
Reducing signed propositional formulas∗

G. Aguilera, I.P. de Guzmán, M. Ojeda, A.Valverde

Dept. Matemática Aplicada. Universidad de Málaga.

Aptdo. de Correos 4114. E-29080 Málaga, Spain

Email: guzman@ctima.uma.es

Abstract

New strategies of reduction for finite valued propositional logics are introduced in the

framework of the TAS1 methodology developed by the authors [1]. A new data structure,

the ∆̂-sets, is introduced to store information about the formula being analysed, and its use-

fulness is shown by developing efficient strategies to decrease the size of signed propositional

formulas, viz. new criteria to detect the validity or unsatisfiability of subformulas, and a

strong generalisation of the pure literal rule.

1 Introduction

Any (finite) multiple-valued logic can be expressed as a classical formula over signed literals. For

a wide range of finite-valued propositional logics, called regular logics [6, 7], there are uniform

notation style tableau systems; all these logics can be properly treated by TAS methods and,

furthermore, it is possible to weaken the structure requirements on the logic by considering

ortho-regular logics [4], a superset of regular logics on which our methods preserve their good

behaviour. The results introduced in this paper use the representation of finite valued logic

formulas as signed formulas.

In this paper we focus on the development of a set of reduction strategies which, through the

efficient determination and manipulation of lists of unitary implicant and implicates, investigates

exhaustively the possibility of decreasing the size of the formula being analysed. The interest of

such a set of reduction techniques is that the performance of a given prover for signed logic can

be improved because the size of a formula can be decreased, at a polynomial cost, as much as

possible before branching.

Lists of unitary models, so-called ∆-lists, are associated to each node in the syntactic tree

of the formula and used to study whether the structure of the syntactic tree has or has not

∗This work has been partially supported by CICYT project TIC97-0579-C02-02 and by COST-15 action.
1TAS stands for Transformaciones de Árboles Sintácticos, the Spanish translation of Syntactic Trees Trans-

formations.

1

direct information about the validity of the formula. This way, either the method ends giving

this information or, otherwise, it decreases the size of the problem before applying the next

transformation. So, it is possible to decrease the number of branchings or, even, to avoid them

all.

The ideas in this paper generalise, in a self-contained way, previous work of the authors [2]

by explicitly extending the reduction strategy to any finite valued logic and, what is more

important, by complementing the information in the ∆-lists by means of the so-called ∆̂-sets.

The former allow derivation of an equivalent and smaller formula; the latter also allow derivation

of a smaller formula, not equivalent to the previous one, but equisatisfiable.

A variety of new reduction results are shown: these reductions are useful in order to avoid as

many branchings as possible when the satisfiability of a signed propositional formula is tested.

One of the new reduction techniques we introduce is a generalisation of the pure literal rule:

In fact, when restricted to classical logic this new pure literal rule generalises several versions

appearing in the literature.

The paper is organised as follows:

• Firstly, preliminary concepts, notation and basic definitions are introduced: specifically, it

is worth to note the definition of literal and the way some of them will be denoted.

• Secondly, ∆-lists, the basic tool of the TAS methodology, are introduced. This definition

extends that given in [2], and eases the reduction process by integrating some reduction into

the calculation of the ∆-lists. The required theorems to show how to use the information

collected in those lists are proved.

• Later, the ∆̂-sets are defined and results that use the information in these sets are stated.

One of these is a generalisation of the pure literal rule.

• Finally, some examples are included.

2 Preliminary Concepts and Definitions

Definition 1 Let V be a numerable set of propositional variables and n =
{

0, 1
n−1 , 2

n−1 , . . . , n−2
n−1 , 1

}
.

Consider the set lit defined as

lit = {S:p | S ⊆ n, p ∈ V}

whose elements are named literals or atoms, and the free algebra (form,∨,∧), generated by

lit with binary operations ∨ and ∧. The n-valued signed logic for V, denoted by Sn(V), is

determined by the language (form,∨,∧) and the semantics defined as

• The truth values are bool = {0, 1}.

• The only designated truth value is 1

• A signed assignment is any application I : Sn(V) → {0, 1} verifying:

2

1. For each p ∈ V there is one, and only one, j ∈ n such as I({j}:p) = 1.

2. I(S:p) = 1 if there exists j ∈ S such as I({j}:p) = 1; otherwise, I(S:p) = 0.

3. I(A ∧ B) = min{I(A), I(B)}.

4. I(A ∨ B) = max{I(A), I(B)}.

Throughout the rest of the paper we assume that the set V is completely ordered (in this work

we will use the alpha-numeric ordering); `p denotes a literal with variable p, i.e. `p = S : p for

some S ⊆ n. The set of literals with propositional variable p will be denoted litp. We will also

use the usual notions of clause (disjunction of literals) and cube (conjunction of literals).

Sub(A) denotes the set of subformulas of A; B v A denotes that B is a subformula of A and

B < A denotes that B is a proper subformula of A.

A formula A is said to be satisfiable if there exists a signed assignment I such that I(A) = 1,

in this case I is said to be a model for A; formulas A and B are said to be equisatisfiable

if A is satisfiable iff B is satisfiable; ≡ denotes the semantic equality; |= denotes the logical

consequence. For each p and for all signed assignment I we have I(∅:p) = 0 and I(n:p) = 1; we

introduce the symbols ⊥ and > to represent these formulas, i.e. ⊥ = ∅:p and > = n:p.

By using the associative laws we will consider expressions like A1 ∨ · · · ∨An or A1 ∧ · · · ∧An

as formulas. Given a signed formula A, the syntactic tree of A, denoted by TA, is defined as

follows:

1. If A is a literal or a logical constant (either > or ⊥), then TA is A.

2. If A = Θn
i=1Ai, where Θ is either

∧
or

∨
, then

TA = Θ

TA1
TA2

. . . TAn

We will use the standard notion of tree and address of a node in a tree (see for instance [5]).

Given a formula A, if B v A, then ηB denotes the address of the node in TA corresponding to

B; specifically, ηA = ε. Conversely, given a formula A and an address η in TA, the expression

Node(η) means the subformula of A corresponding to η in TA.

