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Abstract

In this work, we focus on adjunctions, also called isotone Galois connec-
tions, in the framework of fuzzy preordered sets (hereafter, fuzzy preposets).
Specifically, we present necessary and sufficient conditions so that, given a
mapping f : A → B from a fuzzy preposet A into an unstructured set B,
it is possible to construct a suitable fuzzy preorder relation on B for which
there exists a mapping g : B → A such that the pair (f, g) constitutes an
adjunction.
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1. Introduction

The notion of adjunction (or its sibling Galois connection) can be en-
countered in several research areas, both from a practical and a theoretical
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point of view. In the literature, one can find numerous papers on theoreti-
cal developments on adjunctions [1, 2, 6, 7, 12, 17] and also on applications
thereof [9, 10, 19, 20, 21, 22, 24].

Bělohlávek [1] introduced a fuzzy generalization of the notion of Galois
connection and, since then, several papers have appeared on further ap-
proaches to either fuzzy adjunctions or fuzzy Galois connections; see [3, 10,
11, 12, 17, 18, 26] for some recent contributions. In some cases, a specific
approach is introduced with a particular purpose in mind: for instance, Shi
et al. [23] focused on the notion of fuzzy adjunction in view of its use in
fuzzy mathematical morphology.

In [25, 26], fuzzy Galois connections on fuzzy posets were introduced as
a generalization of Bělohlávek’s fuzzy Galois connection, and our approach
in this paper is precisely based on this generalization. Specifically, we are
interested in constructing a right adjoint (or residual mapping) associated
to a given mapping f : 〈A, ρA〉 → B from a fuzzy preposet 〈A, ρA〉 into an
unstructured set B. Of course, a convenient fuzzy preorder relation has to
be defined on B.

In previous works [14, 15], some of the present authors have studied this
problem in the crisp case for a mapping f : 〈A,≤A〉 → B from a partially
(pre)ordered set A, and also in the fuzzy case, where the approach was
extended to a fuzzy poset 〈A, ρA〉. However, it has been argued that the
antisymmetry property of fuzzy order relations is rather restrictive [4, 5],
and should be weakened to a version involving a given fuzzy equivalence
relation. From that point of view, fuzzy preorder relations are the most
natural candidates, as they come along with their own fuzzy equivalence
relation (the symmetric kernel relation).

The aim of this paper is to consider a mapping f : A→ B from a fuzzy
preposet A = 〈A, ρA〉 into an unstructured set B, and then characterize
those situations in which B can be endowed with a fuzzy preorder relation
and an isotone mapping g : B → A can be built such that the pair (f, g) is
an adjunction. This problem is more than a mere exercise in generalization
since antisymmetry, in practice, is usually a too strong requirement.

Although all the results will be stated in terms of the existence and
construction of right adjoints (or residual mappings), all of them can be
straightforwardly modified for the existence and construction of left adjoints
(or residuated mappings). On the other hand, it is worth to remark that the
construction developed in this paper can be extended to the different types
of adjunctions (or Galois connections) between fuzzy preposets (see [13]).
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The structure of the paper is as follows. In Section 2, the preliminary
notions used in the rest of the paper are introduced. Then, the characteriza-
tion of the existence of right adjoint, together with its construction is given
in Section 3. Finally, in Section 4, we state the conclusions and prospects
for future work.

2. Preliminary definitions

The most common underlying structure for considering fuzzy gener-
alizations of Galois connections is that of a complete residuated lattice
L = (L,≤,>,⊥,⊗,→). We will denote the supremum and infimum op-
eration in the lattice with the symbols ∨ and ∧, respectively.

An L-fuzzy set on U is a mapping X : U → L where X(u) denotes the
degree to which u belongs to X; the core of X is the (crisp) set of elements
a ∈ A such that X(a) = >.

Let X and Y be L-fuzzy sets, X is said to be included in Y , denoted as
X ⊆ Y , if X(u) ≤ Y (u) for all u ∈ U . The union (resp. intersection) of
X and Y is defined as the L-fuzzy set (X ∪ Y )(u) = X(u) ∨ Y (u) (resp.
(X ∩ Y )(u) = X(u) ∧ Y (u)) for each u ∈ U .

A binary L-fuzzy relation R on U is an L-fuzzy subset of U × U ,
i.e. R : U × U → L, and it is said to be:

(i) Reflexive if R(a, a) = >, for all a ∈ U .
(ii) ⊗-Transitive if R(a, b)⊗R(b, c) ≤ R(a, c), for all a, b, c ∈ U .

