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Abstract. A Hilbert space H induces a formal context, the Hilbert for-
mal context H, whose associated concept lattice is isomorphic to the
lattice of closed subspaces of H. This set of closed subspaces, denoted
C(H), is important in the development of quantum logic and, as an alge-
braic structure, corresponds to a so-called “propositional system,” that
is, a complete, atomistic, orthomodular lattice which satisfies the cover-
ing law. In this paper, we continue with our study of the Chu construc-
tion by introducing the Chu correspondences between Hilbert contexts,
and showing that the category of Propositional Systems, PropSys, is
equivalent to the category of ChuCorsH of Chu correspondences between
Hilbert contexts.
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1 Introduction

Since its introduction, quantum mechanics raised profound conceptual problems,
among which the principal was to find an adequate formalization. John von
Neumann [12] investigated the mathematical mechanism underlying quantum
mechanics, leading to the use of Hilbert spaces as its most natural language.
Later, Birkhoff and von Neumann [5] studied the logical structure which is likely
to be found in physical theories and, in particular, in quantum mechanics; this
led to the discovery that the formalism based on Hilbert spaces also had a (non-
classical) logical structure, which nowadays is called quantum logic. The main
conclusion of Birkhoff and von Neumann was

. . . that one can reasonably expect to find a calculus of propositions
which is formally indistinguishable from the calculus of linear subspaces
with respect to set products, linear sums, and orthogonal complements—
and resembles the usual calculus of propositions with respect to and, or,
and not. (Quoted from [5])
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Since then, a number of researchers have continued this line of research, and
found alternative descriptions of different interesting subsets of linear subspaces.
For instance, in quantum logic, ortholattices have often been used, where the
(topologically) closed subspaces of a separable Hilbert space represent quantum
propositions; these spaces can be represented in purely lattice-theoretical terms,
by Piron’s representation theorem [13], as irreducible, complete, atomistic, or-
thomodular lattices satisfying the covering law. Thus, it makes sense that these
special types of lattices are called propositional systems in [14].

For the purposes of this work, we will use an additional characterization, in
which closed subspaces turn out to be algebraically characterized in terms of the
double orthogonal operator ( )⊥⊥, i.e., a linear subspace of a Hilbert space is
(topologically) closed if and only if it is a fixpoint of ( )⊥⊥.

The lattice of closed subspaces of a Hilbert space has a solid relationship
with Formal Concept Analysis (FCA), as stated in [8, page 55], where one can
read that

if H is a Hilbert space and ⊥ is the orthogonality relation, then the
concept lattice of the context (H,H,⊥) is isomorphic to the orthomodular
lattice of the closed subspaces of H. (Quoted from [8])

In this paper, we continue our research line on the Chu construction [6] ap-
plied to different generalizations of FCA [9,10]. It is worth noting that the closely
related notion of Chu space has already been applied to represent quantum phys-
ical systems and their symmetries [1,2].

Specifically, the goal of this work is to highlight the importance of the
Chu construction with respect to quantum logic, by constructing a category on
Hilbert formal contexts (H,H,⊥) and Chu correspondences between them, and
proving that it is equivalent to the category PropSys of propositional systems of
Hilbert spaces.

The structure of this paper is the following: in Section 2 some preliminary
notions related to Hilbert spaces, the lattice-theoretical approach to the subset
of closed linear subspaces, and formal concept analysis are introduced; then,
in Section 3, we give the contextual representation of propositional systems in
terms of Hilbert formal contexts and Chu correspondences; finally, in Section 4,
we draw some conclusions and present some prospects for future work.

2 Preliminary definitions

In this section, we introduce some basic notions about Hilbert spaces, lattices,
and formal concept analysis.

2.1 Hilbert spaces

Definition 1. A Hilbert space H is a real or complex vector space with an
inner product which is also a complete metric space with respect to the distance
function induced by the inner product.



The induced metric topology allows to talk about the closed linear subspaces
of H. The set of closed linear subspaces of H will be denoted by C(H).

The inner product in a Hilbert space naturally induces the orthogonality
relation: two vectors v, w ∈ H are orthogonal, written v ⊥ w, if their inner
product is zero.

Definition 2. Let H be a Hilbert space, let S ⊆ H be a subspace of H and
v ∈ H. We write v ⊥ S if and only if v ∈ S⊥ or, in other words, v ⊥ u for all
u ∈ S.

