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1 Dept. Matemáticas, Universidad de Cádiz. Spain
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Abstract

In formal concept analysis, the sets of attributes and objects are usually differ-
ent, with different meaning and, hence, it might not make sense to evaluate them
on the same carrier. In this context, the operators used to obtain the concept
lattice could be defined by considering different lattices associated to attributes
and objects. Anyway there exist several reasons for which we need to evaluate the
set of attributes and objects in the same carrier. In this direction, we present in
this paper a new concept lattice, where the objects and attributes are evaluated
on the same lattice L, although operators which evaluate objects and attributes
in different carriers are used. Moreover, we have studied the relationship between
the new concept lattice and the other one obtained directly considered different
carriers to both set of attributes and objects.
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1 Introduction

Formal concept analysis was introduced by Wille in the eighties and it has become an
important and appealing research topic both from the theoretical perspective [13,23,26]
and from the applicative one [7, 9, 10,12,22].

Soon after the introduction of “classical” formal concept analysis, a number of
different approaches for its generalization were introduced and, nowadays, there are
works which extend the theory with ideas from fuzzy set theory [3,17,18] or fuzzy logic
reasoning [2, 4, 8] or from rough set theory [16, 24, 27] or some integrated approaches
such as fuzzy and rough [25], or rough and domain theory [14].

Recently, a new fuzzy framework has been introduced which is more general and
flexible than other fuzzy extensions, see [20]. In this framework, we can evaluate the
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set of objects and attributes on different lattices L1, L2, because it might not make
sense to evaluate objects and attributes on the same carrier.

It is convenient to recall that, sometimes, it could be interesting to weaken this
framework. For instance, given a group of experts that need to evaluate a knowledge
system, they could believe that the carriers associated to the set of objects and at-
tributes should not be different, or some of them believe that the attributes should be
evaluated on L1 and some others believe that they should be evaluated on L2 and, once
the evaluation is finished, the results should be homogenized. An interesting possibility
is to embed both L1 and L2 into a set L, and to obtain a new concept lattice ML, in
which the set of objects and attributes are evaluated in the same lattice, albeit using
the operators which evaluate objects and attributes in different carriers.

Firstly, we will introduce the notion of P -connected poset, which will be used to
define the concept lattice ML, when the set of attributes and objects are evaluated in
L1 and L2, respectively, and L1, L2 are L-connected. Later, the new concept lattice
is related with the concept lattice introduced in [20]. Finally, some conclusions and
future work are presented.

2 P -connected posets

The main notion in this contribution refers to the notion of P -connection between two
complete lattices. As we will see later, this condition will allow to somehow conciliate
the different values generated by the consideration of a non-commutative conjunctor in
the construction of a concept lattice.

Definition 1 Given the posets (P1,≤1), (P2,≤2) and (P,≤), we say that P1 and P2 are
P -connected if there exist increasing mappings i1 : P1 → P , φ1 : P → P1, i2 : P2 → P
and φ2 : P → P2 verifying that φ1(i1(x)) = x, and φ2(i2(y)) = y, for all x ∈ P1, y ∈ P2.

Example 1 Any pair of posets (P1,≤1), (P2,≤2) with top elements ⊤1 and ⊤2, re-
spectively, are P1 × P2-connected, with the pairwise ordering, where P1 × P2 is the
Cartesian product, and by considering the mappings φi as the projections πi, and i1, i2
as the inclusions defined as i1(x) = (x,⊤2), i2(y) = (⊤1, y), for all x ∈ P1, y ∈ P2.

A more complex example is presented below:

Example 2 Assume that, in order to perform an evaluation of a product, for which
we have to assign one value out of four possible ones. We ask two experts to collaborate
in this task and, only when collecting the feedback from each expert, we notice that
one expert has considered the ordering of values as in Fig. 1, whereas the other has
considered that in Fig. 2. In both cases, the expert has used a suitable poset in order to
obtain the final result of the evaluation.

In order to unify both evaluations, we want to embed the posets in Figs. 1 and 2
into another one, for example, we might consider that given in Fig. 3.
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Figure 1: Poset (P1,≤1)
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Figure 2: Poset (P2,≤2)
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Figure 3: Poset (P,≤)
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α β γ δ
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Figure 4: Definition of i1 and i2

We can define two mappings i1 : P1 → P , i2 : P2 → P as in Fig. 4; moreover, there
exist several possibilities for the mappings φ1 : P → P1, φ2 : P → P2 in order to satisfy
the properties in Definition 1, one of them is shown below:

x y z t u v

φ1 a b c d c d

x y z t u v

φ2 α β γ γ δ δ

As a result, P1 and P2 are P -connected.