(iii) Symmetric if R(a, b) = R(b, a), for all a, b ∈ U .
(iv) Antisymmetric if R(a, b) = R(b, a) = > implies a = b, for all a, b ∈ U .

The corresponding generalizations of preorder, order, and equivalence
relation are the usual ones, namely:3

(i) An L-fuzzy preorder relation is a fuzzy relation that is reflexive and
⊗-transitive.

(ii) An L-fuzzy order relation is a fuzzy relation that is reflexive, antisym-
metric and ⊗-transitive.

(iii) An L-fuzzy equivalence relation is a fuzzy relation that is reflexive,
symmetric and ⊗-transitive.

Definition 1.

3From now on, when no confusion arises, we will omit the prefixes L and ⊗.
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(i) A fuzzy preposet (fuzzy preposet) is a pair U = 〈U, ρU〉 in which U is
a set and ρU is a fuzzy preorder relation on U .

(ii) A fuzzy partially ordered set (fuzzy poset) is a pair U = 〈U, ρU〉 in
which U is a set and ρU is a fuzzy order relation on U .

Definition 2. Let U = 〈U, ρU〉 be a fuzzy poset.

(i) The crisp set of upper bounds of a fuzzy set X on U is defined as

Up(X) = {a ∈ U | X(u) ≤ ρA(u, a), for all u ∈ U} .

(ii) The upset and downset of an element a ∈ U are defined as fuzzy sets
a↑, a↓ : U → L, where a↓(u) = ρU(u, a) and a↑(u) = ρU(a, u) for all
u ∈ U.

(iii) An element a ∈ U is called a maximum of a fuzzy set X if X(a) = >
and X ⊆ a↓. The definition of a minimum is similar.

Note that maximum elements and minimum elements of X are neces-
sarily unique, whenever they exist, because of the antisymmetry property;
they are denoted, respectively, as maxX and minX.

Definition 3. Let A = 〈A, ρA〉 and B = 〈B, ρB〉 be fuzzy preposets.

(i) A mapping f : A→ B is said to be isotone if ρA(a1, a2) ≤ ρB(f(a1), f(a2))
for all a1, a2 ∈ A.

(ii) A mapping f : A → A is said to be inflationary if ρA(a, f(a)) = >
for all a ∈ A. Similarly, a mapping f is said to be deflationary if
ρA(f(a), a) = > for all a ∈ A.

Definition 4 ([26]). Let A = 〈A, ρA〉 and B = 〈B, ρB〉 be fuzzy posets,
and consider two mappings f : A → B and g : B → A. The pair (f, g)
forms an adjunction between A and B, denoted (f, g) : A � B if, for all
a ∈ A and b ∈ B, the equality ρA(a, g(b)) = ρB(f(a), b) holds.

The mapping f is called the left adjoint and the mapping g is called the
right adjoint.

Note that the definition of fuzzy adjunction does not make explicit use
of the particular properties of the fuzzy relations ρA and ρB and, hence,
perfectly makes sense in the case that A and B are fuzzy preposets.
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Notation 1. From now on, we will use the following notation: for a map-
ping f : A → B and a fuzzy subset Y of B, the fuzzy set f−1(Y ) is defined
as f−1(Y )(a) = Y (f(a)), for all a ∈ A.

Finally, we recall the following theorem which states different equivalent
ways to define a fuzzy adjunction.

Theorem 1 ([26]). Let A = 〈A, ρA〉 and B = 〈B, ρB〉 be fuzzy posets, and
consider two mappings f : A→ B and g : B → A. The following conditions
are equivalent:

(1) (f, g) : A � B.

(2) f and g are isotone, gf is inflationary, and fg is deflationary.

(3) f(a)↑ = g−1(a↑) for all a ∈ A.

(4) g(b)↓ = f−1(b↓) for all b ∈ B.

(5) f is isotone and g(b) = max f−1(b↓) for all b ∈ B.

(6) g is isotone and f(a) = min g−1(a↑) for all a ∈ A.

Before stating the following result, let us recall the notion of quotient
set associated to a set equipped with an equivalence relation. Let ∼ be an
equivalence relation on a set A, the quotient set of A w.r.t. ∼ is the set
of all the equivalence classes of the relation ∼; this quotient set is usually
denoted as A/∼ or A∼, and the equivalence class of an element a ∈ A is
denoted as [a]∼.