It turns out that topological closure of a linear subspace can be directly
rephrased in terms of the orthogonality relation, as stated below:

Lemma 1. Let A ⊆ H be a linear subspace of H, then A is closed if and only
if A = A⊥⊥.

Definition 3. A ray in a Hilbert space H is any one-dimensional linear subspace
of H. Let u ∈ H be an arbitrary vector of H, then we denote

ρ(u) = {v ∈ H | v = λu for some scalar λ}.

The set of all rays in H is denoted by P(H), whereas the set of all linear
subspaces of H is denoted by L(H).

It is worth noting that, although the main interest of Hilbert spaces is on
the merging of algebraic (since it is a vector space) and topological properties
(since the inner product induces the metric topology), the main tools used in
this paper belong almost exclusively to linear algebra.

2.2 Lattices

A lattice L is said to be:

– complete if suprema and infima exist for any subset of L.
– atomistic if every element of L is the join of finitely many atoms.
– orthomodular if it has zero element 0 and unit element 1, and for any ele-

ment a there is an orthocomplement a⊥, i.e. an element satisfying
1. a ∨ a⊥ = 1, a ∧ a⊥ = 0, (a⊥)⊥ = a
2. a ≤ b implies a⊥ ≥ b⊥
3. a ≤ b implies b = a ∨ (b ∧ a⊥) (orthomodular law)

Definition 4. A propositional system is a complete, atomistic, orthomodular
lattice (L,≤, ( )⊥) which satisfies the covering law, i.e., for any x ∈ L and any
atom a ∈ L we have that a ∧ x = 0 implies x < a ∨ x and there is no element
between them.3

3 This relation is called the covering relation and the condition would be usually
denoted by x ≺ a ∨ x.



Lemma 2. The algebraic structure of the set C(H) of closed linear subspaces of
a Hilbert space H is that of a propositional system.

Definition 5. Let C1 and C2 be propositional systems. A map h : C1 → C2 is a
morphism of propositional systems if it preserves arbitrary suprema and maps
atoms of C1 to either atoms or the bottom element of C2.

Proposition 1. Propositional systems and their morphisms form a category
PropSys.

2.3 FCA and intercontextual structures

Definition 6. Formal context is a triple (B,A,R) where R ⊆ B × A. Let us
define two mappings (−)↑ : 2B → 2A and (−)↓ : 2A → 2B as follows

– X↑ = {a ∈ A | (∀b ∈ X)(b, a) ∈ R}
– Y ↓ = {b ∈ B | (∀a ∈ Y )(b, a) ∈ R}

for any X ⊆ B and Y ⊆ A. Such mappings are called derivation (concept-
forming) operators of the context (B,A,R).

Proposition 2. Pair of mappings ((−)↑, (−)↓) forms a Galois connection be-
tween (2B ,⊆) and (2A,⊆).

Definition 7. Let C = (B,A,R) be a formal context. A pair of sets (X,Y ) ∈
2B × 2A is a formal concept if X↑ = Y and Y ↓ = X. The object part X is said
to be the extent, and the attribute part Y is the intent of the formal concept.
The set of all extents and intents of a formal context C are denoted by Ext(C)
and Int(C), respectively.

Formal concepts (X,Y ) are fixpoints of Galois connection ((−)↑, (−)↓), i.e.
pairs of closed subsets made by closure operators of derivation operators.

We now recall the basic notions about the category ChuCors of formal con-
texts and Chu correspondences.

Definition 8. Let C1 = (B1, A1, R1) and C2 = (B2, A2, R2) be two formal con-
texts with pairs derivation operators ((−)↑1 , (−)↓1) and ((−)↑2 , (−)↓2). Let us
define the following pair of mappings ϕ = (ϕL, ϕR) from C1 to C2, which we will
denote as ϕ : C1 → C2

– ϕL : B1 → Ext(C2) and ϕR : A2 → Int(C1)
– and for any (b1, a2) ∈ B1 ×A2 holds that

a2 ∈ ϕL(b1)↑2 ⇐⇒ b1 ∈ ϕR(a2)↓1

with composition of ϕ1 : C1 → C2 and ϕ2 : C2 → C3 defined as follows

• (ϕ2 ◦ ϕ1)L(b1) =

( ⋃
b2∈ϕ1L(b1)