Example 3 A different example arises when we consider the posets ([0, 1]2,≤) and
([0, 1]4,≤), where [0, 1]n is a regular partition of [0, 1] into n pieces, for instance [0, 1]2 =
{0, 0.5, 1}, [0, 1]4 = {0, 0.25, 0.5, 0.75, 1}.

We have that [0, 1]2, [0, 1]4 are [0, 1]-connected, under the usual ordering, consid-
ering the mappings i1, i2 as the inclusions i1(x) = x, i2(y) = y, for all x ∈ L1, y ∈ L2;
and φ1, φ2 defined as φ1(t) = ⌈2 · t⌉/2, φ2(t) = ⌈4 · t⌉/4, where ⌈ ⌉ is the ceiling
function. For example, if t = 0.55, φ1(0.55) = 1, φ2(0.55) = 0.75,

3 Concept lattices on L-connected lattices

Firstly, we will recall the definition of adjoint triple, multi-adjoint frame and context, in
order to define a new concept lattice where the objects and attributes are evaluated on
the same lattice L. This new standpoint has several applications: for instance, although
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operators which evaluate objects and attributes in different carriers are used, we will
show later that it is possible to evaluate both objects and attributes in a common lattice
obtained from the original ones and, using the methods introduced in [19], to obtain
a certain class of t-concepts. Originally, the condition L1 = L2 was assumed; but the
construction can be extended to the cases in which L1 6= L2, as the only requirement
is that both lattices should be L-connected.

Assuming a conjunctor defined on, say P1×P2, directly provides two different ways
of generalising the well-known adjoint property between a t-norm and its residuated
implication [1, 21], depending on which argument is fixed.

Definition 2 Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and &: P1×P2 → P3, ւ : P3×
P2 → P1, տ : P3 × P1 → P2 be mappings, then (&,ւ,տ) is an adjoint triple with
respect to P1, P2, P3 if:

1. & is order-preserving in both arguments.

2. ւ and տ are order-preserving in the consequent and order-reversing in the an-
tecedent.

3. x ≤1 z ւ y iff x& y ≤3 z iff y ≤2 z տ x, where x ∈ P1, y ∈ P2 and z ∈ P3.

The general theory formal concept analysis needs that the underlying posets have
the structure of a lattice. Therefore, we will assume hereafter that we are working on
lattices instead of on posets.

The multi-adjoint framework allows the existence of several adjoint triples for a
given triplet of lattices.

Definition 3 A multi-adjoint frame L is a tuple

(L1, L2, P,�1,�2,≤,&1,ւ
1,տ1, . . . ,&n,ւn,տn)

where (L1,�1) and (L2,�2) are complete lattices, (P,≤) is a poset and, for all i =
1, . . . , n, (&i,ւ

i,տi) is an adjoint triple with respect to L1, L2, P .
Multi-adjoint frames are denoted (L1, L2, L,&1, . . . ,&n).

Given a frame, a multi-adjoint context is a tuple consisting of sets of objects and
attributes and a fuzzy relation among them; in addition, the multi-adjoint approach
also includes a function which assigns an adjoint triple to each object (or attribute).

Definition 4 Let (L1, L2, P,&1, . . . ,&n) be a multi-adjoint frame, a multi-adjoint con-
text is a tuple (A,B,R, σ) such that A and B are non-empty sets (usually interpreted
as attributes and objects, respectively), R is a P -fuzzy relation R : A × B → P and
σ : B → {1, . . . , n} is a mapping which associates any element in B with some partic-
ular adjoint triple in the frame.1

1A similar theory could be developed by considering a mapping τ : A → {1, . . . , n} which associates
any element in A with some particular adjoint triple in the frame.
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In order to make this contribution self-contained and since we will provide a specific
construction of a Galois connection, we recall its formal definition below:

Definition 5 Let (P1,≤1) and (P2,≤2) be posets, and ↓ : P1 → P2,
↑ : P2 → P1 map-

pings, the pair (↑, ↓) forms a Galois connection between P1 and P2 if and only if:

1. ↑ and ↓ are order-reversing.

2. x ≤1 x↓↑ for all x ∈ P1.

3. y ≤2 y↑↓ for all y ∈ P2.

In the following paragraphs, we define a suitable Galois connection on which the
new concept lattice structure will be built.