Theorem 2 ([15]). Let 〈A, ρA〉 be a fuzzy poset and consider a mapping
f : A→ B. Let A≡f

be the quotient set w.r.t. the kernel relation ≡f defined
by a ≡f b if and only if f(a) = f(b). Then there exists a fuzzy order
relation ρB on B and a mapping g : B → A such that (f, g) : 〈A, ρA〉 �
〈B, ρB〉 if and only if the following conditions hold:

(1) max [a]≡f
exists for all a ∈ A.

(2) ρA(a1, a2) ≤ ρA(max [a1]≡f
,max [a2]≡f

), for all a1, a2 ∈ A.

3. The construction of the right adjoint

In this section we generalize Theorem 2 to the framework of fuzzy pre-
posets. The construction will follow that given in [16] as much as possible.
First, we recall the notion of transitive closure of a fuzzy relation.
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Definition 5 ([8]). Given a fuzzy relation R : U × U → L, the transitive
closure of R is a fuzzy relation Rtr such that the following conditions hold:

(1) Rtr is transitive.

(2) R ⊆ Rtr.

(3) If R ⊆ R′ and R′ is transitive, then Rtr ⊆ R′.

Note that a transitive closure always exists and is necessarily unique.
Actually, the transitive closure of a fuzzy relation R is the smallest transitive
fuzzy relation containing R, and it can be characterized by the following
proposition.

Proposition 1 ([8]). Given a fuzzy relation R : U × U → L, the powers
Rn : U ×U → L, for n ∈ N, are recursively defined by the base case R1 = R
and

Rn(a, b) =
∨
x∈U

Rn−1(a, x)⊗R(x, b) .

The ⊗-transitive closure of R is then given by

Rtr(a, b) =
∞∨
n=1

Rn(a, b) .

The symmetric kernel relation ≈A is a fuzzy equivalence relation that
allows to get rid of the lack of antisymmetry, by linking together elements
that are ‘almost coincident’; formally, the relation ≈A corresponding to a
fuzzy preposet 〈A, ρA〉 is defined as follows:

(a1 ≈A a2) = ρA(a1, a2)⊗ ρA(a2, a1) for all a1, a2 ∈ A .

The kernel equivalence relation≡f on A associated to a mapping f : A→
B is defined as follows, for all a1, a2 ∈ A:

(a1 ≡f a2) =

{
⊥ , if f(a1) 6= f(a2) ,

> , if f(a1) = f(a2) .

Definition 6. Let A = 〈A, ρA〉 be a fuzzy preposet, and consider a mapping
f : A → B. The fuzzy p-kernel4 relation ∼=Af is the ⊗-transitive closure of
the union of the fuzzy equivalence relations ≈A and ≡f , i.e. ∼=Af= (≈A

∪ ≡f )tr.

4The prefix p stands for preposet and it is used to distinguish it from the analogous
notion in fuzzy posets.
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Note that ∼=Af is also a fuzzy equivalence relation and the fuzzy equivalence
classes [a]∼=Af

: A→ L are the fuzzy sets defined by

[a]∼=Af
(x) = (x ∼=Af a) . (1)

In order to facilitate the understanding of the different notions intro-
duced in the construction of the right adjoint, we will illustrate it, step by
step, by means of a toy example.

Example 1. Consider the unit interval together with the residuated lat-
tice structure provided by the product t-norm and its residual (Goguen)
implication L = ([0, 1],≤, 0, 1, ·,→). In addition, consider the sets A =
{a, b, c, d, e,>} and B = {p, q, r, s, t}, and the mapping f : A → B defined
as f(a) = f(c) = p, f(b) = q, f(d) = f(>) = r and f(e) = s.

Consider the fuzzy preorder relation ρA on A shown in the following
table:

ρA a b c d e >
a 1 0.5 1 1 1 1
b 0.2 1 1 1 1 1
c 0.2 0.2 1 0.3 1 1
d 0.08 0.2 0.4 1 0.4 1
e 0.2 0.2 1 0.3 1 1
> 0.08 0.2 0.4 0.2 0.4 1

The fuzzy p-kernel relation is the transitive closure of the union of the
following two fuzzy relations

≡f a b c d e >
a 1 0 1 0 0 0
b 0 1 0 0 0 0
c 1 0 1 0 0 0
d 0 0 0 1 0 1
e 0 0 0 0 1 0
> 0 0 0 1 0 1

