
Annals of Mathematics and Artifical Inteligence 0 (1999) ?–? 1

Implicates and reduction techniques

for temporal logics ∗

I.P. de Guzmán, M. Ojeda-Aciego, A. Valverde

Dept. Matemática Aplicada, Universidad de Málaga,

P.O. Box 4114, 29080. Málaga, SPAIN

E-mail: {guzman,aciego,a valverde}@ctima.uma.es

Reduction strategies are introduced for the future fragment of a temporal propo-

sitional logic on linear discrete time, named FNext. These reductions are based in

the information collected from the syntactic structure of the formula, which allow

the development of efficient strategies to decrease the size of temporal propositional

formulas, viz. new criteria to detect the validity or unsatisfiability of subformulas,

and a strong generalisation of the pure literal rule. These results, used as an inner

processing step, allow to improve the performance of any automated theorem prover.

Keywords: Automated deduction, temporal logics, ∆-reductions, implicates

AMS Subject classification: 03B45,68T15

1. Introduction

The temporal dimension of information, the change of information over time
and knowledge about how it changes has to be considered by many Artificial
Intelligence systems. There is obvious interest in designing computationally effi-
cient temporal formalisms, specially when intelligent tasks are considered, such
as planning relational actions in a changing environment, building common sense
reasoning into a moving robot, in supervision of industrial processes, . . .

Temporal logics are widely accepted and frequently used for specifying con-
current and reactive agents (which can be either physical devices or software
processes), and in the verification of temporal properties of programs. To verify
a program, one specifies the desired properties of the program by a formula in
temporal logic. The program is correct if all its computations satisfy the formula.
∗ Partially supported by Spanish CICYT project TIC97-0579-C02-02 and EC action COST-15.

2 I.P. de Guzmán et al. / Reducing temporal formulas

However, in its generality, an algorithmic solution to the verification problem is
hopeless. For propositional temporal logic, checking the satisfiability of a formula
can be done algorithmically, and theoretical work on the complexity of program
verification is being done [3]. The complexity of satisfiability and determination
of truth in a particular finite structure are considered for different propositional
linear temporal logics in [7].

Linear-time temporal logics have proven [5] to be a successful formalism
for the specification and verification of concurrent systems; but have a much
wider range of applications, for instance, in [2] a generalisation of the temporal
propositional logic of linear time is presented, which is useful for stating and
proving properties of the generic execution sequence of a parallel program. On
the other hand, relatively complete deductive systems for proving branching time
temporal properties of reactive systems [4] have been recently developed.

In recent years, several fully automatic methods for verifying temporal spec-
ifications have been introduced, in [6] a tableaux calculus is treated at length; a
first introduction to the tableaux method for temporal logic can be seen in [8].
However, the scope of these methods is still very limited. Theorem proving
procedures for temporal logics have been traditionally based on syntactic manip-
ulations of the formula A to be proved but, in general, do not incorporate the
substitution of subformulas in A like in a rewrite system in which the rewrite re-
lation preserves satisfiability. One source of interest of these strategies is that can
be easily included into any prover, specifically into those which are non-clausal.

In this work we focus on the development of a set of reduction strategies
which, through the efficient determination and manipulation of lists of unitary
implicant and implicates, investigates exhaustively the possibility of decreasing
the size of the formula being analysed. The interest of such a set of reduction
techniques is that the performance of a given prover for linear-time temporal logic
can be improved because the size of a formula can be decreased, at a polynomial
cost, as much as possible before branching.

Lists of unitary models, so-called ∆-lists, are associated to each node in
the syntactic tree of the formula and used to study whether the structure of
the syntactic tree has or has not direct information about the validity of the
formula. This way, either the method ends giving this information or, otherwise,
it decreases the size of the problem before applying the next transformation. So,
it is possible to decrease the number of branchings or, even, to avoid them all.

The ideas in this paper generalise the results in [1], in a self-contained way,

I.P. de Guzmán et al. / Reducing temporal formulas 3

by explicitly extending the reduction strategy to linear-time temporal logic and,
what is more important, by complementing the information in the ∆-lists by
means of the so-called ∆̂-sets. The former allow derivation of an equivalent
and smaller formula; the latter also allow derivation of a smaller formula, not
equivalent to the previous one, but equisatisfiable.

The paper is organised as follows:

• Firstly, preliminary concepts, notation and basic definitions are introduced:
specifically, it is worth to note the definition of literal and the way some of
them will be denoted.

• Secondly, ∆-lists, our basic tool, are introduced; its definition integrates some
reductions into the calculation of the ∆-lists. The required theorems to show
how to use the information collected in those lists are stated.

• Later, the ∆̂-sets are defined and results that use the information in these sets
are stated. One of these is a generalisation of the pure literal rule.

2. Preliminary Concepts and Definitions

In this paper, our object language is the future fragment of the Temporal
Propositional Logic FNext with linear and discrete flow of time, and connectives
¬ (negation), ∧ (conjunction), ∨ (disjunction), F (sometime in the future), G
(always in the future), and ⊕ (tomorrow); V denotes the set of propositional
variables p, q, r, . . . (possibly subscripted) which is assumed to be completely
ordered with the lexicographical order, e.g. pn ≤ qm for all n,m, and pn ≤ pm if
and only if n ≤ m. Given p ∈ V, the formulas p and ¬p are the classical literals
on p.

Definition 1. Given a classical propositional literal `, the (temporal) literal-
s1on `, denoted Lit(`), are those wff (well-formed formulas) of the form ⊕n`,
F⊕n`, G⊕n`, FG`, GF` for all n ∈ N.

If ` is a classical propositional literal, we denote ϑ` to mean a literal on `,
where ϑ is said to be its temporal prefix ; if ϑ` is a literal, then |ϑ| denotes the
number of temporal connectives in ϑ, and ϑ` denotes its opposite literal, where
F = G, G = F , FG = GF , GF = FG and ⊕ = ⊕.
1 We will use the notation ⊕n to denote the n-folded application of the connective ⊕.

4 I.P. de Guzmán et al. / Reducing temporal formulas

¬⊕A ≡ ⊕¬A ⊕FA ≡ F⊕A ⊕GA ≡ G⊕A
FFA ≡ F⊕A GGA ≡ G⊕A FGFA ≡ GFA

GFGA ≡ FGA FG⊕A ≡ FGA GF⊕A ≡ GFA

⊕∨Ai ≡ ∨⊕Ai ⊕∧Ai ≡ ∧⊕Ai ¬FA ≡ G¬A
¬GA ≡ F¬A F (

∨
i∈J Ai) ≡

∨
i∈J FAi G(

∧
i∈J Ai) ≡

∧
i∈J GAi

Figure 1.