ϕ2L(b2)

)↓3↑3



• (ϕ2 ◦ ϕ1)R(a3) =

( ⋃
a2∈ϕ2R(a3)

ϕ1R(a2)

)↑1↓1
and with identity Chu correspondence ι : C → C for any C = (B,A,R) with
derivation operators ((−)↑, (−)↓)

• ιL(b) = ({b})↓↑ for any b ∈ B
• ιR(a) = ({a})↑↓ for any a ∈ A

Such pair of mappings ϕ = (ϕL, ϕR) is Chu correspondence. The set of all Chu
correspondences from C1 to C2 is denoted by ChuCors(C1, C2).

Theorem 1 ([11]). Formal contexts and Chu correspondences form a category
ChuCors, which is equivalent to the category of complete lattices and supremum
preserving maps.

3 Contextual representation of propositional systems

3.1 Hilbert formal contexts and Hilbert-Chu correspondences

It is known that if H is a Hilbert space and ⊥ is the orthogonality relation, then
the concept lattice of the context (H,H,⊥) is isomorphic to the orthomodular
lattice of the closed subspaces of H, since (U,U⊥) is a concept for each such
subspace U , see [8, page 55]. This justifies the following definition:

Definition 9. Let H be a Hilbert space, the tuple H = (H,H,⊥) is said to be
the Hilbert formal context associated to H.

Lemma 3. Let H be a Hilbert space, the concept lattice associated to the Hilbert
formal context H is a propositional system.

Proof. Follows from Proposition 2 and the construction of the concept lattice
of H. ut

Lemma 4. Let H be a Hilbert space. Then, the trivial subspace {0} and the
one-dimensional subspaces of H are closed under (−)⊥.

Proof. The first statement is trivial.

Given an arbitrary vector u ∈ H, we have to prove that ρ(u) = ρ(u)⊥⊥. It is
not straightforward to check that ρ(u) ⊆ ρ(u)⊥⊥. Now, assume that there exists
v ∈ H such that v ∈ ρ(u)⊥⊥ and v /∈ ρ(u); from v 6∈ ρ(u) it follows that v is
not a multiple of u, and from v ∈ ρ(u)⊥⊥ we obtain that v /∈ ρ(u)⊥, therefore
there should exist some non-null vector w ∈ H such that u ⊥ w and v 6⊥ w.
On the other hand, v ∈ ρ(u)⊥⊥ is equivalent to v ⊥ ρ(u)⊥ that means that
everything orthogonal to ρ(u) is orthogonal to v that contradicts to existence of
vector w. ut



Definition 10. The category ChuCorsH has Hilbert formal contexts as objects
and, given two Hilbert spaces H1 and H2, the morphisms between the corre-
sponding Hilbert formal contexts are pairs of mappings ϕ = (ϕL, ϕR) where
ϕL : H1 → P(H2) ∪ {0}, ϕR : H2 → C(H1) satisfying

ϕL(v1) ⊥ v2 ⇐⇒ v1 ⊥ ϕR(v2)

In the rest of this section we will prove that ChuCorsH is, indeed, a category. To
begin with, note that ϕL is well-defined since the rays and the trivial subspace
are closed and, hence, extents by Lemma 4; furthermore, the image of ϕR is also
closed by construction and, hence, an intent.

Lemma 5. Any ϕL ∈ ChuCors(H1, H2) preserves linear dependence of vectors.

Proof. Consider ui, vi, wi ∈ Hi for i ∈ {1, 2} and let us write ρi(−) for the “ray”
operator defined on Hi. Assume that w1 = α1u1 + β1v1 for some scalars α1, β1,
and that ϕL(u1) = ρ2(u2), ϕL(v1) = ρ2(v2) and ϕL(w1) = ρ2(w2) for some
u2, v2, w2 ∈ H2 (since the cases in which some of the images is the {0} subspace
is trivial). Now we would like to prove that there exist scalars α2, β2 such that
w2 = α2u2 + β2v2.