≈A a b c d e >
a 1 0.1 0.2 0.08 0.2 0.08
b 0.1 1 0.2 0.2 0.2 0.2
c 0.2 0.2 1 0.12 1 0.4
d 0.08 0.2 0.12 1 0.12 0.2
e 0.2 0.2 1 0.12 1 0.4
> 0.08 0.2 0.4 0.2 0.4 1

therefore,
∼=Af a b c d e >
a 1 0.2 1 0.4 1 0.4
b 0.2 1 0.2 0.2 0.2 0.2
c 1 0.2 1 0.4 1 0.4
d 0.4 0.2 0.4 1 0.4 1
e 1 0.2 1 0.4 1 0.4
> 0.4 0.2 0.4 1 0.4 1
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The fuzzy equivalence clases are

[a]∼=Af
= [c]∼=Af

= [e]∼=Af
= {a/1, b/0.2, c/1, d/0.4, e/1,>/0.4}

[b]∼=Af
= {a/0.2, b/1, c/0.2, d/0.2, e/0.2,>/0.2}

[d]∼=Af
= [>]∼=Af

= {a/0.4, b/0.2, c/0.4, d/1, e/0.4,>/1}

�

Lemma 1. Let A = 〈A, ρA〉 be a fuzzy preposet, and consider a mapping
f : A → B. It then holds that (a1 ∼=Af a2) = > if and only if [a1]∼=Af

=
[a2]∼=Af

.

Proof. Consider a1, a2 ∈ A such that (a1 ∼=Af a2) = >, and let us prove
that [a1]∼=Af

(u) = [a2]∼=Af
(u) for all u ∈ A. Given u ∈ A, by using the

neutral element of the product, and symmetry and transitivity of ∼=Af , we
have that

(a1 ∼=Af u) = >⊗ (a1 ∼=Af u) = (a2 ∼=Af a1)⊗ (a1 ∼=Af u) ≤ (a2 ∼=Af u) .

Similarly, (a2 ∼=Af u) ≤ (a1 ∼=Af u) and, therefore, [a1]∼=Af
(u) = [a2]∼=Af

(u)
for all u ∈ A. �

Notation 2 (p-maximum). The notions of maximum or minimum ele-
ment of a fuzzy subset X of a fuzzy preposet are the same as in Definition 2.
The absence of antisymmetry makes it possible that there exist several max-
imum (resp. minimum) elements for X, which will be called p-maximum
(resp. p-minimum) elements to make clear that we are working in the frame-
work of a fuzzy preposet. We will write p-maxX (resp. p-minX) to denote
the set of p-maxima (resp. p-minima) of X.

The following theorem states the different equivalent characterizations
of the notion of adjunction between fuzzy preposets. As expected, the
general structure of the formulations is preserved, but those concerning the
actual definition of the adjoints have to be modified by using the notions of
p-maximum and p-minimum element.

Theorem 3 ([13]). Let A = 〈A, ρA〉,B = 〈B, ρB〉 be two fuzzy preposets,
and consider two mappings f : A→ B and g : B→ A. The following state-
ments are equivalent:
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(1) (f, g) : A � B.

(2) f and g are isotone, gf is inflationary, and fg is deflationary.

(3) f(a)↑ = g−1(a↑) for all a ∈ A.

(4) g(b)↓ = f−1(b↓) for all b ∈ B.

(5) f is isotone and g(b) ∈ p-max f−1(b↓) for all b ∈ B.

(6) g is isotone and f(a) ∈ p-min g−1(a↑) for all a ∈ A.

The notion of Hoare ordering between crisp subsets is generalized below
(including a weak and a strong version). We then prove that the three
notions coincide in a particular case that will be used in the statements of
the main results of the paper.

Definition 7. Consider a fuzzy preposet A = 〈A, ρA〉. We define the fol-
lowing fuzzy relations on the powerset of A:

(i) (C vW D) =
∨
c∈C

∨
d∈D

ρA(c, d) ,

(ii) (C vH D) =
∧
c∈C

∨
d∈D

ρA(c, d) ,

(iii) (C vS D) =
∧
c∈C

∧
d∈D

ρA(c, d) ,

for all crisp subsets C,D of A.

Lemma 2. Let A = 〈A, ρA〉 be a fuzzy preposet, and consider fuzzy subsets
X, Y of A such that p-minX 6= ∅ 6= p-minY , then(

p-minX vW p-minY
)

=
(

p-minX vH p-minY
)

=
(

p-minX vS p-minY
)

and their value coincides with ρA(x, y) for any x ∈ p-minX and y ∈
p-minY .

Proof. Firstly, note that if u1, u2 ∈ p-minX, then ρA(u1, u2) = >, by
definition of p-minX.