In the rest of the paper, A will denote either a formula or its syntactic tree, being the context

which clarifies the meaning.

• If A, B and C are signed formulas, and B v A, then A[B/C] denotes the result of

substituting in A any occurrence of B by C.

• If η is an address in A and C is another signed formula, then the expression A[η/C] is the

formula obtained after substituting in A the subtree rooted at address η by C.

• Finally, we will consider expressions like A[∗1/∗
′
1, . . . , ∗m/∗′m] where ∗i/∗

′
i is any of the

substitutions introduced above.

3

We will also use lists with its standard notation; elements in a list are written in juxtaposition;

nil denotes the empty list; if α and β are lists, ` ∈ α denotes that ` is an element of α; α ⊆ β

means that all elements of α are elements of β;

2.1 The Boole Algebras of literals

For each p ∈ V we define an ordering in litp, denoted ≤, as follows:

S1:p ≤ S2:p iff S1:p |= S2:p or, equivalently, S1 ⊆ S2

Obviously, this ordering makes litp a Boole algebra isomorphic to (℘(n), c,∪,∩) for all p. The

operations in these algebras are denoted ,̄ ∨ and ∧; specifically:

S:p = Sc:p, S1:p ∨ S2:p ≡ (S1 ∪ S2):p, S1:p ∧ S2:p ≡ (S1 ∩ S2):p

If ` is a literal, ` is called the opposite literal to `; if α = `1`2 . . . `n is a list of literals, then

α = `1 `2 . . . `n.

Throughout this work, literals {j}:p and their negated will play an important role;2 so we

will adopt the following simpler notation:

pj = {j}:p

By using these literals, we have a disjunctive and a conjunctive expression for each literal S:p,

namely

S:p =
∧

j∈Sc

pj, S:p =
∨

j∈S

pj

Thus we introduce, for each p ∈ V the following subsets of litp:

lit+
p = {pj | j ∈ n} ∪ {>} lit−

p = {pj | j ∈ n} ∪ {⊥}

and also

lit+ =
⋃

p∈V

lit+
p lit− =

⋃

p∈V

lit−
p

Finally, we will also use the following sets of lists:

• Llit− is the set of lists of elements in lit−, i.e. lists of negative literals.

• Llit+ is the set of lists of elements in lit+, i.e. lists of positive literals.

• Llit
−
⊥ is the set Llit− where those lists containing either ⊥ or a set lit−

p for some

propositional variable p are identified with ⊥.

• Llit
+
> is the set Llit+ where those lists containing either > or a set lit+

p for some

propositional variable p are identified with >. 3

2In fact, single truth values can be used as signs for our purposes: Since our formulas may be arbitrarily

nested, a sign can always be replaced by a disjunction of singleton signed literals and vice-versa. Anyway, the

development does not get substantially improved with this simplification and complicates the presentation of the

examples.
3Formally, the sets Llit

−

⊥
and Llit

+

>
are quotient sets of Llit

− and Llit
+ under the equivalence relations

<− and <+ defined as: if α = β ∈ Llit
− then α<−β; if ⊥ ∈ α, then ⊥<−α; if lit

−

p ⊆ α for some p, then ⊥<−α,

and if α = β ∈ Llit
+ then α<+β; if > ∈ α, then ><+α; if lit

+
p ⊆ α for some p, then ><+α.

4

3 Adding Information to the Tree: ∆-lists and ∆̂-sets

As in every TAS method, the underlying idea is the use of information given by partial assign-

ments; in the classical case these were unitary assignments and in the multiple-valued case will

be assignments like I(S : p) = 1 or I(S : p) = 0.

We associate to each signed formula A:

• two lists denoted ∆0(A) and ∆1(A), in Llit
−
⊥ and Llit

+
> respectively, these lists are called

the associated ∆-lists of A;

• two sets of lists, denoted ∆̂0(A) and ∆̂1(A), whose elements are obtained out of the

associated ∆-lists of the subformulas of A.

The ∆-lists and the ∆̂-sets are the key tools of our method to reduce the size of the formula

being analysed for satisfiability.

3.1 The ∆-lists

In a nutshell, ∆0(A) and ∆1(A) are either a logical constant (⊥ or >, respectively) or lists of

unitary implicates/implicants of A, respectively. The purpose of these lists is two-fold: firstly,

to transform the formula A into an equivalent and smaller-sized one (Section 3.2), and secondly,

by means of the ∆̂b sets (Section 3.3), to get an equisatisfiable and smaller-sized one. Its formal

definition is the following:

Definition 2 Given a signed formula A, the lists ∆0(A) ∈ Llit
−
⊥ and ∆1(A) ∈ Llit

+
⊥ are

recursively defined as:

∆0(⊥) = ⊥, ∆1(⊥) = nil

∆0(>) = nil, ∆1(>) = >

∆0(S:p) = pj1 . . . pjm, if Sc = {j1, . . . , jm}, and ∅ 6= S 6= n

∆1(S:p) = pj1 . . . pjm, if S = {j1, . . . , jm}, and ∅ 6= S 6= n

∆0

(∧
i∈I Ai

)
=

⋃
i∈I ∆0(Ai)

∆0

(∨
i∈I Ai

)
=

⋂
i∈I ∆0(Ai)

∆1

(∧
i∈I Ai

)
=

⋂
i∈I ∆1(Ai)

∆1

(∨
i∈I Ai

)
=

⋃
i∈I ∆1(Ai)

As ∆0-list is in Llit
−
⊥ and a ∆1-list is in Llit

+
>, elements in ∆0-lists (resp. ∆1-lists) can be

considered as conjunctively (resp. disjunctively) connected.

