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Abstract

Inclusion is one of the most basic relations between sets. In this paper, we show

how to represent the degree of inclusion between two L-fuzzy sets via a function.

Specifically, such a function determines the minimal modifications needed in a L-fuzzy

set to be included (in Zadeh’s sense) into another. To reach such a goal, firstly we

present the notion of f -inclusion, which defines a family of crisp binary relations be-

tween L-fuzzy sets that are used as indexes of inclusion and, subsequently, we define

the ϕ-degree of inclusion as the most suitable f -inclusion under certain criterium. In

addition, we also present three ϕ-degrees of similarity definable from the ϕ-degree of

inclusion. We show that the ϕ-degree of inclusion and the ϕ-degrees of similarities

satisfy versions of many common axioms usually required for measures of inclusion

and similarity in the literature.

Keywords: Fuzzy sets, Measure of inclusion, Measure of Similarity

1. Introduction

Although the notion of inclusion is one of the most basic relations between sets,

currently there is not a consensus about how to extend such a notion in fuzzy set the-

ory. Possibly, the best known definition for inclusion is the original one provided by

Zadeh in [30], which identifies inclusion between fuzzy sets with the point-wise order-

ing between membership functions. However, some approaches have criticized such a

definition “for being rigid and for the lack of softness according to the spirit of fuzzy
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logic” (quoted from [6]). Basically, one can find three main kinds of approaches in

the literature: those based on cardinality [8, 15, 17]; those based on logic implica-

tions [1, 3, 12]; and those based on axiomatic definitions [2, 9, 11, 16, 29]. Defin-

ing measures of inclusion is not only of a theoretical interest since, for instance, in a

framework of Social Science, fuzzy inclusion can be linked with mainstream statistical

techniques [27], in a framework of data analysis, with classifiers [18] and the search

of redundancy [19], and in a framework of image processing, with fuzzy mathematical

morphology [10] and image quality measures [13].

We consider the ϕ-index1 of inclusion [22], which is closely related to the ax-

iomatic approaches of Kitainik [16] and Sinha-Dougherty [26] (see [21] for a compar-

ison), and assumes the following motto from [17]: “ A ‘good’ measure of inclusion

should measure violations of Zadeh’s inclusion.”. The main difference of the ϕ-index

of inclusion with respect to the other existing measures of inclusion is that, instead of

assigning a value in [0,1] (or in a residuated lattice L) to the inclusion between two

L-fuzzy sets, the ϕ-index of inclusion is a mapping from L to L. It is worth remark-

ing that this set of possible ϕ-indices generalize the usual fuzzy inclusion given by a

residuated implication. In this paper, we extend our previous results [21, 22] by in-

troducing the ϕ-degree of inclusion between L-fuzzy sets. Moreover, we include also

three ϕ-degrees of similarity which can be directly defined from the ϕ-index of inclu-

sion, and show that all of them satisfy versions of properties usually required by many

axiomatic approaches of similarity measures (see [7] for an overview). Similarity rela-

tions and measures has been used in several practical areas such as Decision Making,

Risk Analysis, or Pattern Recognition [5, 14].

The structure of the paper is given as follows. In Section 2 we introduce the set

of ϕ-indexes of inclusion, which is based on the crisp binary relation of f -inclusion.

In this approach the inclusion of a fuzzy set A into another B is not modelled by fix-

ing a specific f -inclusion a priori, but by assigning the most suitable f -inclusion that

represents the inclusion of A in B. The suitability of such a choice is further explained

in Section 3, together with properties, motivated by axiomatic definitions of fuzzy in-

1We use the prefix ϕ- to recall that these indexes are functional parameters.
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clusion measures, which show that it is an adequate representation of the inclusion

between L-fuzzy sets. Later, in Section 4 we introduce three ϕ-degrees of similarity

defined from the ϕ-degrees of inclusion, we provide some properties of them and some

relationship between the three ϕ-degrees of similarity. Finally, in Section 5 we present

the conclusions and future work.

2. The set of ϕ-indexes of inclusion

We will consider hereafter a referential universe U , together with a complete lattice

(L,≤,∨,∧) with 0 and 1 being its greatest and least elements, respectively. Let us recall

that an L-fuzzy set A on U can be identified with its membership function A : U → L.

2.1. The notion of f -inclusion

As stated in the introduction, our approach is based on a graded version of the no-

tion of inclusion between L-fuzzy sets, in which the grades will no longer be elements

of L, but certain mappings from L to L.

Not every function from L to L can be used representing degrees of inclusion; our

first approach to this kind of parameterized notion of inclusion was introduced origi-

nally in [22] in which the interesting functions (the ϕ-indexes of inclusion) had to be

deflationary and increasing mappings. The corresponding extension to L-fuzzy sets is

given below:

Definition 1. The set Ω of ϕ-indexes of inclusion (denoted by Ω) is the set of increasing

mappings f : L→ L satisfying f (x)≤ x for all x ∈ L.

When considering lattices more general than the unit interval, we will make use

of the following equivalent definition of the set Ω in order to deal with incomparable

elements.

Lemma 1. Let L be complete lattice. Then, f ∈Ω if and only if f satisfies the inequal-

ities f (x)≤ x and f (x)∨ f (y)≤ f (x∨ y) for all x,y ∈ L.

Proof. Note that it is enough to prove that f is increasing if and only if f (x)∨ f (y)≤

f (x∨y) for all x,y ∈ L. Let us assume firstly that f is increasing and let x,y ∈ L. Then,
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since x ≤ x∨ y and y ≤ x∨ y, we have f (x) ≤ f (x∨ y) and f (y) ≤ f (x∨ y) . As a

consequence, f (x)∨ f (y)≤ f (x∨ y).

To prove the converse let us assume that f (x)∨ f (y) ≤ f (x∨ y) for all x,y ∈ L.

Then, if x ≤ y we have f (x) ≤ f (x)∨ f (y) ≤ f (x∨ y) = f (y). In other words, f is

increasing.

The definition of f -inclusion is given as follows.

Definition 2 ([22]). Let A and B be two fuzzy sets and consider f ∈ Ω. We say that

A is f -included in B (denoted by A ⊆ f B) if and only if the inequality f (A(u)) ≤ B(u)

holds for all u ∈U .

Some remarks about the definition above:

• The relation of f -inclusion is a crisp relation.

• The relation of f -inclusion need not be transitive, hence it is not always an or-

dering relation.

• Different mappings f ∈Ω define different relations of f -inclusion, which can be

interpreted to certain extent as a degree of inclusion.

It is worth noting that each mapping f determines bounds between possible truth-

values of a fuzzy set included in another. Specifically, fixed f ∈Ω, if A⊆ f B, then the

value f (A(u)) determines a lower bound of the possible values of B(u), for all u ∈U .

Moreover, as f is increasing, the greater the value of A(u), the greater the lower bound

imposed to the value of B(u) by the inequality f (A(u)) ≤ B(u), and thus, the greater

the value of B(u) should be. In the particular case of A(u) = 0, the f -inclusion does

not impose any restriction on the value of B(u), since f (0) = 0. This fact represents

that the empty set is fully f -included in every fuzzy set for all f ∈Ω.

2.2. Fundamental properties of ϕ-indexes of inclusion

Note that Ω has a complete lattice structure with the natural ordering between func-

tions; i.e., given f ,g ∈ Ω, we say that f ≤ g if f (x) ≤ g(x) for all x ∈ L. In this case,

the supremum and infimum in Ω can be defined pointwise, that is, given f ,g ∈ Ω,
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f ∨ g(x) = f (x)∨ g(x) and f ∧ g(x) = f (x)∧ g(x) for all x ∈ L. Note that both, f ∨ g

and f ∧ g are in Ω. As a result, we have the greatest and least elements in Ω given,

respectively, by

id(x) = x and ⊥(x) = 0 for all x ∈ L.

The most important feature of a set Ω of ϕ-indexes of inclusion is the existence of

an order between its elements to represent the relationship “the greater the index, the

stronger the inclusion”.

The following proposition shows how the ordering between mappings f and g is

reflected when being considered as ϕ-indexes of inclusion.

Proposition 1. Let A and B be two fuzzy sets and let f ,g ∈ Ω such that f ≤ g. Then,

A⊆g B implies A⊆ f B.

Proof. Let us assume that A⊆g B then, since f ≤ g we have

f (A(u))≤ g(A(u))≤ B(u)

for all u ∈U . So A⊆ f B as well.

From the previous proposition, changing the mapping f ∈Ω by a smaller one g in

the f -inclusion produces a weaker restriction in the following sense: every pair of fuzzy

sets satisfying the f -inclusion with the original mapping will satisfy the restriction

with the new one (which is smaller). In other words, the greater the mapping f ∈

Ω, the stronger the restriction imposed by the f -inclusion. Moreover, note that as a

consequence, the mapping⊥ determines the weakest f -inclusion whereas the mapping

id the strongest one. Let us study how are the restrictions imposed by these two extreme

f -inclusions. Let us begin by studying the ⊥-inclusion which will be later used to

model null-inclusion in Section 3.