Secondly, ρA(x1, y1) = ρA(x2, y2) for all x1, x2 ∈ p-minX, y1, y2 ∈
p-minY . Indeed, ρA(x1, y1) ≥ ρA(x1, x2) ⊗ ρA(x2, y1) = > ⊗ ρA(x2, y1) ≥
ρA(x2, y2)⊗ ρA(y2, y1) = ρA(x2, y2). Analogously, ρA(x2, y2) ≥ ρA(x1, y1). �

As a consequence of the previous result, we will use the following nota-
tion
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Notation 3. Given a subset S ⊂ A and an element a ∈ A, we will write

ϕS(a)
def
= p-min(Up([a]∼=Af

) ∩ S) . (2)

Remark 1. Note that, due to Lemma 2, it holds that
(
ϕS(a1) vH ϕS(a2)

)
=

ρA(x, y) for any x ∈ ϕS(a1) and y ∈ ϕS(a2), and this justifies that, in order
to simplify the notation, we write ρA(ϕS(a1), ϕS(a2)) instead of

(
ϕS(a1) vH

ϕS(a2)
)
.

The next technical lemma will be used hereinafter, namely, twice in the
proof of Theorem 4.

Lemma 3. Let A = 〈A, ρA〉 and B = 〈B, ρB〉 be fuzzy preposets, and con-
sider two mappings f : A→ B and g : B → A such that (f, g) : A � B. For
all a ∈ A, it holds that [a]∼=Af

⊆ gf(a)↓.

Proof. Recall that the fuzzy relation ∼=Af has been defined as the transi-
tive closure of the union of the fuzzy relations ≈A and ≡f . Hereafter, we
will write R to refer to this union. Using Proposition 1 and properties of
the supremum, it suffices to prove that any power Rn satisfies the following
inequality:

aRnu ≤ ρA(u, gf(a)) for all u ∈ A . (3)

(i) For n = 1 and u ∈ A, we have that

aRu = (a ≈A u) ∨ (a ≡f u)

=
(
ρA(a, u)⊗ ρA(u, a)

)
∨ (a ≡f u)

≤ ρA(u, a) ∨ (a ≡f u).

Considering the two possible values of a ≡f u:

– If (a ≡f u) = ⊥, then due to the monotonicity of f and the
adjunction property, we have that

ρA(u, a) ≤ ρB(f(u), f(a)) = ρA(u, gf(a)).

– If (a ≡f u) = >, then inequality (3) degenerates to a tautology.
Specifically, using f(a) = f(u) and the adjunction property, we
have

ρA(u, gf(a)) = ρB(f(u), f(a)) = ρB(f(a), f(a)) = > .
10



(ii) Assume inequality (3) holds for n− 1, and let us prove it holds for n.

aRnu =
∨
x∈A

aRn−1x⊗ xRu

≤
∨
x∈A

ρA(x, gf(a))⊗
(
(x ≈A u) ∨ (x ≡f u)

)
=
∨
x∈A

ρA(x, gf(a))⊗
(
(ρA(x, u)⊗ ρA(u, x)) ∨ (x ≡f u)

)
≤
∨
x∈A

ρA(x, gf(a))⊗
(
ρA(u, x) ∨ (x ≡f u)

)
.

Once again, we reason on each x ∈ A separately, considering the
possible values of x ≡f u, and using the monotonicity of f and the
hypothesis (f, g) : A � B when necessary:

– If (x ≡f u) = ⊥, then the result follows due to commutativity of
⊗ and the transitivity of ρA.

– If (x ≡f u) = >, then f(x) = f(u) implies

ρA(x, gf(a)) = ρB(f(x), f(a)) = ρB(f(u), f(a)) = ρA(u, gf(a)) .

�

We can now state some necessary conditions for the existence of fuzzy
adjunctions between fuzzy preposets. The result obtained resembles that in
the crisp case [16].

Theorem 4. Let A = 〈A, ρA〉 and B = 〈B, ρB〉 be fuzzy preposets, and
consider two mappings f : A→ B and g : B → A such that (f, g) : A � B.
The following statements hold:

(1) gf(A) ⊆
⋃
a∈A

p-max[a]∼=Af
.

(2) ϕgf(A)(a) 6= ∅, for all a ∈ A (the element gf(a) is in this set).

(3) ρA(a1, a2) ≤ ρA
(
ϕgf(A)(a1), ϕgf(A)(a2)

)
for all a1, a2 ∈ A.