Example 1: In a four-valued signed logic, we have:

1. ∆0({1/3,1}:p) = p0p2/3

∆1({1/3,1}:p) = p1/3p1

5

2. ∆0({0,2/3}:p ∨ {1/3}:q ∨ {2/3,1}:r) = nil

∆1({0,2/3}:p ∨ {1/3}:q ∨ {2/3,1}:r) = p0p2/3q 1/3r 2/3r1

3. ∆0({2/3,1}:p ∧ {1}:r ∧ {0,2/3}:q) = p0p1/3q 1/3q1r0r 1/3r 2/3

∆1({2/3,1}:p ∧ {1}:r ∧ {0,2/3}:q) = nil

4. ∆0

(
({0,1/3}:p ∧ {1}:q) ∨ ({1/3,1}:p ∧ {0,1}:r)

)
= p2/3

∆1

(
({0,1/3}:p ∧ {1}:q) ∨ ({1/3,1}:p ∧ {0,1}:r)

)
= nil

5. ∆0

(
({1/3,1}:p ∨ {1/3,2/3}:q) ∧ {0,1}:p

)
= p1/3p2/3

∆1

(
({1/3,1}:p ∨ {1/3,2/3}:q) ∧ {0,1}:p

)
= p1

6. ∆0

(
{0,2/3}:p ∧ ({1}:p ∨ ({1/3,2/3}:q ∧ {1/3}:p))

)
= p0p1/3p2/3p1 = ⊥

∆1

(
{0,2/3}:p ∧ ({1}:p ∨ ({1/3,2/3}:q ∧ {1/3}:p))

)
= nil

2

3.2 Information in the ∆-lists

In this section we study the information contained in the ∆-lists of a given formula. Our first

theorem states that literals in ∆0(A) are unitary implicates of A, and literals in ∆1(A) are

unitary implicants of A.

Theorem 1 Let A be a signed formula and ` be a literal in A then:

1. If ` ∈ ∆0(A), then A |= `′ for all `′ ≥ `; equivalently, A ≡ `′ ∧ A for all `′ ≥ `.

2. If ∆0(A) = ⊥, then A ≡ ⊥.

3. If ` ∈ ∆1(A), then `′ |= A for all `′ ≤ `; equivalently, A ≡ `′ ∨ A for all `′ ≤ `.

4. If ∆1(A) = >, then A ≡ >.

Proof:

1. For literals, the result is trivial: if A = S:p and Sc = {j1, . . . , jm}, then ∆0(A) = pj1 . . . pjm

and A ≡
∧

ji∈Sc pji.

Assume that for all formulas X with degree k < n we have:

If ` ∈ ∆0(X), then X |= `

Let A be a formula of degree n.

• If A = A1 ∨ A2 and ` ∈ ∆0(A), then ` ∈ ∆0(A1) and ` ∈ ∆0(A2); by the induction

hypothesis we have A1 |= ` and A2 |= `, therefore A |= `.

• If A = A1 ∧ A2 and ` ∈ ∆0(A), then ` ∈ ∆0(Ai) for some i; consequently, Ai |= ` and, by

using A |= Ai, we get A |= `.

6

2. For literals, the result is trivial: we have ∆0(S:p) = ⊥ if and only if S = ∅, i.e. S:p = ⊥.

Assume that for all formulas X with degree k < n we have:

If ∆0(X) = ⊥, then X ≡ ⊥

If ∆0(A) = ⊥ and A =
∨n

i=1 Ai, then, by definition, ∆0(Ai) = ⊥ for all i; now, by the induction

hypothesis Ai ≡ ⊥ for all i and, therefore, A ≡ ⊥.

If ∆0(A) = ⊥ and A =
∧n

i=1 Ai, then we have to consider two cases:

• ∆0(Ai) = ⊥ for some i, and thus Ai ≡ ⊥ and A ≡ ⊥;

• There is p ∈ V such that for all j ∈ n, there exists i such that pj ∈ ∆0(Ai); therefore,

A |=
∧

j∈n
pj and, by

∧
j∈n

pj ≡ ⊥, we have A ≡ ⊥.

The proof for the part Norm(∆1(A)) |= A is similar.

qed

In the statement of the following corollary we use the operator Norm which makes explicit the

fact that ∆0-lists (∆1-lists) are considered conjunctively (disjunctively) connected: If α ∈ Llit
+
>,

then Norm(α) is obtained from
∨

`∈α ` by using the simplification S1:p ∨ S2:p ≡ (S1 ∪ S2):p and

the 0-1 laws; if α ∈ Llit
−
⊥ then Norm(α) is obtained from

∧
`∈α ` by using the simplification

S1:p ∧ S2:p ≡ (S1 ∩ S2):p and the 0-1 laws.

The corollary below states some properties of the formula Norm(∆b(A) with respect to the

formula A.

Corollary 2

1. Norm(∆1(A)) |= A |= Norm(∆0(A))

2. If C is a cube, then C ≡ Norm(∆0(C))

3. If C is a clause, then C ≡ Norm(∆1(C))

The following result on the structure of the ∆-lists shows the possibility of determining when a

given formula is equivalent to a literal. Its proof is immediate from Theorem 1.

Corollary 3

1. For every signed formula A one and only one of the following statements hold:

• There is b ∈ {0, 1} such as ∆b(A) = nil

• There exists p ∈ V such that all elements of ∆0(A) are elements of lit−
p and all

elements of ∆1(A) are elements of lit+
p .

2. If pj1 ∈ ∆1(A) and pj0 ∈ ∆0(A), then j1 6= j0.

3. If Norm(∆0(A)) = Norm(∆1(A)) = C, then C is a literal and A ≡ C.

The following corollary states that the non-empty ∆1-lists might directly detect the satisfiability

of a formula.

7

Corollary 4

If ∆1(A) 6= nil, then A is satisfiable, moreover if pj ∈ ∆1(A), then any assignment I such that

I(pj) = 1 is a model for A.

On the other hand, the following result states conditions on the ∆-lists assuring the validity or

unsatisfiability of a formula.

Corollary 5

Let A be a signed formula, then

1. If A =
∧n

i=1 Ai in which a conjunct Ai0 with i0 ∈ {1, . . . , n} is a clause such that ∆1(Ai0) ⊆

∆0(A), then A ≡ ⊥.

2. If A =
∨n

i=1 Ai in which a disjunct Ai0 with i0 ∈ {1, . . . , n} is a cube such that ∆0(Ai0) ⊆

∆1(A), then A ≡ >.