The notion of temporal negation normal formula, denoted tnnf, is recursively
defined as follows:

1. Any literal is a tnnf.

2. If A and B are tnnf, then A∨B and A∧B are tnnf, which are called disjunctive
and conjunctive tnnf, respectively.

3. If A is a disjunctive tnnf, then GA and FGA are tnnf.

4. If A is a conjunctive tnnf, then FA and GFA are tnnf.

5. A formula is a tnnf if and only if it can be constructed by the previous rules.

For formulas in tnnf, we will write p for the classical negated literal ¬p.

As usual, a classical clause is a disjunction of literals and a classical cube is
a conjunction of literals. In addition, a G-clause is a formula GB where B is a
classical clause, and a F -cube is a formula FB in which B is a classical cube.

The transformation of any wff into tnnf is linear by recursively applying the
transformations induced by the double negation, the de Morgan laws and the
equivalences in Fig. 1. By using the associative laws we will consider expressions
like A1 ∨ · · · ∨An or A1 ∧ · · · ∧An as formulas.

We will use the standard notion of tree and address of a node in a tree. Given
a tnnf A, the syntactic tree of A, denoted by TA, is defined as usual. An address
η in TA will mean, when no confusion arises, the subformula of A corresponding
to the node of address η in TA; the address of the root node will be denoted ε.

If TC is a subtree of TA, then the temporal order of TC in TA, denoted
ordA(C), is the number of temporal ancestors of TC in TA, that is the number of
temporal connectives (F,G,mannana) in which scope is the formula C.

We will also use lists with its standard notation; nil denotes the empty list.
Elements in a list will be written in juxtaposition.

I.P. de Guzmán et al. / Reducing temporal formulas 5

If α and β are lists of literals and ϑ` is a literal, ϑ` ∈ α denotes that ϑ` is
an element of α; and α ⊆ β means that all elements of α are elements of β. If
α = ϑ1`1ϑ2`2 . . . ϑn`n, then α = ϑ1`1 ϑ2`2 . . . ϑn`n.

Definition 2. A temporal structure is a tuple S = (N, <, h), where N is the set
of natural numbers, < is the standard strict ordering on N, and h is a temporal
interpretation, which is a function h : L −→ 2N, where L is the language of the
logic, satisfying:

1. h(¬A) = Nr h(A); h(A ∨B) = h(A) ∪ h(B)

2. h(A→ B) = (Nr h(A)) ∪ h(B); h(A ∧B) = h(A) ∩ h(B)

3. t ∈ h(FA) iff t′ exists with t < t′ and t′ ∈ h(A)

4. t ∈ h(GA) iff for all t′ with t < t′ we have t′ ∈ h(A)

5. t ∈ h(⊕A) iff we have t+ 1 ∈ h(A)

A formula A is said to be satisfiable if there exists a temporal structure
S = (N, <, h) such that h(A) 6= ∅; if t ∈ h(A), then h is said to be a model of
A in t; if h(A) = N, then A is said to be true in the temporal structure S; if A
is true in every temporal structure, then A is said to be valid, and we denote it
|= A.

Formulas A and B are said to be equisatisfiable if A is satisfiable iff B is
satisfiable; ≡ denotes the semantic equality, i.e. A ≡ B if and only if for every
temporal structure S = (N, <, h) we have that h(A) = h(B); finally, the symbols
> and ⊥ mean truth and falsity, i.e. h(>) = N and h(⊥) = ∅ for every temporal
structure S = (N, <, h).

If Γ1 and Γ2 are sets of subformulas in A and X and Y are subformulas, then
the expression A[Γ1/X,Γ2/Y] denotes the formula obtained after substituting in
A every occurrence of elements in Γ1 by X and every occurrence of elements in
Γ2 by Y .

If η is an address in TA and X, then the expression A[η/X] is the formula
obtained after substituting in A the subtree rooted in η by X.

3. Adding Information to the Tree: ∆-lists

The idea underlying the reduction strategy we are going to introduce is the
use of information given by partial assignments. We associate to each tnnf A two

6 I.P. de Guzmán et al. / Reducing temporal formulas

lists of literals denoted ∆0(A) and ∆1(A) (the associated ∆-lists of A) and two
sets of lists, denoted ∆̂0(A) and ∆̂1(A), whose elements are obtained out of the
associated ∆-lists of the subformulas of A.

The ∆-lists and the ∆̂-sets are the key tools of our method to reduce the size
of the formula being analysed. These reductions allow to study its satisfiability
with as few branching as possible.

In a nutshell, ∆0(A) and ∆1(A) are, respectively, lists of temporal implicates
and temporal implicants of A. The purpose of these lists is two-fold:

1. To transform the formula A into an equivalent and smaller-sized one (see
Sect. 3.3).

2. To be used in the definition the ∆̂0 and ∆̂1 sets (see Sect. 4), which will be
used to transform the formula A into an equisatisfiable and smaller-sized one.
Furthermore, information to build a countermodel (if it exists) is provided.

The sense in which we mean temporal implicant/implicate is the following:

Definition 3.

• A literal ϑ` is a temporal implicant of A if |= ϑ`→ A.

• A literal ϑ` is a temporal implicate of A if |= A→ ϑ`.

3.1. The Lattices of Literals

Definition 4. For each classical propositional literal ` we define an ordering in
Lit(`) ∪ {⊥,>} as follows:

1. ϑ` ≤ %` if and only if |= ϑ`→ %`

2. ϑ` ≤ > for all (possibly empty) ϑ.

3. ϑ` ≥ ⊥ for all (possibly empty) ϑ.

Each set Lit(`)∪{⊥,>} provided with this ordering is a lattice, depicted in
Figure 2. For each literal ϑ` we will consider its upward and downward closures
defined, respectively as:

ϑ`↑ = {%` | ϑ` ≤ %`} ϑ`↓ = {%` | %` ≤ ϑ`}

If Γ is a set of literals, then we define Γ↑ =
⋃
l∈Γ l↑ and Γ↓ =

⋃
l∈Γ l↓.