Proof.
Item 1. Consider a ∈ A and let us show that gf(a) ∈ p-max[gf(a)]∼=Af

.
By definition of p-maximum element of a fuzzy set, we have to prove that

it is an element of its core, and also an upper bound. To begin with, it is
11



straightforward that [gf(a)]∼=Af
(gf(a)) = >, therefore we just have to prove

the inclusion [gf(a)]∼=Af
⊆ (gf(a))↓ between fuzzy sets, that is, we have to

prove that [gf(a)]∼=Af
(u) ≤ ρA

(
u, gf(a)

)
for all u ∈ A or equivalently, that

gf(a)Rnu ≤ ρA(u, gf(a)) for all u ∈ A and for any n ≥ 1. (4)

On the one hand, by Lemma 3, gf(a)Rnu ≤ ρA(u, gfgf(a)), for all
u ∈ A. On the other hand, since the composition fg is deflationary and g is
isotone, we have that > = ρB(fg(f(a)), f(a)) ≤ ρA(gfgf(a), gf(a)), which
implies ρA(gfgf(a), gf(a)) = >. Hence, for all u ∈ A, we have

ρA(u, gfgf(a)) = ρA(u, gfgf(a))⊗ ρA(gfgf(a), gf(a)) ≤ ρA(u, gf(a))

Summarizing, inequality (4) holds.

Item 2. Note that the set of upper bounds and the image involved in this
condition are crisp sets. Specifically, we will prove that gf(a) belongs to
p-min(Up([a]∼=Af

) ∩ g(f(A)).
To begin with, we have to check that gf(a) ∈ Up([a]∼=Af

) ∩ gf(A). As
it is obvious that gf(a) ∈ gf(A), we just have to show that gf(a) is an
upper bound of the fuzzy set [a]∼=Af

, which is straightforwardly deduced
from Lemma 3.

Finally, for the minimality, we have to check that ρA(gf(a), x) = > for
all x ∈ Up([a]∼=Af

) ∩ g(f(A))). Consider x ∈ Up([a]∼=Af
) ∩ g(f(A)), then

there exists a1 ∈ A such that x = gf(a1) and (a ∼=Af u) ≤ ρA(u, x) for all
u ∈ A. Particularly, considering u = a and using the monotonicity of g and
the adjunction property, we have that

> = (a ∼=Af a) ≤ ρA(a, x) = ρA(a, gf(a1))

= ρB(f(a), f(a1))

≤ ρA(gf(a), gf(a1)) = ρA(gf(a), x).

Item 3. Consider a1, a2 ∈ A. Since f and g are monotone mappings, we
have

ρA(a1, a2) ≤ ρA(gf(a1), gf(a2)) .

From this inequality, we directly obtain the required condition

ρA(a1, a2) ≤ ρA
(
ϕgf(A)(a1), ϕgf(A)(a2)

)
,

since we have just proved above that gf(a) ∈ ϕgf(A)(a). �
12



Corollary 1. Let A = 〈A, ρA〉 be a fuzzy preposet, let B be an unstructured
set, and consider a mapping f : A → B. If f is the left adjoint of an
adjunction, then there exists a subset S ⊆ A such that

(1) S ⊆
⋃
a∈A

p-max[a]∼=Af
.

(2) ϕS(a) 6= ∅, for all a ∈ A.

(3) ρA(a1, a2) ≤ ρA
(
ϕS(a1), ϕS(a2)

)
for all a1, a2 ∈ A.

The second part of this section is devoted to establishing the sufficient
conditions for the existence of the right adjoint. So, given f : A → B
with the conditions above, we will construct a fuzzy preorder relation on
B together with a mapping g : B → A, which will turn out to be a right
adjoint of f .

Definition 8. Consider a fuzzy preposet A = 〈A, ρA〉 together with a map-
ping f : A→ B and a subset S ⊆ A satisfying the following hypotheses, for
all a ∈ A, and a1, a2 ∈ A:

S ⊆
⋃
a∈A

p-max[a]∼=Af
, (5)

ϕS(a) 6= ∅, (6)

ρA(a1, a2) ≤ ρA(ϕS(a1), ϕS(a2)) (7)

For any a0 ∈ A, we define the fuzzy relation ρa0B : B ×B → L as follows

ρa0B (b1, b2) = ρA(ϕS(a1), ϕS(a2))

where ai ∈ f−1(bi) if f−1(bi) 6= ∅ and ai = a0 otherwise, for any i ∈ {1, 2}.

Note that this definition might depend on the possible choices of ai. The
following lemma, based on Remark 1, shows that the value of ρa0B actually
is independent of this choice.

Lemma 4. The fuzzy relation ρa0B is well defined, and it is a fuzzy preorder
relation on B.