Given a complete lattice (L,�) such that L1 and L2 are L-connected, a multi-
adjoint frame (L1, L2, P,&1, . . . ,&n), and a context (A,B,R, σ), we can define the
mappings2 ↑cσ : LB → LA and ↓cσ

: LA → LB defined for all g ∈ LB and f ∈ LA as
follows:

g↑cσ(a) = i1(inf{R(a, b) ւσ(b) φ2(g(b)) | b ∈ B}) (1)

f↓cσ

(b) = i2(inf{R(a, b) տσ(b) φ1(f(a)) | a ∈ A}) (2)

Note that these definitions can be related to those given in [20] in that, for each adjoint
triple (&,ւ,տ) of the multi-adjoint frame, we can define the mappings &∗ : L×L → P ,
ւ∗ : P × L → L and տ∗ : P × L → L for all x, y ∈ L and z ∈ P as follows:

x&∗ y = φ1(x)& φ2(y) z ւ∗ y = i1(z ւ φ2(y))
z տ∗ x = i2(z տ φ1(x))

which, under the requirements t ≤ i1(φ1(t)) and t ≤ i2(φ2(t)), for all t ∈ L, forms
another adjoint triple (&∗,ւ∗,տ∗). Under the additional assumption that the map-
pings ij are inf-preserving, the mappings ↑cσ : LB → LA and ↓cσ

: LA → LB can be
written as

g↑cσ(a) = inf{R(a, b) ւ∗b g(b) | b ∈ B} (3)

f↓cσ

(b) = inf{R(a, b) տ∗b f(a) | a ∈ A} (4)

and coincide with the Galois connection associated to the frame (L1, L2, P,&∗
1, . . . ,&

∗
n)

introduced in [20]. As our construction of the new concept lattice will not need either
of the requirements above, the proposed framework is strictly more general than the
previous one.

Expressions (1), (2) do not coincide with those given in [20], because they are not
defined directly from a residuated implication, although the mappings i1, i2, φ1 and
φ2 are involved as well. Hence, we need to prove that these mappings form a Galois
connection.

2The subscript c refers to the L-connection, since we are using the mappings φj and ij ; on the other
hand, σ is needed to refer the particular choice of adjoint triple for a given b.



On multi-adjoint concept lattices based on heterogeneous conjunctors

Proposition 1 Let (L1, L2, P,&1, . . . ,&n) be a multi-adjoint frame, where L1 and L2

are L-connected, and a context (A,B,R, σ), the pair (↑cσ , ↓
cσ

) is a Galois connection
between LA and LB.

The Galois connection just obtained is defined on a frame where (L1,�1) and
(L2,�2) are L-connected. This Galois connection allows for defining a new concept
lattice following the usual construction: a concept is a pair 〈g∗, f∗〉 satisfying g∗ ∈ LB ,
f∗ ∈ LA and that (g∗)↑c = f∗ and (f∗)↓

c

= g∗; with (↑c , ↓
c

) being the Galois connection
defined above.3

Definition 6 The multi-adjoint abelianized concept lattice associated to a multi-adjoint
frame (L1, L2, P,&1, . . . ,&n) and context (A,B,R, σ), where L1 and L2 are L-connected,
is the set

ML = {〈g∗, f∗〉 | 〈g∗, f∗〉 is a concept}

in which the ordering is defined by 〈g∗1 , f∗
1 〉 � 〈g∗2 , f

∗
2 〉 if and only if g∗1 � g∗2 (equiva-

lently f∗
2 � f∗

1 ).

Note that as (↑c , ↓
c

) is a Galois connection, the pair (ML,�) is, indeed, a complete
lattice [6].

In the rest of the section, we establish a comparison between the concept lattices
ML (defined above) and M (defined in [20]). Hence, we will fix a context (A,B,R, σ), a
frame (L1, L2, P,&1, . . . ,&n), where L1 and L2 are L-connected, and the corresponding
multi-adjoint concept lattices M and ML.

Firstly we will prove, in the following result, that each concept 〈g, f〉 in M deter-
mines a concept in ML.

Proposition 2 If 〈g, f〉 ∈ M, then the mappings g∗ : B → L, f∗ : A → L, defined as
g∗ = i2 ◦ g, f∗ = i1 ◦ f , form a concept of the multi-adjoint concept lattice ML.