Proposition 2. The relation A⊆⊥ B holds for all pairs of L-fuzzy sets A and B.

Proof. Let A and B be two L-fuzzy sets then, ⊥(A(u)) = 0≤ B(u) for all u ∈U .

This proposition states that every L-fuzzy set is at least ⊥-included in every other

L-fuzzy set. The following result characterises when A⊆ f B holds just for f =⊥.
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Proposition 3. Let A and B be two fuzzy sets. A⊆ f B implies f =⊥ if and only if there

is a nonempty set of elements in the universe {ui}i∈I ⊆ U such that A(ui) = 1 for all

i ∈ I and
∧

i∈IB(ui) = 0.

Proof. Let us assume firstly that the only f -inclusion of A in B is A ⊆⊥ B and, by

reductio ad absurdum, also that for all set {ui}i∈I ⊆U such that A(ui) = 1 for all i ∈ I

we have
∧

i∈IB(ui) 6= 0. Then, let us consider the value

α =
∧

u∈U
{B(u) | A(u) = 1}.

Note that in the case there is no u ∈U such that A(u) = 1 then, α = 1. Therefore, α is

different from 0 by the assumption. Consider the mapping f : L→ L defined by

f (x) =

 0 if x 6= 1

α if x = 1

Note that f ∈ Ω, and let us show that A ⊆ f B. Given u ∈ U , if A(u) 6= 1 then, the

inequality f (A(u))≤ B(u) holds straightforwardly. If A(u) = 1 then,

f (A(u)) = f (1) = α =
∧

u′∈U
{B(u′) | A(u′) = 1} ≤ B(u).

Then, we have found f ∈Ω such that f 6=⊥ (since α 6= 0) and A⊆ f B, which contra-

dicts that the only f -inclusion of A in B is A⊆⊥ B.

Let us assume now that there is a set {ui}i∈I ⊆U such that A(ui) = 1 for all i ∈ I

and
∧

i∈IB(ui) = 0. Consider f ∈Ω such that A⊆ f B and let us show that f =⊥. Note

that by monotonicity of f , it is enough to prove that f (1) = 0. From A⊆ f B we have

f (A(u)) = f (1)≤ B(u) for all u ∈ {ui}i∈I

which implies, taking into account that
∧

i∈IB(ui) = 0, that

f (1)≤
∧
i∈I

B(ui) = 0.

Note that, given two L-fuzzy sets A and B, if there exist an element u∈U such that

A(u) = 1 and B(u) = 0, by the previous proposition, the only f -inclusion of A in B is
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⊆⊥ (i.e. null-inclusion). The converse is not true in general as the following examples

show:

Example 1. Let U = [1,∞) and L = [0,1]. Let us consider the following two fuzzy sets

given by A(u) = 1 and B(u) = 1
u for all u ∈ [1,∞). Note that there is no u ∈ [1,∞) such

that A(u) = 1 and B(u) = 0, however the only f -inclusion of A in B is the ⊥-inclusion

since

f (A(u)) = f (1)≤ B(u) =
1
u

for all u ∈ [1,∞)

holds just when f (1) = 0.

Example 2. Let U = {u1,u2} and let L be the complete lattice given by the following

Hasse diagram:

Let us consider the two L-fuzzy sets A and B given by A(u1) = A(u2) = 1, B(u1) = a

and B(u2) = b. Note that there is no u ∈U such that A(u) = 1 and B(u) = 0, however

if A is f -included in B then:

f (1) = f (A(u1))≤ B(u1) = a

f (1) = f (A(u2))≤ B(u2) = b

which implies f (1)≤ a∧b = 0 or equivalently, that f =⊥.

Note that, whenever the only f -inclusion of A in B is the⊥-inclusion, Proposition 3

only ensures that we can find an element u such that the value of A(u) is 1 and the value

of B(u) is as close to 0 as desired. A simplified formulation in terms of the existence

of an u ∈U such that A(u) = 1 and B(u) = 0 can be provided in some cases. The first

case is when the lattice is totally ordered and the universe is finite.

Corollary 1. Let L be a linearly ordered set let A and B be two L-fuzzy sets defined on

a finite universe U . Then there exists u ∈ U such that A(u) = 1 and B(u) = 0 if and

only if A⊆ f B implies f =⊥.
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Proof. It is a direct consequence of Proposition 3.

The second case is valid for infinite universes but requires the existence of a certain

element in the lattice between 0 and the rest of elements.

Corollary 2. Let L be a lattice with an element a ∈ L such that 0 < a ≤ l for all

l ∈ Lr {0}. Let A and B be two L-fuzzy sets. Then there exists u ∈ U such that

A(u) = 1 and B(u) = 0 if and only if A⊆ f B implies f =⊥.

Proof. The direct implication is straightforward.

Conversely, let A and B be two L-fuzzy sets and let us assume that A⊆ f B implies

f = ⊥. Then, by Proposition 3, there is a set of elements in the universe {ui}i∈I ⊆U

such that A(ui) = 1 for all i ∈ I and
∧

i∈IB(ui) = 0. Let us assume also, by reductio

ad absurdum, that for all u ∈ {ui}i∈I we have that B(u) 6= 0. Then, by hypothesis

0< a≤B(u) for all u∈ {ui}i∈I, hence 0< a≤
∧

i∈IB(ui), which is a contradiction.

The third case is a corollary from the previous result, and focuses on the case in

which the lattice of truth-values is, in fact, a finite chain.

Corollary 3. Let L be a finite chain and let A and B be two L-fuzzy sets. Then, there

exist u ∈U such that A(u) = 1 and B(u) = 0 if and only if A⊆ f B implies f =⊥.

Proof. The result is a direct consequence of Corollary 2.

Let us continue by studying the strongest case, i.e., the id-inclusion, which is char-

acterised by the following result.

Proposition 4. Let A and B be two L-fuzzy sets. The following statements are equiva-

lent:

1. A⊆id B.

2. A(u)≤ B(u) for all u ∈U .

3. A⊆ f B for all f ∈Ω.

Proof. (1)⇐⇒ (2) is straightforward. (1)⇐⇒ (3) holds from Proposition 1, taking

into account that id is the greatest element in Ω.
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This result states that the highest possible ϕ-inclusion coincides with Zadeh’s in-

clusion and it implies the satisfability of f -inclusion for all the rest of ϕ-indexes f .

Moreover, note that the consideration of Zadeh’s inclusion as the highest ϕ-index of

inclusion is closely related to the main axiomatic approaches of measures of inclusion

between fuzzy sets [2, 22, 29].

2.3. f -inclusion, reflexivity, antisymmetry and transitivity.

We have already motivated the use of mappings in Ω to represent the degree of

inclusion between L-fuzzy sets in the section above. Here we show that, despite f -

inclusion is not a partial order relation in general, it is a useful tool to deal with subset-

hood within fuzzy set theory. Specifically, we provide links between the f -inclusion

and the notions of reflexivity, antisymmetry and transitivity on crisp binary relations.

The first result shows that the f -inclusion is always reflexive.

Proposition 5. Let A be a L-fuzzy set, then A⊆ f A for all f ∈Ω.

Proof. The result comes from the fact that f (x)≤ x for all f ∈Ω and x ∈ L. Therefore,

f (A(u))≤ A(u) for all u ∈U .

The f -inclusion is not transitive in general, but relates to it in terms of composition

of mappings, as the following result states.

Proposition 6. Let A,B and C be three L-fuzzy sets and let f ,g ∈Ω. Then, A⊆ f B and

B⊆g C implies A⊆g◦ f C.

Proof. From A⊆ f B and B⊆g C we have the inequalities f (A(u))≤B(u) and g(B(u))≤

C(u) for all u ∈U , respectively. From the former inequality and by using that g is in-

creasing, we have g( f (A(u)))≤ g(B(u)) for all u∈U . So by adding the latter inequal-

ity we have g( f (A(u))) ≤ g(B(u)) ≤ C(u) for all u ∈ U ; or equivalently, A ⊆g◦ f C.

Concerning antisymmetry, it is not hard to prove that from A ⊆ f B and B ⊆ f A

we cannot guarantee that A = B (except for the extremal case f = id). However, both

f -inclusions can be used to bound the difference between A and B, as we will see later

in Section 4.
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2.4. The ϕ-index of inclusion as an extension of the crisp case

The use of an ϕ-indexes as degrees of inclusion between L-fuzzy sets would make

no sense if it did not extend the notion of inclusion in the crisp case. Such an extension

can be analyzed from two different points of view: on the one hand, by restricting the

approach to the crisp case and, on the other hand, by considering crisp sets within the

L-fuzzy framework.