Proof:

1. Consider A =
∧n

i=1 Ai, let Ai0 be a clause such that ∆1(Ai0) = `1 . . . `m then, by Corol-

lary 2, Ai0 ≡ `1 ∨ · · · ∨ `m; let us denote C the latter disjunction. On the other hand, as

∆1(Ai0) ⊆ ∆0(A) , by Theorem 1, we have A ≡ A ∧ (`1 ∧ · · · ∧ `m) = A ∧ ¬C, therefore:

A ≡ C ∧ A ≡ C ∧ (¬C ∧ A) ≡ ⊥

2. It is similar to the previous one.

qed

The following definitions name those formulas for which validity or unsatisfiability can be de-

termined directly from their ∆-lists.

Definition 3 Let A be a signed formula; then it is said that A is:

• finalizable if one of the following conditions holds:

1. ∆1(A) 6= nil.

2. ∆0(A) = ⊥.

• ∆0-conclusive if one of the following conditions holds:

1. ∆0(A) = ⊥.

2. A =
∧n

i=1 Ai and a conjunct Ai0 is a clause such that ∆1(Ai0) ⊆ ∆0(A).

• ∆1-conclusive if one of the following conditions holds:

1. ∆1(A) = >.

2. A =
∨n

i=1 Ai and a disjunct Ai0 is a cube such that ∆0(Ai0) ⊆ ∆1(A).

8

• `-simple if A is not a literal and Norm(∆0(A)) = Norm(∆1(A)) = `.

The previous results characterise the information that must be in the ∆-lists to have complete

information about satisfiability; when all these definitions are applied exhaustively to simplify

formula, the resulting one is said to be ∆-restricted ; its formal definition is the following:

Definition 4 Let A be a signed formula then it is said that A is ∆-restricted if it satisfies the

following conditions:

• it is not finalizable,

• it has no subtree which is either ∆0-conclusive, or ∆1-conclusive, or `-simple,

• it has neither > nor ⊥ leaves.

Definition 5 If A is a signed formula, to ∆-label A means to associate to each4 node N in A

the ordered pair
(
∆0(N),∆1(N)

)
.

Remark 1 By the previous results we can state that if A is a signed formula, then after ∆-

labelling A we get a ∆-restricted formula by applying the following steps:

• Substitute a subformula B v A by either > (if B is ∆1-conclusive), or ⊥ (if B is ∆0-

conclusive) or a literal ` (if B is `-simple).

• Simplify a constant > or ⊥, as soon as it is introduced by using the 0-1-laws.

• If A is finalizable, conclude the satisfiability of A (if ∆1(A) 6= nil) or its unsatisfiability

(if ∆0(A) = ⊥).

Example 2: Consider the formula

({0,1/3,1}:p ∨ ({1}:p ∧ {0}:r)) ∧ ({2/3}:p ∨ {1/3,1}:r)

whose labelled syntactic tree is

∧(p2/3,nil)

(1) ∨(p2/3,p0p1/3p1)

{0,1/3,1}:p ∧(p0p1/3p2/3r1/3r2/3r1,nil)

{1}:p {0}:r

∨(nil,p2/3r1/3r1)

{2/3}:p {1/3,1}:r

4Regardless what this definition says, no leaf will be labelled in the examples.

9

In node 1 in the previous formula we have Norm(p 2/3) = Norm(p0p1/3p1) = {0,1/3,1}:p, i.e. it is

{0,1/3,1}:p-simple and, therefore, the formula is equivalent to

∧(p2/3,nil)

{0,1/3,1}:p ∨(nil,p2/3r1/3r1)

{2/3}:p {1/3,1}:r

This formula is ∆-restricted.

2

New applications of the ∆-lists to get information (up to equivalence) of a formula A is

given by the following result, which is an important generalisation of the corresponding one in

Classical Logic; in spite of its greater metatheoretical difficulty, it allows to extend the result in

a natural manner and preserve the good computational behaviour.

Theorem 6 Let A be a signed formula:

1. Assume pj ∈ ∆0(A) and let η1 and η2 be two arbitrary addresses in A such that Node(η1) 6=

pj and Node(η2) 6= pj; then

A ≡ pj ∧ A[pj/>, pj/⊥, η1/ Node(η1) ∧ pj, η2/ Node(η2) ∨ pj]

2. Assume pj ∈ ∆1(A) and let η1 and η2 be two addresses in A such that Node(η1) 6= pj and

Node(η2) 6= pj; then

A ≡ pj ∨ A[pj/>, pj/⊥, η1/ Node(η1) ∧ pj, η2/ Node(η2) ∨ pj]

Proof:

1. By Theorem 1 we have A ≡ pj ∧ A. Let I be a signed assignment:

(a) If I(pj) = 0, then I(pj ∧ B) = 0 for all B, therefore:

I(A) = I(pj ∧ A) = 0 = I(pj ∧ A[pj/>, pj/⊥, η1/ Node(η1) ∧ pj, η2/ Node(η2) ∨ pj])

(b) If I(pj) = 1, then I(pj) = 0, I(pj ∧ B) = I(B) and I(pj ∨ B) = I(B) for all B;

therefore:

I(A) = I(pj ∧ A) = I(pj ∧ A[pj/>, pj/⊥, η1/ Node(η1) ∧ pj, η2/ Node(η2) ∨ pj])

2. Similar.

qed

10

Remark 2 The different possibilities of substitutions that can be applied by using this theorem

will be exploited in the definition of the ∆̂-sets. Specifically, substitutions A[pj/>, η1/ Node(η1)∧

pj] are encoded in the function Filter, to be used in the construction of the ∆0-sets, and

substitutions A[pj/⊥, η2/ Node(η2) ∨ pj] are encoded in the function Filter to be used in the

construction of the ∆1-sets.

The following result is a consequence of the theorem above; in its statement, the following

notation will be used: If Γ is a set of literals and ` /∈ Γ then A[Γ/Γ ∧ `] is the formula obtained

after substituting in A, every occurrence of `′ ∈ Γ by `′ ∧ `.