By reductio ad absurdum, let us assume that w2 6= α2u2 + β2v2, for any
α2, β2 ∈ K2. This means that there should exist q2 ∈ H2 such that q2 ⊥ u2,
q2 ⊥ v2 and q2 6⊥ w2, that is, q2 ⊥ ϕL(u1), q2 ⊥ ϕL(v1) and q2 6⊥ ϕL(w1). From
Definition 10, we would obtain u1 ⊥ ϕR(q2), v1 ⊥ ϕR(q2) and w1 6⊥ ϕR(q2)
contradicting the fact that w1 depends linearly from u1 and v1. ut

Lemma 6. Given two Hilbert spaces H1, H2 and ϕ ∈ ChuCorsH(H1, H2), con-
sider u, v ∈ H1 satisfying u = λv for some λ ∈ K1. Then ϕ(u) = ϕ(v).

Proof. We have ϕL(u) = ϕL(v) straightforwardly from Lemma 5.
Now, if ϕR(u) 6= ϕR(v) then there would exist q ∈ H1 such that q ⊥ ϕR(u)

and q 6⊥ ϕR(v); this is equivalent to ϕL(q) ⊥ u and ϕL(q) 6⊥ v, which is not
possible since u = λv. ut

Corollary 1. By the previous Lemma, we can see any left side ϕL of any
Hilbert-Chu correspondence ϕ : H1 → H2 as a mapping between atoms (rays) of
Hilbert space H1 and atoms (rays) or bottom (trivial subspace) of H2.

Lemma 7. Let H1, H2, H3 be Hilbert formal contexts, and consider two Chu
correspondences ϕ1 ∈ ChuCorsH(H1, H2) and ϕ2 ∈ ChuCorsH(H2, H3). Con-
sider the following mappings

(ϕ2ϕ1)L(v1) =

 ⋃
v2∈ϕ1L(v1)

ϕ2L(v2)

⊥⊥

(ϕ2ϕ1)R(v3) =

 ⋃
v2∈ϕ2R(v3)

ϕ1R(v2)

⊥⊥

then
(
(ϕ2ϕ1)L, (ϕ2ϕ1)R

)
∈ ChuCorsH(H1, H3).



Proof. Firstly, note that by Lemma 5, the union
⋃
v2∈ϕ1L(v1)

ϕ2L(v2) is closed

because, indeed, it is a ray given by the value of any ϕ2L(v2) (all of them coin-
cide). The reason to give the definition as the double orthogonal of the union is
to clarify that, actually, we are just applying the usual composition of Chu cor-
respondences. For the right part, its definition is the closure (double orthogonal)
of certain set and, hence, is closed.

For the proof of the Chu equivalence, consider the following equivalences:

v1 ∈
(
(ϕ2ϕ1)R(v3)

)⊥ ⇐⇒
v1 ∈

 ⋃
v2∈ϕ2R(v3)

ϕ1R(v2)

⊥⊥⊥ =

 ⋃
v2∈ϕ2R(v3)

ϕ1R(v2)

⊥

⇐⇒ v1 ⊥ u1 for all u1 ∈
⋃

v2∈ϕ2R(v3)

ϕ1R(v2)

⇐⇒ v1 ⊥ u1 for all v2 ∈ ϕ2R(v3) and for all u1 ∈ ϕ1R(v2)

⇐⇒ v1 ∈ ϕ1R(v2)⊥ for all v2 ∈ ϕ2R(v3)

⇐⇒ v2 ∈ ϕ1L(v1)⊥ for all v2 ∈ ϕ2R(v3)

⇐⇒ v2 ⊥ u2 for all v2 ∈ ϕ2R(v3) and for all u2 ∈ ϕ1L(v1)

⇐⇒ u2 ∈ ϕ2R(v3)⊥ for all u2 ∈ ϕ1L(v1)

⇐⇒ v3 ∈ ϕ2L(u2)⊥ for all u2 ∈ ϕ1L(v1)

⇐⇒ v3 ⊥ u3 for all u2 ∈ ϕ1L(v1) and for all u3 ∈ ϕ2L(u2)

⇐⇒ v3 ⊥ u3 for all u3 ∈
⋃

u2∈ϕ1L(v1)

ϕ2L(u2)

⇐⇒ v3 ∈

 ⋃
u2∈ϕ1L(v1)

ϕ2L(u2)

⊥ =

 ⋃
u2∈ϕ1L(v1)

ϕ2L(u2)

⊥⊥⊥

⇐⇒ v3 ∈
(
(ϕ2ϕ1)L(v1)

)⊥
ut

Lemma 8. Composition is associative.