I.P. de Guzmán et al. / Reducing temporal formulas 7

G

`

F⊕n`

⊕`

`

>

⊥

F`

GF`

FG`

⊕n+1̀

G⊕n`

Figure 2. The lattice Lit(`) ∪ {⊥,>}

3.2. Definition of the ∆-lists

Definition 5. Given a tnnf A, we define ∆0(A) and ∆1(A) to be the lists of
literals recursively defined below

∆0(ϑ`) = ∆1(ϑ`) = ϑ`

∆0 (
∧n
i=1Ai) = Union∧(∆0(A1), . . . ,∆0(An))

∆0 (
∨n
i=1Ai) = Intersection(∆0(A1), . . . ,∆0(An))

∆1 (
∧n
i=1Ai) = Intersection(∆1(A1), . . . ,∆1(An))

∆1 (
∨n
i=1Ai) = Union∨(∆1(A1), . . . ,∆1(An))

∆b (FA) = AddF(∆b(A)) for b ∈ {0, 1}
∆b (GA) = AddG(∆b(A)) for b ∈ {0, 1}

The description of the operators involved in the definition above is the fol-
lowing:

1. The operators Add add a temporal connective to each element of a list of
literals and simplify the results to a tnnf according to the rules in Fig. 1.

2. The two versions of Union arise because of the intended interpretation of the
∆-sets:

(a) Elements in ∆0 should contain minimal implicates in the lattices of lit-
erals Lit(`). Therefore, we apply a union operator which preserves this
minimality: the operator Union∧.
This operator gives us the union of two lists of literals on which the
following reductions have been applied:

i. ϑ` ∧ ϑ`↑ = ϑ`, that is ϑ` ∧ %` = ϑ` for all %` ∈ ϑ`↑,

8 I.P. de Guzmán et al. / Reducing temporal formulas

ii. ϑ` ∧ ϑ`↓ = ⊥, that is ϑ` ∧ %` = ⊥ for all %` ∈ ϑ`↓ and

iii. The pair G⊕n+1` and ⊕n+1` is substituted by G⊕n`, for all n.

These reductions can be seen as follows: a pair of literals is substituted
by its conjunction whenever it is either a literal or a logical constant; and
this can only happen in the cases above.

(b) Elements in ∆1 should contain maximal implicates in the lattices of lit-
erals Lit(`). Therefore, we apply a union operator which preserves this
maximality: the operator Union∨.
∆1-sets are considered to be disjunctively connected, so we use Union∨.
The disjunctive connection in ∆1 means the application of the following
rules ϑ` ∨ ϑ`↓ = ϑ`, ϑ` ∨ ϑ`↑ = >, and the pair of literals F⊕n+1` and
⊕n+1` is simplified to F⊕n` in ∆1, for all n.

It is easy to see that, for all `, we have that ∆b(A)∩Lit(`) contains at most
one literal in the set {F⊕k`,G⊕k`, FG`,GF`} and, possibly, several of type ⊕k`.

Definition 6. If a A is a tnnf, then to ∆-label A means to label each node η in
A with the ordered pair (∆0(η),∆1(η)).

Example 7. Consider the formula

A = (¬p ∨ ¬Gq ∨ r ∨G(¬s ∨ ¬q ∨ u)) ∧ ¬(¬p ∨ ¬Gq ∨ r ∨G(¬s ∨ u))

the ∆-labelled tree of A is2

∧(pGqrFsFu, nil)

∨(nil, pFqrGsGu)

p Fq r G(nil, GqGsGu)

∨(nil, qsu)

s q u

p Gq r F (FsFu, nil)

∧(su, nil)

s u

Note that in node 1, literals Fq and Gq are collapsed into Fq, because of
the disjunctive connection in ∆1.

2 For the sake of clarity, the ∆-labels of the leaves are not written.

I.P. de Guzmán et al. / Reducing temporal formulas 9

Example 8. Let us study the validity of A = G(¬p→ p)→ (¬Gp→ Gp). The
∆-labelled tree equivalent to ¬A is

∧(⊥, nil)

G(Gp,Gp)

∨(p, p)

p p

Fp Fp

In this case, ∆0(ε) = ⊥, because of the simplification of Gp and Fp due to
the conjunctive nature of the ∆0-sets. We will see later that ∆0(ε) = ⊥ implies
that the input formula, that is ¬A, is unsatisfiable, therefore A is valid.

3.3. Information in the ∆-lists

As indicated above, the purpose of defining ∆0 and ∆1 is to collect implicants
and implicates of A, as shown in the following theorem.

Theorem 9. Let A be a tnnf,

1. If ϑ` ∈ ∆0(A), then |= A→ ϑ`.

2. If ϑ` ∈ ∆1(A), then |= ϑ`→ A.

Proof.

1. By structural induction on A.

(a) If A = ϑ`, then the result is obvious.

(b) If either A = FB or A = GB, then the result follows from the definition
of the operators Add and the fact that if |= B → C then |= FB → FC

and |= GB → GC.

(c) If A = B ∧C, then by the definition of the ∆-lists we have two possibil-
ities:

i. Either ϑ` ∈ ∆0(B) or ϑ` ∈ ∆0(C). Now, by the induction hypothesis,
either |= B → ϑ` or |= C → ϑ`, and |= A→ ϑ` in either case.

ii. ϑ` ≡ ϑ′` ∧ ϑ′′` where ϑ′` ∈ ∆0(B) and ϑ′′` ∈ ∆0(C), that is ϑ` has
been introduced by a simplification. By induction hypothesis, we

10 I.P. de Guzmán et al. / Reducing temporal formulas

have |= B → ϑ′` and |= C → ϑ′′`, therefore |= A → (ϑ′` ∧ ϑ′′`) and
we have that |= A→ ϑ`.

(d) If A = B ∨C, then ϑ` ∈ ∆0(B)∩∆0(C). Now, by the induction hypoth-
esis, |= B → ϑ` and |= C → ϑ`, therefore |= A→ ϑ`.

2. By duality.
¤

The theorem above will be used in the equivalent form stated below:

Corollary 10. Let A be a tnnf,

1. If ϑ` ∈ ∆0(A), then A ≡ A ∧ ϑ`.

2. If ϑ` ∈ ∆1(A), then A ≡ A ∨ ϑ`.

As a literal is satisfiable, by Corollary 10 item 2, we have the following result:

Corollary 11. If ∆1(A) 6= nil, then A is satisfiable. In addition, if ϑ` ∈ ∆1(A),
then any model of ϑ` in t is a model of A in t.