Theorem 7 If pj ∈ ∆0(A) and Γ = litpr{pj}, then A is satisfiable if and only if A[pj/>,Γ/Γ∧

pj] is satisfiable. If they are satisfiable, then there is a model I of A verifying I(pj) = 0.

Proof:

From the previous theorem

A ≡ pj ∧ A[pj/>,Γ/Γ ∧ pj] (1)

Now the necessary condition is immediate.

Conversely, let I be a signed assignment such that I(A[pj/>,Γ/Γ ∧ pj]) = 1. Then:

• If I(pj) = 0, then I(pj) = 1 and I(A) = 1 from equivalence (1).

• If I(pj) = 1, then I(pj) = 0 and I(`p) = 0 for all `p in A[pj/>,Γ/Γ ∧ pj], for `p ≡

`′p ∧ pj; considering any assignment J verifying J(qi) = I(qi) if q 6= p, J(pi) = I(pi) if

i 6= j, and J(pj) = 0, we have, by monotonicity of boolean conjunction and disjunction,

J(A[pj/>,Γ/Γ ∧ pj]) = 1 and therefore:

J(A) = J(pj ∧ A[pj/>,Γ/Γ ∧ pj]) = J(A[pj/>,Γ/Γ ∧ pj]) = 1

qed

Example 3: Consider the formula with the syntactic tree below:

∨(p2/3,nil)

∧(p2/3q0q1/3,nil)

{0,1/3,1}:p {2/3,1}:q

∧(p0p1/3p2/3r1/3r2/3r1,nil)

{1}:p {0}:r

An application of the theorem above leads to the following equisatisfiable formula

11

∨(nil,q2/3q1)

{2/3,1}:q ∧(p0p1/3p2/3r1/3r2/3r1,nil)

{1}:p {0}:r

2

3.3 The ∆̂-sets

Given a ∆-restricted signed formula A, we define the sets ∆̂0(A) and ∆̂1(A), whose elements are

pairs (α, η) where α is a ∆-list associated to a subformula B of A, and η is the address of B in

A. The purpose of these sets is to transform the formula A into an equisatisfiable and smaller

sized one.

The definition of these sets is given informally below:

Definition 6 Let A be a ∆-restricted signed formula. For b ∈ {0, 1}, the set ∆̂b(A) is recursively

defined as follows:

• If ` is a literal, then ∆̂0(`) = ∆̂1(`) = ∅

• Otherwise, ∆̂b(A) is defined as the set {(Filter(∆b(B)), ηB) | B is a subformula of A}

where Filter(∆b(B) is the result of

1. Framing a literal `p if it is in ∆b(B) and one of the following conditions hold:

(a) `p ∈ ∆b(B
′) where B < B ′.

(b) `p ∈ ∆b(B
′) where B < B ′.

2. Add `p to ∆b(B) if `p /∈ ∆b(B) but litp∩∆b(B) 6= ∅ and either `p ∈ ∆b(B
′) or `p ∈ ∆b(B

′)

where B < B ′.

3. Determining the subformulas which can be substituted by either a constant or a literal, by

using the simplifications below:

• If b = 0, identify the list with ⊥ if it includes all the literals in lit−
p (either framed

or unframed) for some p.

• If b = 1, identify the list with > if it includes all the literals in lit+
p (either framed

or unframed) for some p.

In the following example, the calculation in great detail of the ∆̂-sets for a four-valued signed

formula is introduced.

12

Example 4: Let us calculate the ∆̂-sets for the following signed formula in S4

A = (({1/3,2/3,1}:p ∧ ({1/3,1}:p ∨ ({0}:q ∧ {0,2/3}:r))) ∨ {1}:q ∨ {1/3,2/3}:r)

∧ (({0,1/3,1}:p ∧ {2/3,1}:q) ∨ ({1}:p ∧ {0}:r)) ∧ ({2/3}:p ∨ {1/3,1}:r)

The ∆-labelled syntactic tree of the formula is:

∧(p2/3,nil)

∨(nil,p1/3p1q1r1/3r2/3)

∧(p0,p1/3p1)

{1/3,2/3,1}:p ∨(nil,p1/3p1)

{1/3,1}:p ∧(q1/3q2/3q1r1/3r1,nil)

{0}:q {0,2/3}:r

{1}:q {1/3,2/3}:r

∨(p2/3,nil)

∧(p2/3q0q1/3,nil)

{0,1/3,1}:p {2/3,1}:q

∧(p0p1/3p2/3r1/3r2/3r1,nil)

{1}:p {0}:r

∨(nil,p2/3r1/3r1)

{2/3}:p {1/3,1}:r

The ∆0-lists for this formula are the following:

• ∆0(Node(1122)) = q 1/3 q 2/3 q1 r 1/3 r1.

Literals q1 and r 1/3 get framed because they are dominated (by literals q1 and r 1/3 in

node 1). In addition, since r 2/3 also dominates this node, therefore r 2/3 is added to this

address.5 The output of Filter for this node is q 1/3 q 2/3 q1 r 1/3 r 2/3 r1.

• ∆0(Node(11)) = p0.

Literals p1/3 and p1 affect this node from address 1, and literal p 2/3 affects this node from

the root. The filtering of this ∆-list would be p0 p 1/3 p2/3 p1. In addition, as we are in S4,

these are all the possibilities for p, so the final result is (⊥, 11).

• ∆0(Node(21)) = p2/3 q0 q 1/3.

In this case, only p2/3 gets affected by the filtering process, the final result is p 2/3 q0 q 1/3.

• ∆0(Node(22)) = p0 p1/3 p2/3 r 1/3 r 2/3 r1.

Only p2/3 gets affected by the filtering process, the final result is p0 p 1/3 p2/3 r 1/3 r 2/3 r1.

• ∆0(Node(2)) = p2/3.

Once again, only p2/3 gets affected, and the final result is p 2/3 .

5Note that there are literals on the variable p affecting this node, but we don’t bother about those literals

because there are no occurrences of p in this ∆-list.