Now, given a mapping g : B → L2, we have to possible ways to construct the
smallest concept in ML containing g:

• Considering the mapping i2 ◦ g ∈ LB and obtaining the corresponding concept in
ML, that is, 〈(i2 ◦ g)↑c↓

c

, (i2 ◦ g)↑c〉.

• Obtaining the corresponding concept in M and, by Proposition 2, considering
the concept 〈i2 ◦ (g)↑↓, i2 ◦ (g)↑〉 in ML.

The following proposition states that the two constructions given above coincide.

Proposition 3 Given a mapping g : B → L2, the concepts 〈(i2 ◦ g)↑c↓
c

, (i2 ◦ g)↑c〉 and
〈i2 ◦ (g)↑↓, i2 ◦ (g)↑〉 coincide.

3We include ∗ as a superscript in this new construction so that we can distinguish this new approach
from that in [20]. Note that, in order to simplify the notation, references to σ have been omitted.



J. Medina, M. Ojeda-Aciego

Similarly, we obtain a concept of M from each concept of ML, and the two possible
construction of the smallest concept containing g∗ : B → L coincide.

Proposition 4 If 〈g∗, f∗〉 ∈ ML, then the mappings g : B → L2, f : A → L1, defined
as: g = φ2 ◦ g∗, f = φ1 ◦ f∗, form a concept of the multi-adjoint concept lattice M.
Moreover, given a mapping g∗ : B → L, the concepts 〈(φ2 ◦ g∗)↑↓, (φ2 ◦ g∗)↑〉 and 〈φ2 ◦
(g∗)↑c↓

c

, φ2 ◦ (g∗)↑c〉 coincide.

It is worth to take into account that the result above can be given analogously for
any f : A → L1 as well.

Finally, as a consequence of the definition of L-connection and the above result, we
have that the following theorem.

Theorem 1 The mappings Φ: ML → M and I : M → ML defined, for each 〈g, f〉 ∈
M and 〈g∗, f∗〉 ∈ ML, as follows

Φ(〈g∗, f∗〉) = 〈φ2 ◦ g∗, φ1 ◦ f∗〉

I(〈g, f〉) = 〈i2 ◦ g, i1 ◦ f〉

are well-defined and Φ ◦ I : M → M is the identity mapping. However, in general,
I ◦ Φ: ML → ML is not the identity mapping, but a closure operator.

Let Fp(ML) be the subset of ML consisting of all the fix-points of the I ◦ Φ, i.e.

Fp(ML) = {〈g∗, f∗〉 ∈ ML | I ◦ Φ(〈g∗, f∗〉) = 〈g∗, f∗〉}

With this notation, the theorem above guarantees the following result:

Corollary 1 The concept lattices M and Fp(ML) are isomorphic.

As a consequence of the previous isomorphism, several existing algorithms devel-
oped to obtain concept lattices where the conjunctors have the same carrier for both
arguments can be applied; for instance, Lindig’s algorithm [15], or its extension for
graded attributes [5]. In order to obtain the concept lattice M, we firstly use a fast
algorithm to build the concept lattice ML and then, compute the set Fp(ML) of all
fix-points of I ◦ Φ, perhaps applying the algorithm once more. Finally, we apply Φ to
obtain M.

As the complexity of the algorithm used depends on the size of L, we should find,
whenever possible, the least lattice L such that L1 and L2 are L-connected.

4 Conclusion

Usually, in formal concept analysis, the sets of attributes and objects are different,
with different meaning and, hence, it might not make sense to evaluate them on the
same carrier. In this context, the operators used to obtain the concept lattice could be
defined considering different lattices associated to attributes and objects, see [20].
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Anyway there exist several reasons for which we need to evaluate the set of at-
tributes and objects in the same carrier. In this direction, a new concept lattice, where
the objects and attributes are evaluated on the same lattice L, has been introduced,
although operators which evaluate objects and attributes in different carriers are used.

Moreover, we have studied the relationship between the new concept lattice and
the other one obtained directly considered different carriers to both set of attributes
and objects, introduced in [20].

As future work, we want to study how the theory presented here can be applied to
obtain t-concepts [11,19] when, originally, the set of attributes and objects are evaluated
in different lattices. Another aim is to obtain mechanisms to find the least lattice L
such that L1 and L2 are L-connected.
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[3] R. Bělohlávek. Fuzzy concepts and conceptual structures: induced similarities. In Joint
Conference on Information Sciences, pages 179–182, 1998.

[4] R. Bělohlávek. Concept lattices and order in fuzzy logic. Annals of Pure and Applied
Logic, 128:277–298, 2004.
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