3.4. Strong Meaning-Preserving Reductions

A lot of information can be extracted from the ∆-lists as consequences of
Corollary 10. The first result is a structural one, for it says that either one of the
∆-lists is empty, or both are equal and singletons.

Corollary 12. If ∆1(A) 6= nil 6= ∆0(A), then there exists ϑ` such that
∆1(A) = ∆0(A) = ϑ`. In this case, if A is not a literal, then A ≡ ϑ`.

Proof. Follows easily by structural induction on A. ¤

The corollary below states conditions on the ∆-lists which allow to determine
the validity or unsatisfiability of the formula we are studying.

Theorem 13. Let A be a tnnf, then

1. (a) If ∆0(A) = ⊥, then A ≡ ⊥.

(b) If A =
∧n
i=1Ai in which a conjunct Ai0 is a clause such that ∆1(Ai0) ⊆

∆0(A)↑, then A ≡ ⊥.

I.P. de Guzmán et al. / Reducing temporal formulas 11

(c) If A =
∧n
i=1Ai in which a conjunct Ai0 is a G-clause GB such that

Add⊕(∆1(B)) ⊆ ∆0(A)↑, then A ≡ ⊥.

2. (a) If ∆1(A) = >, then A ≡ >.

(b) If A =
∨n
i=1Ai in which a disjunct Ai0 is a cube such that ∆0(Ai0) ⊆

∆1(A)↓, then A ≡ >.

(c) If A =
∨n
i=1Ai in which a disjunct Ai0 is an F -cube FB such that

Add⊕(∆0(B)) ⊆ ∆1(A)↓, then A ≡ >.

Proof.

1.a This first item is trivial.

1.b Recall that, by Corollary 10, we have

A ≡
r∧

k=1

%k`k ∧A

where the %k`k are the elements in ∆0(A).
If ∆1(Ai0) = ϑ1`1 · · ·ϑm`m, we have that Ai0 ≡

∨m
j=1 ϑj`j ; thus,

A ≡ Ai0 ∧A ≡
m∨
j=1

(ϑj`j ∧A) ≡
m∨
j=1

(
ϑj`j ∧

r∧
k=1

%k`k ∧A
)

let us show that each disjunct is unsatisfiable.
For a fixed ϑj`j , as ∆1(Ai0) ⊆ ∆0(A)↑, there exists %kj`j ∈ ∆0(A) such that
%kj`j ≤ ϑj`j , but this implies that ϑj`j∧%kj`j ≡ ⊥ and, therefore the disjunct
(ϑj`j ∧

∧r
k=1 %k`k ∧A) is unsatisfiable.

1.c If ∆1(B) = ϑ1`1 · · ·ϑm`m, we have that B ≡ ∨m
j=1 ϑj`j . By using the fact

that GB ≡ ⊕B ∧GB we have

A ≡ A ∧GB ≡ A ∧ ⊕B

So, to deduce the unsatisfiability of A it suffices to prove that A ∧ ⊕B is
unsatisfiable; consider the following equivalences

A ∧ ⊕B ≡ A ∧ ⊕
m∨
j=1

ϑj`j ≡ A ∧
m∨
j=1

Add⊕(ϑj`j)

now, by using the hypothesis Add⊕(∆1(B)) ⊆ ∆0(A)↑, the argument applied
in item 1.b works to prove that A ∧ ⊕B ≡ ⊥.

12 I.P. de Guzmán et al. / Reducing temporal formulas

2. Follows by duality.
¤

The following definition gives a name to those formulas which have been
simplified by using the information in the ∆-lists.

Definition 14. Let A be an tnnf then it is said that A is:

1. finalizable if either A = >, or A = ⊥ or ∆1(A) 6= nil.

2. A tnnf verifying either (a) or (b) or (c) of item 1 in Theorem 13 is said to be
∆0-conclusive.

3. A tnnf verifying either (a) or (b) or (c) of item 2 in Theorem 13 is said to be
∆1-conclusive.

4. A tnnf A such that ϑ` ∈ ∆0(A) ∩∆1(A) is said to be ϑ`-simple.

5. A tnnf A is said to be ∆-restricted if it has no subtree which is either ∆0-
conclusive, or ∆1-conclusive, or ϑ`-simple.

6. To ∆-restrict a tnnf A means to substitute each ∆1-conclusive formula by >,
each ∆0-conclusive formula by ⊥, and each ϑ`-simple formula by ϑ`; and
then eliminate the constants > and ⊥ by applying the 0-1 laws.
Note that ∆-restricting is a meaning-preserving transformation.

Example 15. Given the transitivity axiom A = FFp→ Fp; the tnnf equivalent
to ¬A is F⊕p∧Gp; since ∆0(F⊕p∧Gp) = ⊥, we have that ¬A is ∆0-conclusive,
therefore ¬A is unsatisfiable and A is valid.

Example 16. Given the formula A = ⊕p ∧ ⊕Fp ∧ G(p → Fp), its ∆-labelled
tree is

∧(⊕pF⊕p, nil)

⊕p F⊕p G(nil, GFpGp)

∨(nil, Fpp)

p Fp

This tree is ∆0-conclusive, since Add⊕(∆1(31)) = ⊕pF⊕p ⊆ ∆0(ε)↑. In fact,
what we have in this example is Add⊕(∆1(31)) = ∆0(ε)

I.P. de Guzmán et al. / Reducing temporal formulas 13

3.5. Weak Meaning-Preserving Reductions

The aim of this section is to give more general conditions allowing to use
the information in the ∆-lists which has not been able to be used by the strong
reductions. Specifically, a strong reduction uses the information in the ∆-lists
in a strong sense, that is, to substitute a whole subformula by either >, or ⊥,
or a literal. As in the propositional case, sometimes this is not possible and we
can only use the information in a weak sense, that is, to decrease the size of the
formula by eliminating literals depending on the elements of the ∆-lists.