Proof. The definition does not depend on the choice of the preimages ai
since, if other preimages āi would have been chosen, then (ai ≡f āi) = >
and, hence, by Lemma 1, the fuzzy sets corresponding to the equivalence

13



classes [ai]∼=Af
and [āi]∼=Af

would coincide and ϕS(ai) = ϕS(āi). Moreover,
due to Remark 1, we have that

ρA(ϕS(a1), ϕS(a2)) = ρA(x, y) for any x ∈ ϕ(a1) and y ∈ ϕ(a2) .

We will now prove that ρa0B is a fuzzy preorder relation on B.

Reflexivity If b ∈ f(A) and f(a) = b, then ρa0B (b, b) = ρA(ϕS(a), ϕS(a)) = >;
otherwise, if b 6∈ f(A), then ρa0B (b, b) = ρA(ϕS(a0), ϕS(a0)) = >.

Transitivity Follows directly from the definition of ρa0B and the transitivity
of ρA. �

Example 2. For the fuzzy preposet 〈A, ρA〉, together with the mapping
f : A→ B defined in Example 1, it is not difficult to check that the subset
S = {c,>} satisfies the three conditions (5), (6) and (7), because

p-max [a]∼=Af
∪ p-max [b]∼=Af

∪ p-max [d]∼=Af
= {c, e} ∪ {b} ∪ {>} ,

and ϕS(a) = ϕS(b) = ϕS(c) = ϕS(e) = {c} and ϕS(d) = ϕS(>) = {>}.
Thus, the fuzzy preorder relation ρcB is the following

ρcB p q r s t
p 1 1 1 1 1
q 1 1 1 1 1
r 0.4 0.4 1 0.4 0.4
s 1 1 1 1 1
t 1 1 1 1 1

�

We can now focus on the definition of suitable mappings g : B → A such
that (f, g) forms an adjoint pair.

Lemma 5. Let A = 〈A, ρA〉 be a fuzzy preposet, consider a mapping f : A→
B, and let S be a subset of A satisfying hypotheses (5)–(7). Given a0 ∈ A,
there exists a mapping g : B → A such that (f, g) : 〈A, ρA〉� 〈B, ρa0B 〉 where
ρa0B is the fuzzy preorder relation introduced in Definition 8.

Proof. There exist a number of suitable definitions of g : B → A, and all
of them can be specified as follows:

(C1) If b ∈ f(A), then g(b) could be any element in ϕS(xb) for some xb ∈
f−1(b).
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(C2) If b /∈ f(A), then g(b) could be any element in ϕS(a0).

The existence of g is clear by the axiom of choice, since for all b ∈ f(A),
the sets f−1(b) are nonempty (so xb can be chosen for all b ∈ f(A)) and,
moreover, by hypothesis (6), ϕS(xb) and ϕS(a0) are nonempty as well.

Now, we have to prove that g is a right adjoint to f , that is, for all a ∈ A
and b ∈ B the following equality holds

ρa0B
(
f(a), b

)
= ρA

(
a, g(b)

)
.

From the definition of ρa0B (see Definition 8), it follows that

ρa0B (f(a), b) = ρA(ϕS(a), ϕS(w)) .

where w satisfies either w ∈ f−1(b) if b ∈ f(A) (therefore, we can choose
w to be xb above) or, otherwise, w = a0. In either case, g(b) ∈ ϕS(w) by
construction (namely, (C1) and (C2)). Thus,

ρa0B (f(a), b) = ρA(x, g(b)) for any x ∈ ϕS(a) . (8)

The proof will be complete if we can show that, fixing x ∈ ϕS(a), the
equality ρA(x, g(b)) = ρA(a, g(b)) holds.

Firstly, from the definition of ϕS (see (2)) it follows that x ∈ ϕS(a)
implies ρA(a, x) = > and, hence, we have that

ρA
(
x, g(b)

)
= ρA(a, x)⊗ ρA

(
x, g(b)

)
≤ ρA

(
a, g(b)

)
. (9)

Furthermore, using hypothesis (7), it follows that

ρA
(
a, g(b)

)
≤ ρA

(
ϕS(a), ϕS

(
g(b)

))
= ρA(x, y) (10)

for any x ∈ ϕS(a) and y ∈ ϕS(g(b)). Since y ∈ ϕS

(
g(b)

)
, we have that

ρA(y, α) = > for all α ∈ Up([g(b)]∼=Af
) ∩ S.