To begin with, L-fuzzy set theory becomes standard set theory if the lattice consid-

ered is L = {0,1}. In such a case, the set of ϕ-indexes Ω would consist of just two

mappings ⊥ and id. Note that the ⊥-inclusion does not impose any restriction (see

Proposition 2) and the id-inclusion holds if and only if A(u)≤ B(u) for all u ∈U ; i.e.,

if A ⊆ B in the crisp sense. As a consequence, given two (crisp) sets A and B, then

either A is not included in B, which is represented by the fact that A is f -included in B

just for ⊥, or A is included in B, which is represented by the fact that A is f -included

in B for all indexes (namely, for ⊥ and id).

Let us analyze now the extension of the crisp inclusion from the second point of

view, i.e., by considering crisp sets within the fuzzy framework. Recall that a fuzzy set

A is crisp if A(u) ∈ {0,1} for all u ∈U . For crisp sets, we have the following result.

Proposition 7. Let A and B be two crisp sets. If A⊆ f B for f 6=⊥, then A⊆g B for all

g ∈Ω.

Proof. Let us assume that A⊆ f B for f 6=⊥. Then, by monotonicity of f we have that

f (1) = α 6= 0. Then, for all u ∈U such that A(u) = 1 we have

f (A(u)) = f (1) = α ≤ B(u).

Since B(u) ∈ {0,1}, then for all u ∈ U such that A(u) = 1 we have that B(u) = 1 as

well. By Proposition 4 we have finally that A⊆g B for all g ∈Ω.

As a consequence of the previous result, we have two extreme situations for any

pair A and B of crisp sets: either A is only f -included in B for ⊥, or A is f -included

in B for all f ∈Ω; which can be identified with the no inclusion and the inclusion of A

in B in the crisp sense, respectively.
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2.5. The ϕ-indexes of inclusion as weak forms of Zadeh’s fuzzy inclusion

The definition of inclusion between fuzzy sets provided by Zadeh [30] states that a

fuzzy sets A is contained in another B if A(u)≤ B(u) for all u ∈U . Note the similarity

of such a definition with our Definition 2, since the only difference is the use of a

function f ∈ Ω to modulate the membership values of A. The original definition of

Zadeh has been criticized in some approaches for being rigid and lacking the spirit of

fuzzy logic [6, 26]:“This rigid definition unfortunately does not do justice to the spirit

of fuzzy set theory: we may want to talk about a fuzzy set being “more or less” a subset

of another one [...]”. Our ϕ-indexes of inclusion approach adapt Zadeh’s original idea

by incorporating a function that determines how much we have to modify A so that it is

included in B in the sense of Zadeh.

2.6. Relationship with measures of inclusion based on residuated implications

Among the constructive measures of inclusion existing in the literature, those based

on fuzzy implications [1, 12] have a significative importance. Let us recall that an

L-fuzzy implication is defined as a mapping I : L× L→ L which is decreasing in

the first component, increasing in the second component, and such that I (0,0) =

I (0,1) = I (1,1) = 1 and I (1,0) = 0. Given two L-fuzzy sets A and B and an L-

fuzzy implication I , the degree of inclusion of A in B w.r.t. I is defined as:

IncI (A,B) =
∧

u∈U
I (A(u),B(u)) (1)

If the implication I is residuated (which is a common assumption) then, there ex-

ists a conjunction C : L×L→ L increasing in both arguments with C (1,0)=C (0,1)=

C (0,0) = 0, C (1,1) = 1, C (1,x) = x for all x ∈ L and such that

C (c,a)≤ b ⇐⇒ c≤I (a,b)

for all a,b,c ∈ L. Moreover, C is right continuous in the first argument; i.e., for X ⊆ L

we have that C (
∨

X ,y) =
∨
{C (x,y) | x ∈ X}.

Let us assume now that α ≤ IncI (A,B) for some α ∈ L. Then we have the follow-
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ing chain of statements

α ≤ IncI (A,B) =
∧

u∈U
I (A(u),B(u))

α ≤I (A(u),B(u)) for all u ∈U

C (α,A(u))≤ B(u) for all u ∈U

Note that this last inequality is an instance of Definition 2 for the function fα : L→ L

defined by fα(x) = C (α,x): it satisfies fα(x) ≤ x for all x ∈ L (the inequality comes

from the monotonicity of C and that I (1,x) = x for all x ∈ L) and fα(x)∨ fα(y) ≤

fα(x∨ y) (since C is right continuous on the second argument).

In summary, we can represent the restriction imposed by any degree α of a mea-

sure of inclusion IncI based on residuated implications (Equation (1)) with the notion

of fα -inclusion. Note that fα -inclusion is defined by choosing just a mapping in Ω,

whereas the restriction IncI (A,B) ≥ α requires the choice of an implication operator

and a threshold value α ∈ L.

3. Representing the inclusion of fuzzy sets with a ϕ-index

3.1. Defining the ϕ-degree of inclusion of two L-fuzzy sets

Working with a fixed ϕ-index f and determining whether two L-fuzzy sets either

do or do not satisfy the relation ⊆ f would have the same shortcoming of Zadeh’s defi-

nition of inclusion. As we emphasized in the previous section, mappings in Ω can (and

must) be considered as degrees of inclusion in the sense “the greater the mapping, the

stronger the inclusion”. In this way, given two L-fuzzy sets A and B, the greatest f ∈Ω

verifying that A ⊆ f B would be a suitable one to represent the degree of inclusion of

A in B. Therefore, the first task is to prove the existence of such a greatest element.

Formally, given A and B, let us consider the following subset of Ω:

Λ(A,B) = { f ∈Ω | A⊆ f B}

It is not difficult to check that Ω inherits the structure of complete lattice and, therefore,

we can guarantee the existence of the supremum of Λ(A,B). The following result shows

that such a supremum is in fact a maximum.
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Lemma 2. Let A and B be two L-fuzzy sets and consider { fi}i∈I⊆Ω. If A is fi-included

in B for all i ∈ I, then A is
∨

i∈I fi-included in B.

Proof. It is well known that
∨

i∈I fi is given by f (x)=
∨

i∈I fi(x) for all x∈ L. Moreover,

since Ω is a complete lattice,
∨

i∈I fi ∈ Ω as well. Now, since A is fi-included in B for

all i ∈ I, we have that fi(A(u))≤ B(u) for all u ∈U . Therefore,
∨

i∈I fi(A(u))≤ B(u)

for all u ∈U , or equivalently, A is
∨

i∈I fi-included in B.

As a direct consequence of the previous proposition, there exists the greatest ele-

ment of Λ(A,B) and, hence, the following definition of ϕ-degree of inclusion between

L-fuzzy sets A and B makes sense.

Definition 3. Let A and B be two L-fuzzy sets, the ϕ-degree of inclusion of A in B,

denoted by Inc(A,B), is defined as the maximum of Λ(A,B).

Note firstly that the ϕ-degree of inclusion of A in B just depends on L without any

other a priori assumption or any kind of parameter [12]. Secondly, note that thanks

to Proposition 1, the set Λ(A,B) of mappings f in Ω such A is f -included in B is

characterized by Inc(A,B), since:

Λ(A,B) = { f ∈Ω | A⊆ f B}= { f ∈Ω | f ≤ Inc(A,B)}

3.2. Analytic expression of the ϕ-degree of inclusion

In this section we will obtain an analytic expression of the ϕ-degree of inclusion

which will be used in subsequent sections. Specifically, we show that given two L-

fuzzy sets A and B, the ϕ-degree of inclusion of A in B can be obtained in terms of the

the following auxiliary function:

fA,B(x) =
∧

u∈U
{B(u) | x≤ A(u)} (2)

In fact, we will show below that Inc(A,B) = fA,B∧ id.

The proof of such a result has been divided into three lemmas. The first lemma

shows that fA,B∧ id is in Ω, so it makes sense to talk about ( fA,B∧ id)-inclusion.

Lemma 3. Let fA,B be the mapping defined in equation (2), then fA,B∧ id is in Ω.
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Proof. Obviously, we have that ( fA,B∧ id)(x)≤ x.

