also chose to run TAS
on the Random 3-Sat benchmark, although TAS has not been neither
designed nor optimised for cnf formulas. Table III shows the results for
the standard random distribution of 3-SAT, where 3 sat(V,C) means
that samples had C clauses, with 3 literals selected uniformly among V
variables and each literal negated with probability 0.5.

We show our results together with the results of two different flavours
of Beatrix, the ‘standard’ one (in which the usual β-rule is used) and
the ‘lemmaizing’ version (an asymmetric rule for a limited form of cut).

S, β1 S, β2

S, β Std
S, β1 S, β1, β2

S, β Lem

One can easily see that, although our implementation has been run on a
interpreter (as far as we know no compiler for CAML is still available for
Macs) the performance of TAS is in between the two flavours of Beatrix.

gutierrez.tex; 30/03/2001; 14:04; p.25

26

Table III. TAS vs Beatrix on Random 3-SAT.

C/V Problem Beatrix Bea-Lem TAS

3 3 sat(32,96) 0.3 0.2 0.80

4 3 sat(32,128) 3.9 1.2 2.07

4.25 3 sat(32,136) 6.1 1.8 3.03

4.5 3 sat(32,144) 6.9 2.1 3.53

5 3 sat(32,160) 8.2 2.4 3.90

6 3 sat(32,192) 7.7 2.6 3.71

3 3 sat(64,192) 1.4 1.0 7.55

4 3 sat(64,256) 334.6 38.4 98.31

4.25 3 sat(64,272) 554.3 56.4 188.81

4.5 3 sat(64,288) 1,050.9 72.0 216.64

5 3 sat(64,320) 568.6 60.0 141.72

6 3 sat(64,384) 240.3 39.4 90.88

The speedup factor of TAS w.r.t. the standard version of Beatrix is
about 2 for formulas with 32 variables and about 3.5 for formulas with
64 variables, whereas the better performance of the lemmaizing version
of Beatrix averages 1.63 for 32 variables and 2.72 for 64 variables.

These results are neither surprising, for the standard version of Beat-
rix is just a tableau system improved with a particular case of our re-
ductions, nor discouraging, for the branching rule we have implemented
is just a raw DPLL-like procedure.

It is worth to note that, although the computational pay-off of the
reductions implemented in TAS results in poor runtimes for the formu-
las in the first row of the table, the negative effect disappears as the
size of the formulas is increased.

gutierrez.tex; 30/03/2001; 14:04; p.26

27

8. Conclusions

We have introduced ∆-trees for propositional formulas. This represen-
tation allows a compact representation for well-formed formulas as well
as for a number of reduction strategies in order to consider only those
occurrences of literals which are relevant for the satisfiability of the
input formula. The reduction strategies have been implemented and
tests are reported which show the relative good performance of our
implementation of the techniques introduced.

References

1. G. Aguilera, I. P. de Guzmán, M. Ojeda-Aciego, and A. Valverde. Reductions
for non-clausal theorem proving. Theoretical Computer Science, 2001. To
appear. Available at http://www.satd.uma.es/aciego/TR/tas-tcs.pdf.

2. R.E. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, C-35(8):677–691, 1986.

3. L.J. Claesen, editor. Formal VLSI correctness verification—VLSI design
methods, volume 2. Elsevier, 1990.

4. Jean H. Gallier. Logic for Computer Science: Foundations for Automatic
Theorem Proving. Wiley & Sons, 1987.

5. G. Gutiérrez, I. P. de Guzmán, J. Mart́ınez, M. Ojeda-Aciego, and A. Valverde.
Reduction theorems for Boolean formulas using ∆-trees. In Proc. of JELIA
2000, pages 179–192. Lect. Notes in Artif. Intelligence 1919, 2000.

6. Fabio Massacci. Simplification: a general constraint propagation technique for
propositional and modal tableaux. In Proceedings of Tableaux’98. Lect. Notes
in Artificial Intelligence, 1998.

7. N.V. Murray and E. Rosenthal. Dissolution: Making paths vanish. Journal of
the ACM, 40(3):504–535, 1993.

8. L.C. Paulson. Isabelle: a generic theorem prover. Lect. Notes in Comp. Sci.
828, 1994.

9. P. W. Purdom, Jr. Average time for the full pure literal rule. is, 78:269–291,
1994.

10. B. Yang, Y.A. Chen, R.E. Bryant, and D.R. O’Hallaron. Space- and time-
efficient BDD construction via working set control. In Proceedings of Asian-
Pacific Design Automation Conference ASPDAC ’98, pages 423–432, 1998.

gutierrez.tex; 30/03/2001; 14:04; p.27

gutierrez.tex; 30/03/2001; 14:04; p.28