The following notation is used in the statement of some results hereafter:

• If S is a set of literals in a tnnf A, then S0 denotes the set of all the occurrences
of literals ϑ` ∈ S of temporal order 0 in A

• Lit(`, n) = {η | η = ϑ` and |ϑ|+ ordA(η) ≥ n+ 1}

Theorem 17. Let A be a tnnf and ϑ` a literal in A:

1. If ϑ` ∈ ∆0(A), then A ≡ ϑ` ∧A[(ϑ`↑)0/>, (ϑ`↓)0/⊥]

2. If ϑ` ∈ ∆1(A), then A ≡ ϑ` ∨A[(ϑ`↓)0/⊥, (ϑ`↑)0/>]

Proof.

1. By Corollary 10 we have that A ≡ ϑ` ∧A, so we only have to show that

ϑ` ∧A ≡ ϑ` ∧A[(ϑ`↑)0/>, (ϑ`↓)0/⊥]

By structural induction

(a) If A is a literal, then the result is trivial.

(b) If A is either FB or GB, there there are no literals of temporal order 0,
and the result follows from the fact that A[(ϑ`↑)0/>, (ϑ`↓)0/⊥] = A.

(c) If A = A1 ∗ A2, with ∗ ∈ {∧,∨}, then by the induction hypothesis on
both A1 and A2 we have that

ϑ` ∧A≡ (ϑ` ∧A1) ∗ (ϑ` ∧A2)

≡ (ϑ` ∧A1[(ϑ`↑)0/>, (ϑ`↓)0/⊥]) ∗ (ϑ` ∧A2[(ϑ`↑)0/>, (ϑ`↓)0/⊥])

≡ ϑ` ∧A[(ϑ`↑)0/>, (ϑ`↓)0/⊥]

2. The proof is similar.

14 I.P. de Guzmán et al. / Reducing temporal formulas

¤

This theorem cannot be improved for an arbitrary literal ϑ`; although, for
some particular cases, it is possible to get more literals reduced, as shown in The-
orem 19, which generalises the result in Theorem 17, by dropping the restriction
of temporal order 0 for all the literals in the upward/downward closures. In the
proof we will use the results stated in the lemma below:

Lemma 18. The following equivalences hold in FNext:

F (FGC ∧B)≡FGC ∧ FB
F (GFC ∧B)≡GFC ∧ FB

Theorem 19. Let A be a tnnf,

1. If ϑ` ∈ ∆0(A)↑ with ϑ` ∈ {FG`,GF`} ∪ {G⊕n` | n ∈ N}, then

A ≡ ϑ` ∧A[ϑ`↑/>, ϑ`↓/⊥]

2. If ϑ` ∈ ∆1(A)↓ with ϑ` ∈ {FG`,GF`} ∪ {F⊕n` | n ∈ N}, then

A ≡ ϑ` ∨A[ϑ`↓/⊥, ϑ`↑/>]

Proof.

1. For an easy and intuitive argument just consider that any literal occurring
in A and satisfying %` ∈ ϑ`↑, regardless of its temporal order, refers to
instants of time covered by ϑ`.
The formal proof follows by structural induction. The only difference w.r.t.
that of Theorem 17 arises when A is either FB or GB; in the rest of the
proof we will write C ′ to denote C[ϑ`↑/>, ϑ`↓/⊥].

(a) If ϑ` = G⊕n` then the only possibility for A is to be GB, therefore let
us assume G⊕n` ∈ ∆0(GB)↑:

G⊕n` ∧GB≡G⊕n` ∧GG⊕n` ∧GB ≡ G⊕n` ∧G(G⊕n` ∧B)

≡G⊕n` ∧G(G⊕n` ∧B′) (Induction step)

≡G⊕n` ∧GG⊕n` ∧GB′

≡G⊕n` ∧GB′

I.P. de Guzmán et al. / Reducing temporal formulas 15

(b) If GF` ∈ ∆0(GB)↑, then

GF` ∧GB≡GF` ∧GGF` ∧GB ≡ GF` ∧G(GF` ∧B)

≡GF` ∧G(GF` ∧B′) (Induction step)

≡GF` ∧GGF` ∧GB′

≡GF` ∧GB′

(c) If GF` ∈ ∆0(FB)↑, then GF` ∈ ∆0(B)↑ and

FB≡ F (GF` ∧B′) (Induction step)
≡ GF` ∧ FB′ (Lemma 18)

(d) If FG` ∈ ∆0(FB)↑, then FG` ∈ ∆0(B)↑ and

FB≡F (FG` ∧B′) (Induction step)

≡FG` ∧ FB′ (Lemma 18)

(e) If FG` ∈ ∆0(GB)↑, then FG` ∈ ∆0(B)↑ and

GB≡ G(FG` ∧B′) (Induction step)
≡ GFG` ∧GB′
≡ FG` ∧GB′

2. By duality.
¤

Finally, in the particular cases when ϑ` equals either G⊕n` or F⊕n`, then a
number of additional reductions can be applied. These new reductions are stated
in the theorem below.

Theorem 20. Let A be a tnnf and ϑ` a literal in A:

1. If G⊕n` ∈ ∆0(A), then A ≡ G⊕n` ∧A[Lit(`, n)/>, Lit(`, n)/⊥]

2. If F⊕n` ∈ ∆1(A), then A ≡ F⊕n` ∨A[Lit(`, n)/⊥, Lit(`, n)/>]

Proof.

1. The intuition here is that any literal in A which is in Lit(`, n) or Lit(`, n)
refers to instants of time covered by G⊕n`. The formal proof follows by
induction on n.

16 I.P. de Guzmán et al. / Reducing temporal formulas

(a) The base case n = 0 holds by Theorem 19, since Lit(`, 0) ⊂ G`↑ for any
formula.

(b) Assume the theorem is true for n = k − 1. The definition of the ∆-lists
and the following equivalences can be used to prove the case n = k:

i. G⊕k` ∧ (B1 ∨B2) ≡ (G⊕k` ∧B1) ∨ (G⊕k` ∧B2)

ii. G⊕k` ∧ (B1 ∧B2) ≡ (G⊕k` ∧B1) ∧ (G⊕k` ∧B2)

iii.

G⊕k` ∧GB≡G(G⊕k−1` ∧B)

≡G(G⊕k−1` ∧B[Lit(`, k − 1)/>, Lit(`, k − 1)/⊥])

(Induction step)

≡G⊕k` ∧G(B[Lit(`, k − 1)/>, Lit(`, k − 1)/⊥]))

≡G⊕k` ∧GB[Lit(`, k)/>, Lit(`, k)/⊥])

iv.