Now, consider x,y ∈ L and let us show that

( fA,B∧ id)(x)∨ ( fA,B∧ id)(y)≤ ( fA,B∧ id)(x∨ y)

For this, let us see firstly that fA,B satisfies the inequality fA,B(x) ≤ fA,B(x∨ y) and

fA,B(y)≤ fA,B(x∨ y). Since

{B(u) | x∨ y≤ A(u)} ⊆ {B(u) | x≤ A(u)}

by definition of infimum we have:

fA,B(x∨ y) =
∧

u∈U
{B(u) | x∨ y≤ A(u)} ≥

∧
u∈U
{B(u) | x≤ A(u)}= fA,B(x)

Similarly, we can obtain the other inequality. Now, again by properties of supremum

and infimum we have that

fA,B(x∨ y)∧ (x∨ y)≥ fA,B(x)∧ x

fA,B(x∨ y)∧ (x∨ y)≥ fA,B(y)∧ y

as a result

fA,B(x∨ y)∧ (x∨ y)≥ ( fA,B(x)∧ x)∨ ( fA,B(y)∧ y)

as we wanted to prove. In other words, fA,B∧ id is in Ω.

Let us show now that for every pair of L-fuzzy sets A and B, A is ( fA,B∧ id)-included

in B.

Lemma 4. Let A and B be two L-fuzzy sets, then A is ( fA,B∧ id)-included in B.

Proof. For all u ∈U , we have that

fA,B(A(u))∧A(u)≤ fA,B(A(u)) =
∧

v∈U
{B(v) | A(u)≤ A(v)} ≤ B(u)

Therefore, we have proven that ( fA,B ∧ id)(A(u)) ≤ B(u) for all u ∈ U , which means

that A is ( fA,B∧ id)-included in B.

Finally, the third lemma shows, basically, the maximality of fA,B∧ id in Λ(A,B).
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Lemma 5. Let A and B be two L-fuzzy sets and consider f ∈ Ω. Then fA,B ∧ id < f

implies that A is not f -included in B.

Proof. The hypothesis fA,B ∧ id < f means fA,B(x)∧ x ≤ f (x) for all x ∈ L and there

exists at least one element α ∈ L such that fA,B(α)∧α < f (α). Let us prove firstly

that there exists u0 ∈U such that α ≤ A(u0) and fA,B(A(u0))∧A(u0)< f (A(u0)).

By reductio ad absurdum, assume that f (A(v)) = fA,B(A(v))∧A(v) for all v ∈ U

satisfying α ≤ A(v). Moreover, by monotonicity of f , we have

f (α)≤ f (A(v)) = fA,B(A(v))∧A(v)≤ fA,B(A(v))

Thus, putting together the previous inequality for all v ∈U satisfying α ≤ A(v), defi-

nition of fA,B and properties of infima, we obtain the following chain of inequalities

f (α)≤
∧

v∈U
{ fA,B(A(v)) | α ≤ A(v)}

=
∧

v∈U

{ ∧
u∈U
{B(u) | A(v)≤ A(u)

}
| α ≤ A(v)

}
≤
∧

u∈U
{B(u) | α ≤ A(u)}= fA,B(α)

So we have obtained that f (α) ≤ fA,B(α). Using now that f ≤ id (since f ∈ Ω), we

have that f (α) ≤ fA,B(α)∧α which contradicts our assumption fA,B(α)∧α < f (α).

Hence, there exists u0 ∈U such that α ≤ A(u0) and fA,B(A(u0))∧A(u0)< f (A(u0)).

This inequality together with the fact that f ≤ id leads to the fact that f (A(u0)) can-

not be a lower bound of fA,B(A(u0)) =
∧

v∈U {B(v) |A(u0)≤A(v)}. Hence, there exists

w0 ∈ U such that A(u0) ≤ A(w0) and f (A(u0)) � B(w0). By using the monotonicity

of f in the former inequality we have that f (A(u0))≤ f (A(w0)).

Let us assume, once again by reductio ad absurdum, that A is f -included in B.

Then, in particular, we would have f (A(w0)) ≤ B(w0). By transitivity, we have that

f (A(u0)) ≤ f (A(w0)) ≤ B(w0), which contradicts that f (A(u0)) � B(w0). Therefore,

A is not f -included in B.

By joining the three previous lemmas we can obtain the following result:

Theorem 1. Let A and B be two fuzzy sets, then Inc(A,B) = fA,B∧ id.
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Proof. We have to show that fA,B ∧ id is the maximum element of Λ(A,B). By Lem-

mas 3 and 4 we have that fA,B ∧ id ∈ Λ(A,B). By the complete lattice structure of Ω

and Lemma 2, the maximum of Λ(A,B) exists and is Inc(A,B). Now, by Lemma 5, we

have that there are no upper bounds of Inc(A,B) strictly greater than fA,B∧ id. But as

fA,B∧ id ∈ Λ(A,B) then, necessarily fA,B∧ id is the maximum element of Λ(A,B); i.e.,

fA,B∧ id = Inc(A,B).

Example 3. On the universe U = {u1,u2,u3,u4,u5,u6,u7}, let us consider the fuzzy

sets A and B on the unit interval given by the following table:

u1 u2 u3 u4 u5 u6 u7

A 0.2 0.3 0.5 0.7 0.9 0.7 0.2

B 0.4 0.2 0.9 0.5 0.4 0.6 0.4

The ϕ-degree of inclusion Inc(A,B) can be determined by Theorem 1. To begin with,

let us compute fA,B by distinguishing cases:

fA,B(x) =
∧

u∈U
{B(u) | x≤ A(u)}=


0.2 if x≤ 0.3

0.4 if 0.3 < x≤ 0.9

1 if 0.9 < x≤ 1

Now, by computing the infimum fA,B∧ id we obtain

Inc(A,B)(x) = fA,B(x)∧ x =


0.2 if 0.2 < x≤ 0.3

0.4 if 0.4 < x≤ 0.9

x otherwise.

In the rest of the section we show different properties of Inc(A,B), following the

initial study done by the standard axiomatic approaches of inclusion measures between

fuzzy sets [16, 26, 29].

3.3. Null-inclusion and full-inclusion

Recall that the cases of null-inclusion and full-inclusion were already discussed for

the general case of ϕ-indexes. In terms of ϕ-degree inclusion we can rephrase them as

follows:
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Proposition 8. Let A and B two L-fuzzy sets, then:

• Inc(A,B) =⊥ if and only if there is a set of elements in the universe {ui}i∈I ⊆U

such that A(ui) = 1 for all i ∈ I and
∧

i∈IB(ui) = 0.

• Inc(A,B) = id if and only if A(u)≤ B(u) for all u ∈U .

3.4. Transitivity of ϕ-degree of inclusion

Once again, the previous result about ϕ-indexes (Proposition 6) can be rephrased

in terms of f -inclusion as follows:

Proposition 9. Let A,B and C be fuzzy sets, then Inc(B,C)◦ Inc(A,B)≤ Inc(A,C).

It is worth noting that the standard fuzzy version of transitivity, namely Inc(A,B)∧

Inc(B,C)≤ Inc(A,C) does not hold in general.

Example 4. Consider the fuzzy sets A,B and C on the singleton U = {u} given by

A(u) = 0.7, B(u) = 0.6 and C(u) = 0.4. Then, we have:

Inc(A,B)(x)=

 0.6 if x ∈ (0.6,0.7]

x otherwise.
Inc(B,C)(x)=

 0.4 if x ∈ (0.4,0.6]

x otherwise.

Inc(A,B)∧ Inc(B,C)(x) =


0.4 if x ∈ (0.4,0.6]

0.6 if x ∈ (0.6,0.7]

x otherwise.

However,

Inc(A,C)(x) =

 0.4 if x ∈ (0.4,0.7]

x otherwise.

and then, Inc(A,C)� Inc(A,B)∧ Inc(B,C).

3.5. Monotonicity of ϕ-degree of inclusion

Another of the most common properties required to inclusion measures is to be

coherent with the standard ordering between fuzzy sets. With respect to the ϕ-degree

of inclusion we have the following result:

Proposition 10. Let A,B and C be three L-fuzzy sets:

17



• if B(u)≤C(u) for all u ∈U then, Inc(A,B)≤ Inc(A,C);

• if B(u)≤C(u) for all u ∈U then, Inc(C,A)≤ Inc(B,A).

Proof. It is a consequence of the fact that, for any fuzzy sets A,B,C, and D such that

A(u) ≤ B(u) and C(u) ≤ D(u) for all u ∈ U then, B ⊆ f C implies A ⊆ f D, which

straightforwardly follows from the following chain of inequalities for a u ∈U

f (A(u))≤ f (B(u))≤C(u)≤ D(u).

3.6. Transformation invariance

Another very common property required to inclusion measures between L-fuzzy

sets is the invariance under transformations of the universe [16, 26]. We follow here

the usual terminology, in which these transformations are just bijective mappings in the

universe.

A transformation T : U → U in the universe U can be extended to the set of L-

fuzzy sets LU (i.e., the fuzzy powerset of U ) by defining T̂ (A)(u) = A(T (u)) for all

fuzzy set A∈ LU . The following result shows that the ϕ-degree of inclusion is invariant

under transformations.

Proposition 11. Let A and B be two L-fuzzy sets and let T : U →U be a transforma-

tion on U , then Inc(A,B) = Inc(T̂ (A), T̂ (B)).