13

• ∆0(A) = p2/3. As no node dominates the root, no filtering applies.

After the filtering process, we have that

∆̂0(A) = {(q 1/3 q 2/3 q1 r 1/3 r 2/3 r1, 1122), (⊥, 11), (p2/3, ε), (p2/3 q0 q 1/3, 21),

(p0 p1/3 p2/3 r 1/3 r 2/3 r1, 22), (p2/3 , 2)}

The ∆1-lists for this formula are the following:

• ∆1(Node(112)) = p1/3p1.

This is dominated by p0 at address 11 and by p 2/3 at the root. Therefore, the result would

be p0 p1/3 p2/3 p1, but as we are in S4, a simplification applies and the final output is

(>, 112).

• ∆1(Node(11)) = p1/3p1.

Here, literals p1/3 and p1 get affected from node 1, in addition p 2/3 dominates this node

from the root. The final result after filtering is p 1/3 p2/3 p1.

• ∆1(Node(1)) = p1/3p1q1r 1/3r 2/3.

In this case, p2/3 dominates this node. The result is p 1/3 p2/3 p1 q1 r 1/3 r 2/3.

• ∆1(Node(3)) = p2/3r 1/3r1.

Here, only p2/3 gets dominated. The result is p2/3 r 1/3 r1.

After the filtering process, we have that

∆̂1(A) = {(>, 112), (p1/3 p2/3 p1 , 11), (p1/3 p2/3p1q1r 1/3r 2/3, 1), (p2/3r 1/3r1, 3)}

2

Note the following consequences from the definition of the ∆̂b-sets for a given ∆-restricted

signed formula A and b ∈ {0, 1}:

1. If α = ∆0(A) 6= nil, then (α, ε) ∈ ∆̂0(A), α 6= ⊥ and α does not have framed literals.

(Just note that a literal ` ∈ α is framed in (α, η) from the information in the ∆-lists of its

ancestors).

2. For every literal in ∆̂0(A) ∪ ∆̂1(A), at least one of its occurrences is not framed.

3. As A is a ∆-restricted signed formula then no element in ∆̂1(A) is (α, ε).

4. If (α, η) ∈ ∆̂b(A), then η is not the address of a leaf of TA (since ∆̂0(`) = ∆̂1(`) = ∅ for

all literal `).

The following theorem states that, as the ∆-labels, the ∆̂-labels also allow substitution of

subformulas in A by either >, or ⊥, or a literal.

14

Theorem 8 Let A be a ∆-restricted signed formula then

1. If (⊥, η) ∈ ∆̂0(A), then

A ≡

{
A[η/⊥] if ∆1(Node(η)) = nil

A[η/ Norm(∆1(Node(η)))] otherwise

2. If (>, η) ∈ ∆̂1(A), then

A ≡

{
A[η/>] if ∆0(Node(η)) = nil

A[η/ Norm(∆0(Node(η)))] otherwise

We will use the following technical lemma to prove the theorem.

Lemma 9 Let A be a signed formula, η 6= ε an address in A and C = Node(η); then:

1. If pj ∈ ∆0(A), then A ≡ A[η/pj ∧ C].

2. If pj ∈ ∆0(A), then A ≡ pj ∧ A[η/pj ∨ C].

3. If pj ∈ ∆1(A), then A ≡ pj ∨ A[η/pj ∧ C].

4. If pj ∈ ∆1(A), then A ≡ A[η/pj ∨ C].

Proof:

1. Assume that pj ∈ ∆0(A) and consider an assignment I.

• If I(pj) = 0, then I(C) = I(pj ∧ C) and therefore I(A) = I(A[η/pj ∧ C]).

• If I(pj) = 1, then I(A) = 0 since A ≡ pj∧A; on the other hand, I(pj∧C) = 0 ≤ I(C);

then, by monotonicity of boolean conjunction and disjunction, I(A[η/pj ∧ C]) ≤

I(A) = 0 and therefore I(A[η/pj ∧ C]) = 0.

2. 3. and 4. The proof is similar.

qed

Proof of Theorem 8:

1. Suppose that (⊥, η) ∈ ∆̂0(A) and consider C = Node(η). By the definition of ∆̂0(A) there

exist subformulas B1, . . . Bm, with6 1 ≤ m < n and p ∈ V such that:

• C < B1 < · · · < Bm v A.

• ∆0(C) ∩ lit−
p 6= ∅ and for all ` ∈ lit−

p either ` ∈ ∆0(C) or there exists Bi such that

` ∈ ∆0(Bi) ∪ ∆1(Bi).

6Recall that n denotes the number of truth values.

15

By Corollary 2 we have C ≡ X ∨ (Norm(∆0(C)) ∧ C), where the formula X is defined as

follow:

X =

{
⊥ if ∆1(Node(η)) = nil

Norm(∆1(Node(η)) otherwise

Therefore, A ≡ A[η/X ∨ (Norm(∆0(C)) ∧ C)] and this substitution does not change the

∆-lists associated to the ascendant nodes of η.7

Let Γ be the list obtained by ordering the elements in lit−
p r ∆0(C). For all ` ∈ Γ, there

exists i with 1 ≤ i ≤ m such that ` ∈ ∆0(Bi)∪∆1(Bi); now, by items 1 and 3 of Lemma 9,

we have either Bi ≡ Bi[η/` ∧ C] (if ` ∈ ∆0(Bi)) or Bi ≡ ` ∨ Bi[η/` ∧ C] (if ` ∈ ∆1(Bi));

as the ∆1-lists are invariant under those substitutions (only the ∆0-lists of the ascendant

nodes can be increased), all the substitutions can be applied one after the other and we

get:

A ≡ A
[
η/X ∨

(
Norm(∆0(C)) ∧ Norm(Γ) ∧ C

)]

finally, as Norm(∆0(C)) ∧ Norm(Γ) ≡ ⊥ we have that

A ≡ A[η/X]

2. Similar, by using items 2 and 4 in Theorem 8.

qed

Remark 3 Note that, as with the ∆-labels, the formula obtained in the previous theorem

after substituting is equivalent to the initial formula, but there is a substantial difference: the

information given by the ∆-lists substitutes subformulas which are equivalent to either > or ⊥

or a literal; however, under the hypotheses of this theorem, it needn’t be true that Node(η) is

equivalent to either > or ⊥ or a literal.