On the other hand, since g(b) ∈ S, by (5) we have that g(b) ∈ p-max[a]∼=Af

for some a ∈ A, therefore

> = [a]∼=Af

(
g(b)

)
=
(
a ∼=Af g(b)

)
as a result, by Lemma 1 the fuzzy equivalence classes [a]∼=Af

and [g(b)]∼=Af
co-

incide and, thus, g(b) ∈ p-max[g(b)]∼=Af
. In particular g(b) ∈ Up([g(b)]∼=Af

),

hence g(b) ∈ Up([g(b)]∼=Af
) ∩ S. As a result, we obtain ρA

(
y, g(b)

)
= >.

Now, connecting expression (10) with the transitivity of ρA, we find that

ρA
(
a, g(b)

)
≤ ρA(x, y) = ρA(x, y)⊗ ρA

(
y, g(b)

)
≤ ρA

(
x, g(b)

)
(11)
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for all x ∈ ϕS(a). Joining Eqs. (9) and (11) we obtain, ρA(x, g(b)) =
ρA(a, g(b)) and, finally, Eq. (8) leads to

ρa0B
(
f(a), b

)
= ρA(a, g(b)).

�

We can now conclude this section by stating necessary and sufficient
conditions for the existence of a right adjoint from a fuzzy preposet to an
unstructured set. In this statement, for the sake of readability, we do not
use the syntactically sugared version of the previous lemma (namely, ϕS)
but, instead, state the conditions directly in their low level appearance.

Theorem 5. Let A = 〈A, ρA〉 be a fuzzy preposet, and consider a mapping
f : A→ B, then there exist a fuzzy preorder relation ρB on B and a mapping
g : B → A such that (f, g) : A � B if and only if there exists a subset S ⊆ A
such that, for all a, a1, a2 ∈ A:

(1) S ⊆
⋃
a∈A

p-max[a]∼=Af
.

(2) p-min(Up([a]∼=Af
) ∩ S) 6= ∅ .

(3) ρA(a1, a2) ≤
(

p-min(Up([a1]∼=Af
) ∩ S) v p-min(Up([a2]∼=Af

) ∩ S)
)

.

Proof. The necessity follows from Corollary 1, considering S = gf(A);
the sufficiency follows from Lemma 5. �

Example 3. For the mapping f : A → B given in Example 1 and the
fuzzy preorder relation ρcB given in Example 2, the right adjoint g : B → A
is defined as g(p) = g(q) = g(s) = g(t) = c and g(r) = >. �

Observe that Theorem 5 differs from Theorem 2 in a number of points.
In the case of preposets, assuming (f, g) is an adjunction, gf(a) is not nec-
essarily included in [a]∼=Af

(as in the case of posets) but, in fact, it is a
minimal upper bound of [a]∼=Af

and also a p-maximum of its own equiva-
lence class. Both first and second conditions of Theorem 5 guarantee that
the construction of the right adjoint in this context satisfies the required
properties described before.
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4. Conclusions

Given a mapping f : 〈A, ρA〉 → B from a fuzzy preposet A into an
unstructured set B, we have obtained necessary and sufficient conditions to
define a suitable fuzzy preorder relation ρB on B such that there exists a
right adjoint g : 〈B, ρB〉 → A.

It should be stressed that the right adjoint, in general, is not unique. In
fact, there is a number of degrees of freedom in its construction: just note
that the parameterized construction of g has been given (in the case of a
non-surjective f) in terms of an element a0 ∈ A. We chose a convenient
construction to extend the induced fuzzy order relation on the image of f
to the whole set B, but it is worth to stress that our results do not imply
that every right adjoint can be constructed in this way, and there may exist
other constructions that are adequate as well. This is an interesting topic
for future work.

When focusing on fuzzy generalizations of order relations one can find
some interesting developments in the study of both fuzzy order and fuzzy
preorder relations, see [4, 5] for instance. In these works, it is argued that
the versions of reflexivity and antisymmetry commonly used are too strong
and, as a consequence, the resulting fuzzy order relations are very close to
the classical case. Accordingly, one interesting line of future work will be
the adaptation of the current results to these alternative weaker definitions.

Another topic of future work could be the study of alternative inter-
pretations of the notion of adjunction between multivalued functions (i.e.,
relations) both in crisp and fuzzy frameworks, with the aim of building a
right adjoint for a given multivalued function.
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[13] F. Garćıa-Pardo, I.P. Cabrera, P. Cordero, and M. Ojeda-Aciego. On Galois con-
nections and soft computing. Lect. Notes in Computer Science, 7903:224–235, 2013.

[14] F. Garćıa-Pardo, I.P. Cabrera, P. Cordero, M. Ojeda-Aciego, and F.J. Rodŕıguez.
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