Proof. Since fA,B and fT̂ (A),T̂ (B) are, respectively, the suprema of the sets { f ∈ Ω |

A ⊆ f B} and { f ∈ Ω | T̂ (A) ⊆ f T̂ (B)}, we can obtain the result by showing that both

sets are the same. Consider f ∈ Ω such that A ⊆ f B. Then, for all u ∈ U we have

f (A(u)) ≤ B(u) which, by the bijectivity of T , is equivalent to say that for all u ∈ U

we have f (A(T (u)))≤ B(T (u)), which is equivalent to T̂ (A)⊆ f T̂ (B).

3.7. Relationship with union and intersection between L-fuzzy sets

The first result shows that the equivalence A⊆ B∩C if and only if A⊆ B and A⊆C

is also preserved by the ϕ-degree of inclusion. Let us recall that the intersection of two

L-fuzzy sets A and B is defined by A∩B(u) = A(u)∧B(u) for all u ∈U .
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Theorem 2. Let A,B and C be three L-fuzzy sets then

Inc(A,B∩C) = Inc(A,B)∧ Inc(A,C).

Proof. By Theorem 1 we have that Inc(A,B∩C) = fA,B∩C ∧ id, where fA,B∩C is the

mapping given by

fA,B∩C(x) =
∧

u∈U
{B(u)∧C(u) | x≤ A(u)}.

By properties of infimum we have:

fA,B∩C(x) =

( ∧
u∈U
{B(u) | x≤ A(u)}

)
∧

( ∧
u∈U
{C(u) | x≤ A(u)}

)
= fA,B(x)∧ fA,C(x)

for all x ∈ L. Finally, we have that

Inc(A,B∩C) = fA,B∩C ∧ id = ( fA,B∧ fA,C)∧ id =

( fA,B∧ id)∧ ( fA,C ∧ id) = Inc(A,B)∧ Inc(A,C).

In general, the equivalence A∪B⊆C if and only if A⊆C and B⊆C is not preserved

in terms of the equality but in terms of the inequality. Let us recall that the union of

two L-fuzzy sets A and B is defined by A∪B(u) = A(u)∨B(u) for all u ∈U .

Theorem 3. Let A,B and C be three L-fuzzy sets then

Inc(A∪B,C)≤ Inc(A,C)∧ Inc(B,C).

Proof. To prove the inequality, just take into account that if A∪B ⊆ f C then A ⊆ f C

and B⊆ f C since, by the monotonicity of f :

f (A(u))≤ f (A(u)∨B(u))≤C(u)

for all u ∈U . As a result, Inc(A∪B,C)≤ Inc(A,C)∧ Inc(B,C).

The following example shows a case where the strict inequality Inc(A∪B,C) <

Inc(A,C)∧ Inc(B,C) holds.
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Example 5. Consider the complete lattice L given in Example 2 and the L-fuzzy sets A,

B and C on the singleton universe U = {u} given by A(u) = a, B(u) = b and C(u) = 0.

Then, by following the formula given in Theorem 1, we have that:

Inc(A,C)(x)=


0 if x = 0 or x = a

b if x = b

1 if x = 1

Inc(B,C)(x)=


0 if x = 0 or x = b

a if x = a

1 if x = 1

Since A∨B(u) = 1, by Proposition 8 we have that Inc(A∪B,C)(x) = 0. However,

Inc(A,C)∧ Inc(B,C)(x) =

 1 if x = 1

0 otherwise.

The following result shows that if the lattice L is a totally ordered set, then the

equality Inc(A∪B,C) = Inc(A,C)∧ Inc(B,C) holds. A preliminary version for the

unit interval was proved in [22].

Theorem 4. Let (L,≤) be a totally ordered set and let A,B and C be three L-fuzzy sets,

then

Inc(A∪B,C) = Inc(A,C)∧ Inc(B,C).

Proof. By Theorem 1, Inc(A∪B,C) = fA∪B,C ∧ id. Now, for all x ∈ L, we have

fA∪B,C(x) =
∧

u∈U
{C(u) | x≤ A(u)∨B(u)}

=

( ∧
u∈U
{C(u) | x≤ A(u)}

)
∧

( ∧
u∈U
{C(u) | x≤ B(u)}}

)
= fA,C(x)∧ fB,C(x).

where the second equality is given by the linearity of (L,≤). Finally, we have that

Inc(A∪B,C) = fA∪B,C ∧ id = ( fA,B∧ fB,C)∧ id =

( fA,B∧ id)∧ ( fB,C ∧ id) = Inc(A,B)∧ Inc(B,C).
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3.8. Relationship with the complement of L-fuzzy sets

The extension to the fuzzy case of the relationship between complement and in-

clusion, namely A ⊆ B if and only if Bc ⊆ Ac, has to take into account that the notion

of complement is not unique, since it depends on the negation operator considered.

Given an involutive negation operator n : L→ L (i.e., n is monotonically decreasing

and n2 = n ◦ n = id), we can define the complement of an L- fuzzy set A with respect

to n by the equality Ac(u) = n(A(u)) for all u ∈U . Hereafter, we asume that there is a

fixed involutive negation n used to define the complement.

In general, the equality Inc(A,B) = Inc(Bc,Ac) does not hold. However, it is pos-

sible to establish some relationships between both ϕ-degree in terms of adjoint pairs.

Let us recall that two mappings f ,g : L→ L form an adjoint pair if

f (x)≤ y ⇐⇒ x≤ g(y) for all x ∈ L (3)

Given an adjoint pair ( f ,g), our first result links, in some sense, the f inclusion of

A in B with the g-inclusion of Bc in Ac in terms of the negation n.

Proposition 12. Let A and B be two fuzzy sets and let ( f ,g) be an adjoint pair. Then

A⊆ f B if and only if Bc ⊆n◦g◦n Ac.

Proof. By properties of the adjunction, we have that equalities f (x∨ y) = f (x)∨ f (y)

and g(x∧ y) = g(x)∧g(y) hold. Now, since n is involutive and decreasing we have:

n◦g◦n(x∨ y) = n◦g(n(x)∧n(y)) = n
(
g(n(x))∧g(n(y))

)
= n◦g◦n(x)∨n◦g◦n(y)

Let us now prove that f ∈ Ω if and only if n ◦ g ◦ n ∈ Ω. For this, we have just to

prove that f (x) ≤ x for all x ∈ L if and only if n ◦ g ◦ n(x) ≤ x for all x ∈ L. Let us

assume that f (x)≤ x for all x ∈ L; then, by the adjoint property we have the following

chain of equivalences for all x ∈ L.

f (x)≤ x ⇐⇒ f (n(x))≤ n(x) ⇐⇒ n(x)≤ g(n(x)) ⇐⇒ x≥ n(g(n(x)))

Therefore, f ∈Ω if and only if n◦g◦n ∈Ω.

Let us assume now that A⊆ f B. Then, for any u ∈U we have:

f (A(u))≤ B(u) ⇐⇒ A(u)≤ g(B(u)) ⇐⇒ n(A(u))≥ n(g(B(u))).
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Finally, by using that n◦n = id, we have that

f (A(u))≤ B(u) ⇐⇒ n(A(u))≥ n(g(n(n(B(u))))),

or equivalently, Bc ⊆n◦g◦n Ac.

4. The notion of ϕ-degree of similarity

There is a very close relationship between equality and inclusion: two sets are equal

if one is included in the other and vice versa. In this section, we deal with similarity as a

suitable generalization of equality to the L-fuzzy case, and introduce three different ϕ-

degree of similarity defined by using the ϕ-degree of inclusion given in Section 3 and

study their properties. These three degrees are defined by considering three common

approaches used in the literature to define measures of similarities from measures of

inclusion. Specifically, given two L-fuzzy sets A and B, the three respective ϕ-degrees

of similarity are defined as follows:

• The ϕeq-degree of similarity between A and B, considers the pair Inc(A,B) and

Inc(B,A);

• The ϕ∪∩-degree of similarity, is defined as the ϕ-degree of inclusion of A∪B in

A∩B, i.e., Inc(A∪B,A∩B);

• The ϕ∧-degree of similarity, consider the infimum between Inc(A,B) and Inc(B,A).

In the subsequent sections we present the formal definitions and a detailed study of

the mentioned degrees of similarity.

4.1. The ϕeq-degree of similarity

This notion considers the ϕ-degrees of inclusion of A into B and of B into A, in this

sense, it somehow generalizes the equality of sets, hence its name ϕeq-degree.