Definition 7 Let A be an signed formula; then it is said that A is restricted if it is ∆-restricted

and satisfies the following:

• There are not elements (⊥, η) in ∆̂0(A).

• There are not elements (>, η) in ∆̂1(A).

Definition 8 If A is a signed formula, to label TA means ∆-label TA and to associate to the

root of TA the ordered pair
(
∆̂0(A), ∆̂1(A)

)
.

Remark 4 Note that given a ∆-restricted signed formula, A, after calculating
(
∆̂0(A), ∆̂1(A)

)

we get either the (un)satisfiability of A or an equivalent and restricted signed formula by means

of the substitutions determined by Theorem 8, and the 0-1-laws.

7Note that if (⊥, η) ∈ c∆0(A), then ∆0(Node(η)) 6= nil; thus, either ∆1(Node(η)) = nil or Norm(∆1(Node(η)))

is a literal.

16

Example 5: Following with the formula in the previous example; as (⊥, 11) ∈ ∆̂0(A) and

∆1(Node(11)) = p1/3p1, node 11 is substituted by the literal {1/3,1}:p and we obtain the following

formula B which is equivalent to A:

B = ∧(p2/3,nil)

∨(nil,p1/3p1q1r1/3r2/3)

{1/3,1}:p {1}:q {1/3,2/3}:r

∨(p2/3,nil)

∧(p2/3q0q1/3,nil)

{0,1/3,1}:p {2/3,1}:q

∧(p0p1/3p2/3r1/3r2/3r1,nil)

{1}:p {0}:r

∨(nil,p2/3r1/3r1)

{2/3}:p {1/3,1}:r

The ∆̂-sets for B are:

∆̂0(B) = {(p2/3, ε), (p2/3 q0 q 1/3, 21), (p0 p1/3 p2/3 r 1/3 r 2/3 r1, 22), (p2/3 , 2)}

∆̂1(B) = {(p1/3 p2/3p1q1r 1/3r 2/3, 1), (p2/3r 1/3r1, 3)

Therefore, B is restricted.

2

3.4 Some satisfiability-preserving results

The following result is the global counterpart of Theorem 7, where we state the way in which

the the information of the ∆̂-sets is used to translate a signed formula A into an equisatisfiable

and smaller sized A′. In addition, we give information about a possible model by restricting the

set of truth-values for some variables in A.

Corollary 10 (Complete Reduction) Let A be a signed formula such that (α, ε) ∈ ∆̂0(A),

α = p1j1 . . . pmjm; for all i with 1 ≤ i ≤ m consider Γi = lit−
pi

r {piji}; and consider also the

formulas Ai for all i, recursively defined as:

A1 = A[p1j1/>,Γ1/Γ1 ∧ p1j1], Ak = Ak−1[pkjk/>,Γk/Γk ∧ pkjk] for 2 ≤ k ≤ m

Then, A is satisfiable if and only if Am is satisfiable; in this case there is a model verifying

I(piji) = 0 for all i.

Example 6: From the previous example; as p 2/3 ∈ ∆0(B), with an application of Theorem 7,

making the substitutions [p2/3/>], [p2/3/⊥], [`p/p2/3∧ `p], we obtain a formula C equisatisfiable

with B, and the information I(p2/3) = 0 is stored for a possible model:

17

C = ∧(r0r2/3,nil)

∨(nil,p1/3p1q1r1/3r2/3)

{1/3,1}:p {1}:q {1/3,2/3}:r

∨(nil,q2/3q1)

{2/3,1}:q ∧(p0p1/3p2/3r1/3r2/3r1,nil)

{1}:p {0}:r

{1/3,1}:r

The ∆̂-sets for C are:

∆̂0(C) = {(r0r 2/3, ε), (⊥, 22)}

∆̂1(C) = {(p1/3p1q1 r0r 1/3 r 2/3 , 1), (q 2/3q1, 2)}

After substituting node 22 by ⊥ we get the following formula

D = ∧(q0q1/3r0r2/3,nil)

∨(nil,p1/3p1q1r1/3r2/3)

{1/3,1}:p {1}:q {1/3,2/3}:r

{2/3,1}:q {1/3,1}:r

The ∆̂-sets for D are:

∆̂0(D) = {(q0q 1/3r0r 2/3, ε)

∆̂1(D) = {(p1/3p1 q0 q 1/3q1 r0r 1/3 r 2/3 , 1)}

A final application of complete reduction leads to

E = ∧(q0q1/3r0r2/3,nil)

∨(nil,p1/3p1q1r1/3)

{1/3,1}:p {1}:q {1/3}:r

{2/3,1}:q {1/3,1}:r

The ∆̂-sets for E are:

∆̂0(E) = {(q0q 1/3r0r 2/3, ε)

∆̂1(E) = {(p1/3p1 q0 q 1/3q1 r0r 1/3 r 2/3 , 1)}

2

In [3], the following generalisation of the pure literal rule was introduced in the framework

of Signed Logic:

18

Definition 9 Let A be a signed formula and p ∈ V. A literal pj is said to be pure in A if for

all leaf S : p in A we have j ∈ S

Theorem 11 (Pure literal rule) Let A be a signed formula and assume pj is pure in A.

Then, A is satisfiable if and only if A[litp/>] is satisfiable; equivalently, if A has a model I

such that I(pj) = 1.

Proof:

The sufficiency is trivial. For the converse, assume that I(A) = 1 and consider the assignment

J defined as J(qi) = I(qi) if q 6= p, and J(pj) = 1; since pj is pure in A, if S : p is a leaf in

A, then j ∈ S and, therefore, J(S : p) = 1; now, by monotonicity of boolean conjunction and

disjunction we have J(A) ≥ I(A) and

1 = J(A) = J(A[litp/>]) = I(A[litp/>])

qed

Example 7: In the formula in the previous example, literals p 1/3, q1 and r 1/3 are pure. By the

pure literal rule, formula E is transformed into >, therefore E is satisfiable, being I(p 1/3) = 1,

I(q1) = 1 and I(r 1/3) = 1 a model for A.