Proof. Associativity of composition is proved in [11]. New definition has no im-
pact on composition. The construction is the same. ut

Lemma 9. Let H be a Hilbert space and S ∈ C(H) arbitrary. If u ∈ S then
ρ(u) ⊆ S.

Proof. {u} ⊆ S and {u}⊥⊥ = ρ(u) ⊆ S⊥⊥ = S. ut

Lemma 10. There exist a unit morphism ιH for any object H in ChuCorsH
which is a neutral element of arrow composition.



Proof. Given a Hilbert formal context H, the unit morphism is defined by ι =
(ιL, ιR) where ιL(v) = ιR(v) = {v}⊥⊥ = ρ(v) for all v ∈ H. It is easy to check
that ι ∈ ChuCorsH: it is indeed a morphism, since ιL(v) : H → P(H), and
ιR(v) : H → C(H) and, moreover,

u ⊥ ιL(v)⇐⇒ u ⊥ {v}⊥⊥ ⇐⇒ u ⊥ v ⇐⇒ {u}⊥⊥ ⊥ v ⇐⇒ ιR(u) ⊥ v

Consider ϕ ∈ ChuCorsH(H1, H2) and ιi : Hi → Hi for i ∈ {1, 2}. Given,
v1 ∈ H1, by Lemma 5, we have that ϕL(u) = ϕL(v1) for all u in the ray ρ(v1)
(which coincides with ι1L(v1)). Then, we have

(ι1 ◦ ϕ)L(v1) =

 ⋃
u1∈ι1L(v1)

ϕL(u1)

⊥⊥ = ϕL(v1)⊥⊥ = ϕL(v1)

(ι1 ◦ ϕ)R(v2) =

 ⋃
u1∈ϕR(v2)

ι1R(u1)

⊥⊥

=

 ⋃
u1∈ϕR(v2)

ρ(u1)

⊥⊥ =
(
ϕR(v2)

)⊥⊥
= ϕR(v2)

Hence (ι1 ◦ ϕ)L = ϕL, (ι1 ◦ ϕ)R = ϕR and ι1 ◦ ϕ = ϕ. Now, similarly,

(ϕ ◦ ι2)L(v1) =

 ⋃
u2∈ϕL(v1)

ι2L(u2)

⊥⊥

=

 ⋃
u2∈ϕL(v1)

ρ(u2)

⊥⊥ =
(
ϕL(v1)

)⊥⊥
= ϕL(v1)

(ϕ ◦ ι2)R(v2) =

 ⋃
u∈ι2R(v2)

ϕR(u)

⊥⊥ =

 ⋃
u∈ρ2(v2)

ϕR(u)

⊥⊥
due to Lemma 6

=

 ⋃
u∈ρ(v2)

ϕR(v2)

⊥⊥ =
(
ϕR(v2)

)⊥⊥
= ϕR(v2)

Hence (ϕ◦ ι2)L = ϕL, (ϕ◦ ι2)R = ϕR, ϕ◦ ι2 = ϕ, and moreover ιi are the neutral
elements for composition of arrows. ut

As a consequence of the previous results, we obtain

Proposition 3. ChuCorsH forms a category.



3.2 Connection to PropSys

In this section we will describe the functorial relation between the categories
ChuCorsH and PropSys. The construction is as follows:

Definition 11. The functor Π : ChuCorsH → PropSys is defined by:

– Given a Hilbert formal context H, we define Π(H) as the concept lattice
of H.

– Let ϕ be a morphism in ChuCorsH(H1, H2). Then ϕ induces a mapping
ϕ : P(H1) → P(H2) ∪ {0}, defined by ϕ

(
ρ(v)

)
= ϕL(v) for all v ∈ H1 and

ray ρ(v) ∈ P(H1). Now, Π(ϕ) is defined as the homomorphic extension
of ϕ.4

The following lemma proves that Π is, indeed, a functor.

Lemma 11. Π : ChuCorsH → PropSys is a functor.

Proof. Lemma 3 states that Π maps objects of ChuCorsH on objects of PropSys.
Consider an arbitrary ϕ ∈ ChuCorsH(H1, H2). By definition, ϕ maps rays

of H1 (atoms of C(L(H1))) to either rays or zero vector singleton (respectively,
atoms or bottom of C(L(H2))) and, moreover, preserves suprema; hence Π maps
Hilbert-Chu correspondences to morphisms between propositional systems.