Definition 4. Let A and B be two L-fuzzy sets, then the ϕeq-degree of similarity between

A and B, denoted Seq(A,B), is defined by

Seq(A,B) := {Inc(A,B), Inc(B,A)}
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Note that the values of the ϕeq-degree are subsets of Ω of cardinality 2 or 1 (it might

be the case that both degrees coincide). Identifying the singletons { f}with { f , f} these

values can be ordered by suitably extending the componentwise ordering as follows:

Given { f1,g1},{ f2,g2}, we say that { f1,g1} ≤ { f2,g2} if and only if either f1 ≤ f2

and g1 ≤ g2 or g1 ≤ f2 and f1 ≤ g2.

The following results motivate the use of the ϕeq-degree of similarity to model the

similarity according to common approaches of similarity measures (see [7]).

Proposition 13. Let A and B be two L-fuzzy sets, then Seq(A,B) = Seq(B,A).

Proof. Obvious.

Proposition 14. Let A,B and C be three L-fuzzy sets such that A(u)≤ B(u)≤C(u) for

all u ∈U , then Seq(A,C)≤ Seq(A,B) and Seq(A,C)≤ Seq(B,C).

Proof. Let us prove firstly the inequality Seq(A,C) ≤ Seq(A,B). By Proposition 8 we

have Inc(A,C) = Inc(A,B) = id and by Proposition 10 Inc(C,A) ≤ Inc(B,A). There-

fore, Seq(A,C)≤ Seq(A,B). The proof of the second inequality is similar.

We characterize below the two extreme ϕeq-degrees of similarity, namely, {id, id}

and {⊥,⊥}. The first result shows that the greatest ϕeq-degree is equivalent to equality.

Proposition 15. Let A and B be two L-fuzzy sets. Then A = B if and only if Seq(A,B) =

{id, id}.

Proof. From Proposition 8 we have that Inc(A,B) = id and Inc(B,A) = id is equivalent

to say that A(u)≤ B(u) and B(u)≤ A(u) for all u ∈U ; i.e., A = B.

The lowest ϕeq-degree of similarity is characterized in the following corollary.

Corollary 4. Let A and B be two fuzzy sets. Seq(A,B) = {⊥,⊥} if and only if there are

two sets in the universe {ui}i∈I,{v j} j∈J ⊆U such that A(ui) = 1 and B(v j) = 1 for all

i ∈ I, j ∈ J and
∧

j∈JA(v j) = 0 and
∧

i∈IB(ui) = 0.

Proof. Direct consequence of Proposition 3.
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From the previous result we can obtain three results that resemble common axioms

usually required in the literature for measures of similarity (see [7, 26, 29]). Firstly,

in the case of L-fuzzy sets on finite totally ordered lattices, the lowest ϕeq-degree of

similarity is equivalent to the existence of two elements in the universe such that one

fully belongs to A∩Bc and the other to Ac∩B.

Corollary 5. Let L be a finite totally ordered lattice and let A and B be two L-fuzzy sets.

Seq(A,B) = {⊥,⊥} if and only if there exist two elements in the universe u1,u2 ∈ U

such that A(u1) = B(u2) = 0 and A(u2) = B(u1) = 1.

Proof. Direct consequence of Corollary 4.

There is also an interesting relationship between the ϕeq-degree of similarity {⊥,⊥}

and the complement of normal fuzzy sets. Let us recall that an L-fuzzy set A is called

normal if there exists u ∈U such that A(u) = 1.

Corollary 6. Let A be a normal L-fuzzy set such that Ac is also normal, then Seq(A,Ac)=

{⊥,⊥}. If L is finite and totally ordered, then the converse also holds.

Proof. Direct consequence of Corollary 4.

The last result relating the ϕeq-degree of similarity {⊥,⊥} and axiomatic approaches

given in terms of crisp sets.

Corollary 7. Let A be a L-fuzzy set on a finite universe U . If A is crisp and∅ 6=A 6=U

then, Seq(A,Ac) = {⊥,⊥}.

Proof. Direct consequence of Corollary 4.

The ϕeq-degree of similarity is related to the intersection between fuzzy sets as

follows: the similarity between A∩C and B∩C is always greater than the similarity

between A and B. It is worth mentioning that such a property is related to divergence

measures [24].

Proposition 16. Let A,B and C be three L-fuzzy sets, then the following inequality

holds Seq(A,B)≤ Seq(A∩C,B∩C).
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Proof. By Theorem 2, Proposition 8 and Proposition 10 we have that:

Inc(A∩C,B∩C) = Inc(A∩C,B)∧ Inc(A∩C,C) = Inc(A∩C,B)≥ Inc(A,B)

The inequality Inc(B∩C,A∩C)≥ Inc(B,A) is obtained similarly.

A similar result can be obtained for the case of union when the lattice considered

is totally ordered.

Proposition 17. Let L be a totally order lattice and let A,B and C be three L-fuzzy sets

then, Seq(A,B)≤ Seq(A∪C,B∪C).

Proof. Similar to the previous proof, but applying Theorem 4 instead of Theorem 2.

4.2. The ϕ∪∩-degree of similarity

The next approach to similarity is based on a very usual construction technique of

measures of similarity from measures of inclusion. Basically, we can determine the

similarity between two fuzzy sets A and B by measuring the inclusion of A∪B in A∩B.

Definition 5. Let A and B be two L-fuzzy sets, then the ϕ∪∩-degree of similarity

S∪∩(A,B) is defined as the ϕ-degree of inclusion of A∪B in A∩B; i.e.,

S∪∩(A,B) = Inc(A∪B,A∩B).

The following results present some interesting properties in order to motivate the

use of S∪∩(A,B) for dealing with similarity.

Proposition 18. Let A and B be two L-fuzzy sets, then S∪∩(A,B) = S∪∩(B,A).

Corollary 8. Let A,B and C be L-fuzzy sets such that A(u) ≤ B(u) ≤ C(u) for all

u ∈U , then:

• S∪∩(A,C)≤ S∪∩(A,B)

• S∪∩(A,C)≤ S∪∩(B,C)
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Proof. Firstly, note that thanks to the ordering A(u) ≤ B(u) ≤C(u) for all u ∈ U we

have that A∪C = B∪C =C, A∩B = A∩C = A, A∪B = B and B∩C = B. As a result,

the two items are consequences of Proposition 10, since

S∪∩(A,C) = Inc(A∪C,A∩C) = Inc(C,A)≤ Inc(B,A) = Inc(A∪B,A∩B) = S∪∩(A,B)

and

S∪∩(A,C)= Inc(A∪C,A∩C)= Inc(C,A)≤ Inc(C,B)= Inc(C∪B,C∩B)= S∪∩(B,C).

The highest ϕ∪∩-degree of similarity is characterised as follows.

Proposition 19. Let A and B be two L-fuzzy sets, then A = B if and only if S∪∩(A,B) =

id.

Proof. If A = B then Inc(A∪B,A∩B) = Inc(A,A) = id.

Conversely, by Proposition 8, Inc(A∪B,A∩B) = id implies A∪B(u) ≤ A∩B(u)

for all u ∈U . Then, for all u ∈U

A(u)≤ A(u)∨B(u)≤ A(u)∧B(u)≤ B(u)

and

B(u)≤ A(u)∨B(u)≤ A(u)∧B(u)≤ A(u).

In other words, A(u) = B(u).

The lowest ϕ∪∩-degree of similarity is characterized in the following corollary.

Corollary 9. Let A and B be two L-fuzzy sets. S∪∩(A,B) = ⊥ if and only if there

is a subset in the universe {ui}i∈I ⊆ U such that A(ui)∨B(ui) = 1 for all i ∈ I and

(
∧

i∈IA(ui))∧ (
∧

i∈IB(ui)) = 0.

Proof. Direct consequence of Proposition 3.

As in the previous section for the ϕeq-degree of similarity, it is interesting to rewrite

some direct consequences of the previous result to be in terms of the axiomatic ap-

proaches of measures of similarity. In the case of L-fuzzy sets on finite and totally
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ordered lattices, the lowest ϕ∪∩-degree of similarity between two fuzzy sets A and B

is equivalent to the existence of at least one element u ∈ U such A∪B(u) = 1 but

A∩B(u) = 0. The formal result is given below in a more general environment.

Corollary 10. Let L be a lattice with an element a ∈ L such that 0 < a ≤ l for all

l ∈ Lr {0}. Let A and B be two L-fuzzy sets, the S∪∩(A,B) = ⊥ if and only if there

exists u ∈U such that either A(u) = 0 and B(u) = 1, or A(u) = 1 and B(u) = 0.

As in the case of the ϕeq-degree of similarity, there is a relationship between the

ϕ-index ⊥ and the complement when we restrict the index to crisp sets.

Corollary 11. If A is crisp, then S∪∩(A,Ac) =⊥.

Finally, there is also a relation between the ϕ∪∩-degree of similarity of union and

intersections of L-fuzzy sets.

Proposition 20. Let A,B and C be three L-fuzzy sets.