2

We introduce below an important generalisation of the previous theorem. Firstly, we gener-

alise the definition of pure literal by using our ∆̂-sets.

Definition 10 Let A be a signed formula. Literal pj is said to be ∆̂-pure in A if the following

conditions hold:

1. pj does not occur unframed in ∆̂0(A).

2. If (α, η) ∈ ∆̂1(A) and α ∩ lit+
p ne∅, then pj ∈ α (possibly framed).

Theorem 12 (Extended pure literal rule) Let A be a signed formula and pj a ∆̂-pure lit-

eral in A. Then, A is satisfiable if and only if the formula A[litp/>]; equivalently, A is satisfiable

if and only if it has a model I such that I(pj) = 1.

Proof:

Let S:p be a literal in A such that j /∈ S. As pj is ∆̂-pure we have two cases:

• If S:p is a child of a conjunction B = Node(η), then (α, η) ∈ ∆̂0(A) and pj ∈ α.

• If S:p is a child of a disjunction B = Node(η), then (α, η) ∈ ∆̂1(A) and pj ∈ α.

In both cases, by the definition of the ∆̂-sets and ∆̂-pure literal, we have that S:p has an ancestor

η such that (α, η) ∈ ∆̂1(A) and pj ∈ α.

19

Let η1, . . . , ηm the addresses such that {(α1,, η1), . . . , (α1,, η1)} ⊆ ∆̂1(A) and pj ∈ αi for all i;

and let B the formula obtained from A by substituting each node ηi by Node(ηi)[litp/litp∨pj].

By Lemma 9, we have that A ≡ B and, by the choosing of ηi, pj is pure in B (in the sense of

Definition 9). Therefore, B is satisfiable iff it has a model verifying I(pj) = 1.

qed

Example 8: Consider the following ∆-labelled signed formula in S4:

A = ({0,2/3}:q ∨ {0}:r) ∧ ({0,2/3}:p ∨ {1/3}:q) ∧ ({0}:p ∨ ({2/3,1}:r ∧ ({0}:q ∨ {1}:p)) ∨ ({0,1/3}:r ∧ {1/3}:p))

After ∆-labelling we obtain

∧(nil,nil)

∨(nil,q0q2/3r0)

{0,2/3}:q {0}:r

∨(nil,p0p2/3q1/3)

{0,2/3}:p {1/3}:q

∨(nil,p0)

{0}:p ∧(r0r1/3,nil)

{2/3,1}:r ∨(nil,p1q0)

{0}:q {1}:p

∧(p0p2/3p1r2/3r1,nil)

{0,1/3}:r {1/3}:p

The ∆̂-sets for A are

∆̂0(A) = {(r0 r 1/3, 32), (p0 p2/3 p1 r 2/3 r1, 33)}

∆̂1(A) = {(q0q 2/3r0, 1), (p0p2/3q 1/3, 2), (p0p1q0, 322), (p0, 3)}

Now, p0 is ∆̂-pure8, therefore A is satisfiable iff B = A[litp/>] is:

B = ∨(nil,q0q2/3r0)

{0,2/3}:q {0}:r

and information I(p0) = 1 is stored. As q0 ∈ ∆1(B), B is finalizable and, consequently,

satisfiable by any assignment verifying I(q0) = 1. Therefore, A is satisfiable by any assignment

such that I(p0) = 1 and I(q0) = 1.

2

8Note that it is not pure in A.

20

4 Conclusions

The basic idea of the TAS methods is to decrease the size of a formula by extracting information

from its syntactic tree in order to avoid as much branching as possible.

New reduction techniques for signed propositional logics are introduced in the framework of

the TAS methodology. All these reductions have at most quadratic complexity wrt the size of

the formula; specifically, on the one hand, the tests to check the applicability are quadratic in

the worst case, on the other hand, the complexity of applying any reduction is linear. This way,

the exponential complexity in the worst case of a given prover, due to the branching procedure,

can be decreased by using these reduction strategies before branching.

The improvements introduced wrt previous works are the explicit extension to any finite-

valued logic; a new definition of the ∆-lists which now facilitates certain reductions by integrating

them in the calculation of the lists; the ∆̂-sets are introduced in the multiple-valued framework

and as a result new reduction strategies arise. We have introduced techniques of manipulating

lists of unitary implicants/implicates (essentially, inserting and/or framing elements) which can

improve the performance of a given prover for signed logic by decreasing the size of the formulas

to be branched.

Acknowledgements

We would like to thank two anonymous referees for helpful comments and suggestions on an

earlier version of this paper

References

[1] G. Aguilera, I. P. de Guzmán, and M. Ojeda. Increasing the efficiency of automated theorem

proving. Journal of Applied Non-Classical Logics, 5(1):9–29, 1995.

[2] G. Aguilera, I. P. de Guzmán, and M. Ojeda. A reduction-based theorem prover for 3-valued

logic. Mathware & Soft Computing IV(2):99-127, 1997.

[3] G. Aguilera, I. P. de Guzmán, M. Ojeda, A. Valverde. On reductions of signed formulas. In

Proceedings of the WG2 meeting of COST Action 15 “Many-Valued Logics for Computer

Science Applications”, Málaga, September 1997.

[4] I. P. de Guzmán, M. Ojeda, A. Valverde. Ortho-regular logics and bi-implications in ortho-

regular logics. Tech. Report 97-10. Dept. Matemática Aplicada, Univ. Málaga. Submitted

for publication, 1997

[5] J. Gallier. Logic for Computer Science. John Wiley & sons, 1988.

[6] R. Hähnle. Automated Deduction in Multiple-valued Logics. Oxford University Press, 1993.

21

[7] N. Murray and E. Rosenthal. Adapting classical inference techniques to multiple-valued

logics using sign formulas. Fundamenta Informaticae, 21(3):237–253, 1994.

22