G⊕k` ∧ FB≡ (G⊕k` ∧ ⊕B) ∨ (G⊕k` ∧ ⊕FB)

≡⊕(G⊕k−1` ∧B) ∨ ⊕(G⊕k−1` ∧ FB)

≡⊕(G⊕k−1` ∧B[Lit(`, k − 1)/>, Lit(`, k − 1)/⊥])

∨ ⊕(G⊕k−1` ∧ (FB)[Lit(`, k − 1)/>, Lit(`, k − 1)/⊥])

(Induction step)

≡ (G⊕k` ∧ ⊕B[Lit(`, k − 1)/>, Lit(`, k − 1)/⊥])

∨(G⊕k` ∧ ⊕F (B[Lit(`, k − 2)/>, Lit(`, k − 2)/⊥]))

≡G⊕k` ∧ FB[Lit(`, k)/>, Lit(`, k)/⊥]

2. By duality
¤

4. Adding Information to the Tree: ∆̂-sets

In the previous sections, the information in the ∆-lists has been used local-
ly, that is, the information in ∆b(η) has been used to reduce η. The purpose of
defining a new structure, the ∆̂-sets, is to allow the globalisation of the informa-
tion, in that the information in ∆b(η) can be refined by the information in its
ancestors.

I.P. de Guzmán et al. / Reducing temporal formulas 17

Given a ∆-restricted tnnf A, we define the sets ∆̂0(A) and ∆̂1(A), whose
elements are pairs (α, η) where α is a reduced ∆-list (to be defined below) asso-
ciated to a subformula B of A, and η is the address of B in A. These sets allow
to transform the formula A into an equisatisfiable and smaller sized one, as seen
in Section 4.2.

The application of the reductions in Theorems 17, 19 and 20 sometimes
allows to substitute a whole subformula of A by either > or ⊥, in the rest of
the cases only literals are deleted; these literals will be called reducible. Theo-
rem 21 below collects those cases in which we are allowed to substitute a whole
subformula of A by either > or ⊥.

Theorem 21. Let A be a tnnf, B a subformula of A, and η the address in the
tree of A of a subformula of B:

1. (a) If ϑ` is any literal satisfying ϑ` ∈ ∆0(η)↑ ∩ (∆1(B) ∪ ∆0(B)) and
ordB(η) = 0, then A ≡ A[η/⊥].

(b) If ϑ` ∈ {FG`,GF`} ∪ {G⊕n` | n ∈ N} and satisfies ϑ` ∈ ∆0(η)↑ ∩
(∆1(B) ∪∆0(B)), then A ≡ A[η/⊥].

(c) If ϑ` ∈ ∆0(η)↑, and F⊕n` ∈ ∆1(B)∪∆0(B), and |ϑ|+ ordB(η) ≥ n+ 1,
then A ≡ A[η/⊥].

2. (a) If ϑ` is any literal satisfying ϑ` ∈ ∆1(η)↓ ∩ (∆0(B) ∪ ∆1(B)) and
ordB(η) = 0, then A ≡ A[η/>].

(b) If ϑ` ∈ {FG`,GF`} ∪ {G⊕n` | n ∈ N} and satisfies ϑ` ∈ ∆1(η)↓ ∩
(∆0(B) ∪∆1(B)), then A ≡ A[η/>].

(c) If ϑ` ∈ ∆1(η)↓, and G⊕n` ∈ ∆0(B)∪∆1(B), and |ϑ|+ ordB(η) ≥ n+ 1,
then A ≡ A[η/>].

Proof.

1.(a) Assume ϑ` ∈ ∆1(B) ∩ ∆0(η)↑ (the case ϑ` ∈ ∆0(B) ∩ ∆0(η)↑ is similar)
then Theorem 17 item 2 applied to subformula B, provides a number of
substitutions of literals by logical constants. Specifically, as ϑ` ∈ ∆0(η)↑
there exists an element %` ∈ ∆0(η) such that %` ≤ ϑ` which can be substituted
by ⊥, recalling that η ≡ η∧%` we have that formulas A and A[η/⊥] turn out
to be equivalent.

18 I.P. de Guzmán et al. / Reducing temporal formulas

1.(b-c), 2. These items are proved similarly.
¤

This theorem can be seen as a generalisation of Theorem 13, in which a
subformula B can be substituted by a constant even when that subformula is not
equivalent to that constant.

The subformula at address η in A is said to be 0-conclusive in A (resp.
1-conclusive in A) if it verifies some of the conditions in item 1 (resp. item 2)
above.

Definition 22. Given a tnnf A and an address η, the reduced ∆-lists for A,
∆A
b (η) for b ∈ {0, 1}, are defined below,

1. If η is 0-conclusive in A, then ∆A
0 (η) = ⊥.

2. If η is 1-conclusive in A, then ∆A
1 (η) = >.

3. Otherwise, ∆A
b (η) is the list ∆b(η) in which the reducible literals have been

deleted.

We define the sets ∆̂b(A) as follows

∆̂b(A) = {(∆A
b (η), η) | η is a non-leaf address in TA with ∆b(η) 6= nil}

If A is a tnnf, to label A means ∆-label A and to associate to the root of A
the ordered pair

(
∆̂0(A), ∆̂1(A)

)
.

Example 23. From Example 7 we had the following tree

A ≡ ∧(pGqrFsFu, nil)

∨(nil, pFqrGsGu)

p Fq r G(nil, GqGsGu)

∨(nil, qsu)

s q u

p Gq r F (FsFu, nil)

∧(su, nil)

s u

Note that literals p, Fq and r in ∆1 of node 1 are reducible in A because of the
occurrence of its duals in ∆0 of the root. Similarly Gq is also reducible in node
14, and q is reducible in 141. Therefore, the calculation of the ∆̂-sets leads to

∆̂0(A) = {(pGqrFsFu, ε), (FsFu, 5), (su, 51)}

I.P. de Guzmán et al. / Reducing temporal formulas 19

∆̂1(A) = {(GsGu, 1), (GsGu, 14), (su, 141)}

4.1. Some words about the complexity of labelling

All the tests involved in the labelling process work on the ∆b-lists of the
given formula. The complexity of the ∆-labelling of a tnnf is linear both in space
and in time, the proof is sketched below.