• If L is distributive then, S∪∩(A,B)≤ S∪∩(A∩C,B∩C).

• If L is totally ordered then, S∪∩(A,B)≤ S∪∩(A∪C,B∪C).

Proof. By applying Theorem 2, Proposition 8 and Proposition 10 we obtain the first

item as follows:

S∪∩(A∩C,B∩C) = Inc((A∩C)∪ (B∩C),(A∩C)∩ (B∩C)

= Inc((A∪B)∩C,(A∩B)∩C)

= Inc((A∪B)∩C,A∩B)∧ Inc((A∪B)∩C),C)

= Inc((A∪B)∩C,A∩B)

≥ Inc(A∪B,A∩B) = S∪∩(A,B)

By applying Theorem 4, Proposition 8 and Proposition 10 we obtain the second
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item as follows:

S∪∩(A∪C,B∪C) = Inc((A∪C)∪ (B∪C),(A∪C)∩ (B∪C)

= Inc((A∪B)∪C,(A∩B)∪C)

= Inc((A∪B),(A∩B)∪C)∧ Inc(C,(A∩B)∪C)

= Inc((A∪B),(A∩B)∪C)

≥ Inc(A∪B,A∩B) = S∪∩(A,B)

4.3. The ϕ∧-degree of similarity

This third approach to similarity between sets is based on the simultaneous consid-

eration of the ϕ-degrees of inclusion of one set into the other.

Formally, it is possible to define the relation of f -similarity between two L-fuzzy

sets A and B as A = f B if and only if A⊆ f B and B⊆ f A.

From this relation, and following a similar reasoning that in Section 3, we can

define an ϕ∧-degree of similarity by considering the supremum of the set

ϒ(A,B) = { f ∈Ω | A = f B}

which, indeed, is a maximum as shown below.

Proposition 21. Let A and B be two L-fuzzy sets and consider { fi}i∈I ⊆ Ω. If A is

fi-similar to B for all i ∈ I, then A is
∨

i∈I fi-similar to B.

Proof. By definition of the f -similarity, we have that A is fi-similar to B and B is fi-

similar to A for all i ∈ I. Then, by Lemma 2, we have that A is
∨

i∈I fi-included in B

and B is
∨

i∈I fi-included in A. In other words, A is
∨

i∈I fi-similar to B.

Then, we can provide the following definition.

Definition 6. Let A and B be two L-fuzzy sets and consider the set ϒ(A,B) = { f ∈Ω |

A = f B}, then the ϕ∧-degree of similarity S∧(A,B) is defined as

S∧(A,B) = maxϒ(A,B) = max{ f ∈Ω | A = f B}.
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The analytic expression of the index S∧(A,B) can be provided in terms of the ϕ-

degrees of inclusion Inc(A,B) and Inc(B,A), as the following result shows.

Theorem 5. Let A and B be two L-fuzzy sets, then

S∧(A,B) = Inc(A,B)∧ Inc(B,A).

Proof. Let us show that Inc(A,B)∧ Inc(B,A) is the maximum of ϒ(A,B). Firstly, by

Proposition 1, we have that Inc(A,B)∧ Inc(B,A) ∈ ϒ(A,B).

Now, let us assume f ∈ ϒ(A,B) and let us see that f ≤ Inc(A,B)∧ Inc(B,A). By

definition of ϒ(A,B) we have that A ⊆ f B and B ⊆ f A and, hence, f ≤ Inc(A,B) and

f ≤ Inc(B,A). Therefore, Inc(A,B)∧ Inc(B,A) is the maximum of ϒ(A,B).

The next results present some interesting properties of S∧(A,B).

Proposition 22. Let A and B be two L-fuzzy sets, then S∧(A,B) = S∧(B,A).

Proof. It is a consequence of Theorem 5.

Corollary 12. Let A,B and C be L-fuzzy sets satisfying A(u) ≤ B(u) ≤ C(u) for all

u ∈U , then:

• S∧(A,C)≤ S∧(A,B)

• S∧(A,C)≤ S∧(B,C)

Proof. The two items are consequences of Theorem 5 and Proposition 10, since

S∧(A,C) = Inc(A,C)∧ Inc(C,A) = Inc(C,A)

≤ Inc(B,A) = Inc(A,B)∧ Inc(B,A) = S∧(A,B)

and

S∧(A,C) = Inc(A,C)∧ Inc(C,A) = Inc(C,A)

≤ Inc(C,B) = Inc(C,B)∧ Inc(B,C) = S∧(B,C)

The highest ϕ∧-degree of similarity is characterized as follows.
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Proposition 23. Let A and B be two L-fuzzy sets on a finite universe U . Then, A = B

if and only if S∧(A,B) = id.

Proof. If A = B then S∧(A,B) = Inc(A,B)∧ Inc(B,A) = Inc(A,A) = id. Conversely,

since id is the maximum element in Ω, if S∧(A,B) = Inc(A,B)∧ Inc(B,A) = id then,

Inc(A,B) = Inc(B,A) = id. Thus, by Proposition 8, A(u)≤ B(u) and B(u)≤ A(u). for

all u ∈U . In other words, A = B.

The lowest ϕ∧-degree of similarity is characterized in the following corollary.

Corollary 13. Let A and B be two L-fuzzy sets. S∧(A,B) = ⊥ if and only if there

is a subset in the universe {ui}i∈I ⊆ U such that either A(ui) = 1 for all i ∈ I and

(
∧

i∈IB(ui)) = 0 or B(ui) = 1 for all i ∈ I and (
∧

i∈IA(ui)) = 0.

Proof. Direct consequence of Proposition 3.

Once again, let us rewrite some direct consequences of the previous result to put

it in relation with the axiomatic approaches of measures of similarity. In the case of

L-fuzzy sets on finite and totally ordered lattices, the lowest ϕ∧-degree of similarity

between two fuzzy sets A and B is equivalent to the existence of at least one element

u ∈ U such A∪B(u) = 1 but A∩B(u) = 0. For the sake of a higher generality, the

result is given in the following terms.

Corollary 14. Let L be a lattice with an element a ∈ L such that 0 < a ≤ l for all

l ∈ Lr {0}. Let A and B be two fuzzy sets. S∧(A,B) = ⊥ if and only if there exist

u ∈U such that either A(u) = 0 and B(u) = 1 or A(u) = 1 and B(u) = 0.

There is also a relationship between the ϕ-index ⊥ and the complement when we

restrict the index to crisp sets.

Corollary 15. If A is crisp, then S∧(A,Ac) =⊥.

Finally, there is also a relation between the ϕ∧-degree of similarity of union and

intersections of fuzzy sets.

Proposition 24. Let A,B and C be three L-fuzzy sets then,

S∧(A,B)≤ S∧(A∩C,B∩C).
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Proof. By applying Theorem 2, Proposition 8 and Proposition 10 we obtain the first

item as follows:

S∧(A∩C,B∩C) = Inc((A∩C),(B∩C))∧ Inc((B∩C),(A∩C)) =

= Inc((A∩C),B)∧ Inc((A∩C),C)∧ Inc((B∩C),A)∧ Inc((B∩C),C)

= Inc((A∩C),B)∧ Inc((B∩C),A)≥ S∧(A,B)

Proposition 25. Let L be a totally ordered lattice and let A,B and C be three L-fuzzy

sets. Then

S∧(A,B)≤ S∧(A∪C,B∪C).

By applying Theorem 4, Corollary 8 and Proposition 10 we obtain the second item

as follows:

S∧(A∪C,B∪C) = Inc((A∪C),(B∪C))∧ Inc((B∪C),(A∪C))

= Inc(A,(B∪C))∧ Inc(C,(B∪C))∧ Inc(B,(A∪C))∧ Inc(C,(A∪C))

= Inc(A,(B∪C))∧ Inc(B,(A∪C))

≥ S∧(A,B)

4.4. Relationship between the different ϕ-degrees of similarity

Since the three approaches have been defined on the basis of the ϕ-degree of inclu-

sion, it is likely that they should be related to each other. The first result shows that the

ordering of the Seq- similarity is maintained by S∧.

Proposition 26. Let A, B, C and D be L-fuzzy sets, then Seq(A,B)≤ Seq(C,D) implies

S∧(A,B)≤ S∧(C,D).

Proof. If Seq(A,B) ≤ Seq(C,D) then, either Inc(A,B) ≤ Inc(C,D) and Inc(B,A) ≤

Inc(D,C) or Inc(A,B)≤ Inc(D,C) and Inc(B,A)≤ Inc(C,D). If Inc(A,B)≤ Inc(C,D)

and Inc(B,A)≤ Inc(D,C) then, we have:

S∧(A,B) = Inc(A,B)∧ Inc(B,A)≤ Inc(C,D)∧ Inc(D,C) = S∧(C,D)

The other case is similar.
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Fixed A and B, both S∧(A,B) and S∪∩(A,B) are elements of Ω, so it makes sense

to wonder the relationship between both indexes.