Now, Π(ι) is an identity morphism in PropSys, since ι(ρ(v)) = ιL(v) = ρ(v)
for all v ∈ H.

Finally, consider ϕi ∈ ChuCorsH(Hi, Hi+1) for i ∈ {1, 2}, and let us prove
that Π(ϕ1 ◦ ϕ2) = Π(ϕ1) ◦Π(ϕ2). Given v1 ∈ H1 we have that

(ϕ1 ◦ ϕ2)L(v1) =

 ⋃
v2∈ϕ1L(v1)

ϕ2L(v2)

⊥⊥

By definition, ϕ1L(v1) is either {0} or a ray of H2, and Lemma 6 ensures that
for all u2, w2 ∈ ϕ1L(v1) = ϕ1(ρ(v1)) we have ϕ2L(u2) = ϕ2L(w2), in other words
ϕ2(ρ(u2)) = ϕ2(ρ(w2)). Hence⋃

v2∈ϕ1(ρ(v1))

ϕ2(ρ(v2)) = ϕ2(ϕ1(ρ(v1)))

ut

We recall now some necessary notions which will be used in order to prove
that the previous functor satisfies the conditions to define a categorical equiva-
lence.

Definition 12.

1. A functor F : C −→ D is faithful if for all objects A,B of a category C, the
map FA,B : HomC(A,B) −→ HomD(F (A), F (B)) is injective.

4 We will abuse the notation and write ϕ to refer to this homomorphic extension.



2. Similarly, F is full if FA,B is always surjective.

The proof of the categorical equivalence will be done by using the following
characterization:

Theorem 2 (See [3]). The following conditions on a functor F : C −→ D are
equivalent:

– F is an equivalence of categories.
– F is full and faithful and “essentially surjective” on objects: for every D ∈ D

there is some C ∈ C such that F (C) ∼= D.

Theorem 3. Categories ChuCorsH and PropSys are equivalent.

Proof. By the definition of ChuCorsH and Π it is not difficult to see that the
mapping Π(H1, H2) : ChuCorsH(H1, H2) → PropSys(Π(H1), Π(H2)) is bijec-
tive. Hence Π is full and faithful.

Let L = (L,≤, (−)⊥) be an arbitrary propositional system. Essential sur-
jectivity of functor Π means that there exist a Hilbert formal context whose
concept lattice is isomorphic to L.

Let Lat be the set of atoms of L, and let us prove that concept lattice of the
formal context (La, La,⊥) where a ⊥ b⇐⇒ (a ≤ b⊥)⇐⇒ (b ≤ a⊥), for any two
atom a, b ∈ Lat, is isomorphic to L. Since L is atomistic, we have that every
element x ∈ L is the supremum of a finite set of atoms, say x =

∨
i∈Ix ai. This

means the set of atoms Lat is supremum-dense in L. Moreover

x = x⊥⊥ =

(∨
i∈Ix

ai

)⊥⊥
=

(∧
i∈Ix

a⊥i

)⊥
.

Furthermore, every element y ∈ L can be represented as y = x⊥ =
∧
i∈Ix a

⊥
i .

Hence the set Lat = {a⊥ | a ∈ LA} is infimum-dense in L. Therefore, by
the second part of the basic theorem of concept lattices, the concept lattice
of (Lat, Lat,≤) or (Lat, Lat,⊥) is isomorphic to L. ut

4 Conclusions

Continuing with the study of generalized Chu correspondences, we have intro-
duced the new category ChuCorsH, whose objects are Hilbert formal contexts
and whose morphisms are Chu correspondences between them. The notion of
Hilbert formal context (H,H,⊥) associated to a Hilbert space H was already
present in Ganter and Wille’s book [8], stating its close relationship with the
ortholattice of closed linear subspaces and, hence, to the theory of propositional
systems as algebraic structures underlying quantum logic. The main result in
this work is the proof that the category ChuCorsH is equivalent to the category
PropSys of propositional systems.

This opens the way to future work oriented to the use of Chu correspon-
dences to analyze more structures related to quantum logics, such as those in
Abramsky’s big toy models [1].
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