Let us estimate the ratio between the size of the set of ∆-lists and the size of
the formula. The worst case is that of a balanced tree W of a tnnf in which binary
and monary connectives alternate and all the literals in the branch get included
in the ∆-lists of all their ancestors, not only their predecessor. Actually, this is
the worst case for the calculation of ∆-lists but a trivial one for the satisfiability
analysis with reductions.

As the number of nodes decreases geometrically each two levels of depth
(in ascending order), then the number of elements in all the ∆-lists is bounded
by four times the number of leaves of W . Therefore, we have at most a linear
increase in size.

On the other hand, the labelling of a tnnf consists of the determination of
the ∆̂-sets of the root node, which is a subset of the set just bounded above.
Thus, in the worst case (in which no b-conclusive nodes are present) the cardinal
of this set together with the addresses of the nodes increases at most linearly
w.r.t. the input tree.

Finally, the calculations involved in both determining each ∆-list and the
tests of the hypotheses in Theorem 21 are based on intersections and unions on
lists and comparisons between ∆-lists of consecutive nodes in the tree. As we use
ordered lists, all these operations can be performed in linear time; note that the
simplifications based on the lattice of literals can be done also in linear time and,
in addition, can decrease the complexity of the union operation.

4.2. Satisfiability-Preserving Results

The use of the information in the ∆̂-sets is analyzed in this section.

Definition 24. A tnnf A is said to be restricted if it is ∆-restricted and satisfies
the following:

• There are not elements (⊥, η) in ∆̂0(A).

• There are not elements (>, η) in ∆̂1(A).

20 I.P. de Guzmán et al. / Reducing temporal formulas

Remark 25. A restricted and equivalent tnnf can be obtained by using the 0-1
laws in conjunction with the elimination of conclusive subformulas in A, according
to Theorem 21.

The following results will allow, by using the information in the ∆̂-sets, to
substitute a tnnf A by an equisatisfiable and smaller sized A′.

4.2.1. Complete Reduction

This section is named after Theorem 26, because after its application on a lit-
eral G⊕n`, gives an equisatisfiable formula whose only literals in ` are of the
form ⊕n`.

Theorem 26. Let A be a tnnf such that G⊕n` ∈ α for some (α, ε) ∈ ∆̂0(A),
and consider the formulas

B =A[Lit(`, n) ∪G⊕n`↑/>, Lit(`, n) ∪ F⊕n`↓/⊥]

C =B[G⊕k`/⊕k+1` ∧ . . . ∧ ⊕n`, F⊕k`/⊕k+1` ∨ . . . ∨ ⊕n`]

if every literal on ` or ` occurring in the formula C have temporal order 0, then
A is satisfiable if and only if C is satisfiable.

Furthermore, if h is a model of C in t, then the interpretation h′ such that
h′(q) = h(q) if q 6= ` and h′(`) = h(`) ∪ [t+ n+ 1,∞) is a model of A in t.

Proof. For all m < n we have:

G⊕m`≡⊕m+1` ∧ ⊕m+2` ∧ · · · ∧ ⊕n` ∧ ⊕nG`
F⊕m`≡⊕m+1` ∨ ⊕m+2` ∨ · · · ∨ ⊕n` ∨ ⊕nF`

The equivalences above, the hypothesis G⊕n` ∈ ∆0(A) and Theorems 19 and 20
lead to the equivalence

A ≡ G⊕n` ∧B[G⊕k`/⊕k+1` ∧ . . . ∧ ⊕n`, F⊕k`/⊕k+1` ∨ . . . ∨ ⊕n`] ≡ G⊕n` ∧ C

We only have to show that the deletion of G⊕n` is satisfiability-preserving.
Note that the only occurrences of literals on ` (or `) are of the form ⊕m`.

Since every literal on ` or ` occurring in the formula C have temporal order 0,
then the only temporal requirements on ` are in the next n instants of time.

I.P. de Guzmán et al. / Reducing temporal formulas 21

Therefore, any model h of C in t can be easily extended to a model h′ of A in t

just by making h′(`) = h(`) ∪ [t+ n+ 1,∞). ¤

Definition 27. A tnnf A satisfying the hypothesis of the theorem above is said
to be completely reducible.

Example 28. Given the density axiom A = Fp → FFp; the formula ¬A is
equivalent to the tnnf Fp ∧G⊕p.

We have that ∆0(Fp ∧ G⊕p) = FpG⊕p. Note that, as the conjunction of
Fp and G⊕p is not a literal, no simplification can be applied. In addition, its
∆̂0-set is {(FpG⊕p, ε)}, thus ¬A is completely reducible.

Now applying Theorem 26, we get that ¬A is satisfiable if and only if ⊕p is
satisfiable. Therefore ¬A is satisfiable, a model being h(p) = [2,∞), h(p) = {1}.

Example 29. Given the formula A = (Gp ∧ Fq) → F (p ∧ q), we have ¬A ≡
Gp ∧ Fq ∧G(p ∨ q); its ∆-restricted form is

∧(GpFq, nil)

Gp Fq G(nil, GpFq)

∨(nil, pq)

p q

and its ∆̂-sets are:

∆̂0(A) = {(GpFq, ε)} ∆̂1(A) = {(GpFq, 3), (pq, 31)}

This formula is completely reducible, by an application of Theorem 26, the
leaf in node 1 is deleted, and node 3 is substituted by Gq.

The resulting formula is Fq ∧Gq, which is 0-conclusive and, therefore, un-
satisfiable.

4.2.2. The Pure Literal Rule

The result introduced here is an extension of the well known pure literal rule
for Classical Propositional Logic. Existing results in the bibliography allow a
straightforward extension of the concept of pure literal. Our definition makes use

22 I.P. de Guzmán et al. / Reducing temporal formulas

of the ∆̂-sets, which allow to focus only on those literals which are essential parts
of the formula; this is because reducible literals are not included in the ∆̂-sets.

Definition 30. Let A be a tnnf.

1. A classical literal ` is said to be ∆̂-pure in A if a literal ϑ` occurs in ∆̂0(A)∪
∆̂1(A) and no literal on ϑ′` occurs in ∆̂0(A) ∪ ∆̂1(A).

2. A classical literal ` is said to be ∆̂-k-pure in A if ⊕k` occurs in an (α, η) ∈
∆̂0(A)∪∆̂1(A) with ordA(η) = 0, ⊕k` does not occur in any (α, η) ∈ ∆̂0(A)∪
∆̂1(A) with ordA(η) = 0, and for any other literal ϑ` or ϑ′`, occurring in some
element (α, η) ∈ ∆̂0(A) ∪ ∆̂1(A), we have |ϑ|+ ordA(η) > k.