Proposition 27. Let A and B be two L-fuzzy sets, then

S∪∩(A,B)≤ S∧(A,B)

Proof. By the definition of S∪∩ and S∧ and Theorem 3 we have

S∪∩(A,B) = Inc(A∪B,A∩B)

≤ Inc(A,A∩B)∧ Inc(B,A∩B)

= Inc(A,A)∧ Inc(A,B)∧ Inc(B,A)∧ Inc(B,B)

≤ Inc(A,B)∧ Inc(B,A) = S∧(A,B)

The inequality proved above might be strict, as the following example shows.

Example 6. Consider again the L-fuzzy sets of Example 5. In this case, we have:

S∧(A,B) =

 1 if x = 1

0 otherwise.
and S∪∩(A,B) =⊥.

Nevertheless, the equality holds when the complete lattice L considered is totally

ordered.

Proposition 28. Let L be a totally ordered lattice and let A and B be two L-fuzzy sets,

then S∪∩(A,B) = S∧(A,B).

Proof. The proof is similar to the proof of Proposition 27 by applying Theorem 4

instead of Theorem 3.

5. Conclusions and future work

We have shown how to use functions to represent the degrees of inclusion and

similarity for L-fuzzy sets. To the best of our knowledge, this is the first approach

which provides indexes of inclusion and similarity between L-fuzzy sets by means of
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functions. Specifically, we have defined the notion of f -inclusion, a binary crisp

relation between L-fuzzy sets, A⊆ f B, which is somehow states how much we have to

modify A so that it is included in B in Zadeh’s sense. Then, the ϕ-degree of inclusion

of A into B, denoted Inc(A,B) is defined as the maximum f such that A is f -included

in B, which corresponds to the minimum modification necessary. We have also shown

that the ϕ-index of inclusion satisfies the required properties to be considered as such

and, moreover, an analytic expression for Inc(A,B) has been presented. Among those

properties satisfied by the ϕ-index of inclusion, we put attention on those related to the

Kitainik [16] and Sinha-Dougherty [26] axioms, since all those axioms are satisfied

after a conveniently rewriting in terms of functions. The only noteworthy variation is

the use of adjoint pairs in the relation of the index of inclusion of complements of fuzzy

sets (see Proposition 12).

Finally, we have introduced three ϕ-degrees of similarity in terms of the ϕ-degree

of inclusion, and have shown that they are related to some axiomatic approaches to

similarity by proving some properties of these three degrees of similarity.

The four following lines of future research naturally appear as a logical continua-

tion of this work:

1. Use ϕ-indexes in order to define a real valued measures of inclusion for each

pair of L-fuzzy sets (this was done to measure contradiction in [4]). This way,

the comparison with axiomatic approaches of subsethood could be done fairly,

without the need to modify or adapt the axioms to the L-fuzzy case. Moreover,

a comparison with other constructive measures of inclusion, as those based on

(T,N)-implications [25] or on aggregations [6], will be of our interest as well.

2. Considering specific subsets of Ω enables us to obtain some properties that does

not hold in when considering the full set Ω, for instance, in results concerning

the complements. In this line, it is necessary to identifiy the required additional

properties, besides those in Definition 1, and study consequences for the satis-

fiability of the properties given in Section 3. This also includes the analytical

expression of the new ϕ-degree of inclusion.

3. As shown in Section 2.6, f -inclusion can be closely related to residuated impli-
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cations. Therefore, it is natural to analize whether the index of inclusion could be

seen as a certain kind of logic implication. Thus, given the information provided

by two L-fuzzy sets A and B, Inc(A,B) could be associated with an implication

to represent the information we can infer about B from the information of A.

4. Residuated pairs are fundamental for the development of different generaliza-

tions of fuzzy logic programming [20, 23]. Furthermore, in [28] inferred rules

are linked to monotonic mappings which can be interpreted as generalizations

of fuzzy implications and they might be considered as ϕ-indexes of inclusion as

well. Therefore, we aim at using our index of inclusion to construct knowledge

databases based on If-Then fuzzy rules in the framework of generalized fuzzy

logic programming.

References

[1] W. Bandler and L. Kohout. Fuzzy power sets and fuzzy implication operators.

Fuzzy Sets and Systems, 4:13–30, 1980.

[2] B. Bouchon-Meunier, M. Rifqi, and S. Bothorel. Towards general measures of

comparison of objects. Fuzzy Sets and Systems, 84:143–153, 1996.

[3] P. Burillo, N. Frago, and R. Fuentes. Inclusion grade and fuzzy implication oper-

ators. Fuzzy Sets and Systems, 114:417–429, 2000.

[4] H. Bustince, N. Madrid, and M. Ojeda-Aciego. The notion of weak-contradiction:

definition and measures. IEEE Transactions on Fuzzy Systems, 23:1057–1069,

2015.

[5] R. Chutia and M. Gogoi. Fuzzy risk analysis in poultry farming using a new

similarity measure on generalized fuzzy numbers. Computers and Industrial En-

gineering, 115:543–558, 2018.

[6] C. Cornelis, C. Van der Donck, and E. Kerre. Sinha-Dougherty approach to the

fuzzification of set inclusion revisited. Fuzzy Sets and Systems, 134:283–295,

2003.

34



[7] I. Couso, L. Garrido, and L. Sánchez. Similarity and dissimilarity measures be-

tween fuzzy sets: A formal relational study. Information Sciences, 229:122–141,

2013.

[8] B. De Baets, H. Meyer, and H. Naessens. On rational cardinality-based inclusion

measures. Fuzzy Sets and Systems, 128:169–183, 2002.

[9] G. Deng, Y. Jiang, and J. Fu. Monotonic similarity measures between fuzzy

sets and their relationship with entropy and inclusion measure. Fuzzy Sets and

Systems, 287:97–118, 2016.

[10] E. R. Dougherty and A. T. Popov. Fuzzy mathematical morphology based on

fuzzy inclusion. In E. E. Kerre and M. Nachtegael, editors, Fuzzy Techniques in

Image Processing, pages 76–100. Physica-Verlag HD, Heidelberg, 2000.

[11] J. Fan, W. Xie, and J. Pei. Subsethood measure: New definitions. Fuzzy Sets and

Systems, 106:201–209, 1999.

[12] J. Fodor and R. Yager. Fuzzy Set-Theoretic Operators and Quantifiers. In

D. Dubois and H. Prade, editors, Fundamentals of Fuzzy Sets, volume 7 of The

Handbooks of Fuzzy Sets Series, pages 125–193. Springer US, 2000.

[13] A. Ghareeb and S. Rida. Image quality measures based on intuitionistic fuzzy

similarity and inclusion measures. Journal of Intelligent and Fuzzy Systems,

34:4057–4065, 2018.

[14] G. Hesamian and J. Chachi. On similarity measures for fuzzy sets with appli-

cations to pattern recognition, decision making, clustering, and approximate rea-

soning. Journal of Uncertain Systems, 11:35–48, 2017.

[15] B. Huang, H. Li, G. Feng, and Y. Zhuang. Inclusion measure-based multi-

granulation intuitionistic fuzzy decision-theoretic rough sets and their application

to issa. Knowledge-Based Systems, 138:220–231, 2017.

[16] L. M. Kitainik. Fuzzy inclusions and fuzzy dichotomous decision procedures. In

J. Kacprzyk and S. A. Orlovski, editors, Optimization Models Using Fuzzy Sets

and Possibility Theory, pages 154–170. Springer Netherlands, Dordrecht, 1987.

35



[17] B. Kosko. Fuzzy entropy and conditioning. Information Sciences, 40:165–174,

1986.

[18] L. Kuncheva. Using measures of similarity and inclusion for multiple classifier

fusion by decision templates. Fuzzy Sets and Systems, 122(3):401–407, 2001.

[19] Z. Ma, W. Zhang, and W. Ma. Assessment of data redundancy in fuzzy relational

databases based on semantic inclusion degree. Information Processing Letters,

72:25–29, 1999.

[20] N. Madrid and M. Ojeda-Aciego. Measuring inconsistency in fuzzy answer set

semantics. IEEE Transactions on Fuzzy Systems, 19:605–622, 2011.

[21] N. Madrid and M. Ojeda-Aciego. A view of f -indexes of inclusion under different

axiomatic definitions of fuzzy inclusion. Lecture Notes in Artificial Intelligence

Science, 10564:307–318, 2017.

[22] N. Madrid, M. Ojeda-Aciego, and I. Perfilieva. f-inclusion indexes between fuzzy

sets. In Proc. of IFSA-EUSFLAT, 2015.

[23] J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Similarity-based unification: a multi-
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