Theorem 31. Let A be a tnnf, ` a ∆̂-pure literal in A, and B the formula
obtained from A by the following substitutions

1. If (α, η) ∈ ∆̂0(A) with ϑ` ∈ α, then η is substituted by
η[Lit(`, n) ∪G⊕n`↑/>, Lit(`, n) ∪ F⊕n`↓/⊥] if ϑ` = G⊕n`
η[ϑ`↑/>, ϑ`↓/⊥] if ϑ` ∈ {GF`, FG`}
η[(ϑ`↑)0/>, (ϑ`↓)0/⊥] otherwise

2. If (α, η) ∈ ∆̂1(A) with ϑ` ∈ α, then η is substituted by >.

Then, A is satisfiable if and only if B is satisfiable. Furthermore, if h is a model
of B in t, then the interpretation h′ such that h′(`′) = h(`′) if `′ 6= ` and h′(`) =
[t,∞) is a model of A in t.

Proof. Let C be the formula obtained from A by applying the meaning-
preserving substitutions below, given by Theorems 17, 19 and 20:

1. For all (α, η) ∈ ∆̂0(A) with ϑ` ∈ α, substitute η by
ϑ` ∧ η[Lit(`, n) ∪G⊕n`↑/>, Lit(`, n) ∪ F⊕n`↓/⊥] if ϑ` = G⊕n`
ϑ` ∧ η[ϑ`↑/>, ϑ`↓/⊥] if ϑ` ∈ {GF`, FG`}
ϑ` ∧ η[(ϑ`↑)0/>, (ϑ`↓)0/⊥] otherwise

2. For all (α, η) ∈ ∆̂1(A) with ϑ` ∈ α, substitute η by
ϑ` ∨ η[Lit(`, n) ∪ F⊕n`↓/⊥, Lit(`, n) ∪G⊕n`↑/>] if ϑ` = F⊕n`
ϑ` ∨ η[ϑ`↓/⊥, ϑ`↑/>] if ϑ` ∈ {GF`, FG`}
ϑ` ∨ η[(ϑ`↓)0/⊥, (ϑ`↑)0/>] otherwise

I.P. de Guzmán et al. / Reducing temporal formulas 23

As A ≡ C it is enough to prove that B and C are equisatisfiable.
Note that, since ` is pure, there are no occurrences of ` in formula C; also

note that, by construction, neither ` nor ` occur in B.
Any model hB of B in t can be easily extended to a model hC of C in t just

by considering hC(`) = [t,∞) and hC = hB otherwise.
Conversely, given a model hC of C in t, consider hB to be defined by hB(`) =

[t,∞) and hB = hC otherwise. Now, by monotonicity of ∨, ∧, F and G, it is easy
checked that hB is a model of B in t. ¤

Theorem 32. Let A be a tnnf, ` a ∆̂-k-pure literal in A, and B the formula
obtained from A by the following substitutions

1. If (α, η) ∈ ∆̂0(A) with ⊕k` ∈ α and ordA(η) = 0, then η is substituted by
η[(⊕k`↑)0/>, (⊕k`↓)0/⊥]

2. If (α, η) ∈ ∆̂1(A) with ⊕k` ∈ α, then η is substituted by >

Then, A is satisfiable if and only if B is satisfiable. Furthermore, if h is a model
of B in t, then the interpretation h′ such that h′(`′) = h(`′) if `′ 6= ` and h′(`) =
h(`) ∪ {t+ k} is a model of A in t.

Proof. It is similar to the previous one, using only the reductions given by
Theorem 17, this is obvious since Theorems 19 and 20 are not applicable to ⊕k`.
Also, note that the restriction ordA(η) = 0 is necessary to be sure that we are
really talking about the next k-th instant of time, in order to construct the models
properly. ¤

Example 33. Following with the formula in Example 23, we had

∆̂0(A) = {(pGqr, ε), (FsFu, 5), (su, 51)}
∆̂1(A) = {(GsGu, 1)(GsGu, 14), (su, 141)}

therefore

1. It is completely reducible: Gq ∈ α with (α, ε) ∈ ∆̂0(A).

2. literals p and r are 0-pure.

When applying the corresponding substitutions we get

24 I.P. de Guzmán et al. / Reducing temporal formulas

B = ∧

G

∨

s u

F

∧

s u

This formula cannot be reduced any longer. By applying a branching rule3

we obtain

B ≡ ∧

G

∨

s u

F

∧

s u ∨

s u

It is easy to check that node 21 is ∆0-conclusive, by substituting this node
by ⊥ we get ⊥ as a final result. Therefore the formula is unsatisfiable.

5. Conclusions and Future Work

We have introduced techniques for defining and manipulating lists of uni-
tary implicants/implicates which can improve the performance of a given prover
for temporal propositional logics by decreasing the size of the formulas to be
branched. These strategies are interesting because can be used in any existing
theorem prover, specially in non-clausal ones.

As future work, the information in the ∆-lists can be increased by refining
the process of generation of temporal implicants/implicates. In addition, current
work on G-clauses and F -cubes appears to be a new source of reduction results.
3 Every prover for linear-time temporal logic has such rules, in the example we use just one of

those in the literature.

I.P. de Guzmán et al. / Reducing temporal formulas 25

References

[1] G. Aguilera, I. P. de Guzmán, and M. Ojeda. Increasing the efficiency of automated theorem

proving. Journal of Applied Non-Classical Logics, 5(1):9–29, 1995.

[2] R. Ben-Eliyahu and M. Magidor. A temporal logic for proving properties of topologically

general executions. Information and Computation 124(2):127–144, 1996.

[3] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. Journal

of the ACM 42(4):857–907, 1995.

[4] L. Fix and O. Grumberg. Verification of temporal properties. Journal of Logic and Com-

putation 6(3):343–362, 1996.

[5] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems: specifica-

tions. Springer-Verlag, 1992.

[6] Z. Manna and A. Pnueli. Temporal verification of reactive systems: Safety. Springer-Verlag,

1995.

[7] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics.

Journal of the ACM, 32(3):733-749, 1985.

[8] P. Wolper. The tableaux method for temporal logic: an overview. Logique et Analyse 28

année, 110-111:119–136, 1985.

