
Proceedings of the 10th International Conference
on Computational and Mathematical Methods
in Science and Engineering, CMMSE 2010
27–30 June 2010.

On the existence of stable models

in normal residuated logic programs

Nicolás Madrid1 and Manuel Ojeda-Aciego1

1 Departamento de Matemática Aplicada, Universidad de Málaga, Spain

emails: nmadrid@ctima.uma.es, aciego@ctima.uma.es

Abstract

We introduce a sufficient condition which guarantees the existence of stable
models for a normal residuated logic program interpreted on the truth-space [0, 1]n.
Specifically, the continuity of the connectives involved in the program ensures the
existence of stable models.

1 Introduction

Similarly to classical logic programming, the existence of fuzzy stable models cannot be
guaranteed for an arbitrary normal residuated logic program [11]. Necessary conditions
to ensure the existence of stable models has been widely studied in classical logic
programming. In fact, the syntactic characterization of normal programs with stable
models can be found in [1].

However the characterization in the fuzzy framework is much more complicated
since it involves two different dimensions: “the syntactic structure of the normal pro-
gram” and “the choice of suitable connectives in the residuated lattice”. For short, we
will call them the syntactic and the semantic dimension, respectively.

In classical logic programming only syntactic conditions are available since the
connectives are fixed. However, for normal residuated logic program the semantic
dimension plays also a crucial role; for example the program with only one rule

P = {〈p← ¬p; 1〉}

has a stable model if and only if the operator associated with ¬ has a fixpoint. As
far as we know, establishing semantic conditions for guaranteeing the existence of sta-
ble models has not been directly attempted, although sufficient conditions underlie in
some approaches; for example [12] proves that every normal logic program has stable
models in the 3-valued Kleene logic and, more generally, [3, 8] show that every normal

On the existence of stable models in normal residuated logic programs

residuated logic program has stable models if the underlying residuated lattice has an
appropriate bilattice structure [5].

In this paper we provide another condition on the residuated lattice to enssure the
existence of stable models, more specifically: if the lattice selected is an euclidean space
and the connectives ∗ and ¬ in the residuated lattice are continuous, then the existence
of at least a fuzzy stable model is guaranteed.

2 Preliminaries

Let us start this section by recalling the definition of residuated lattice, which fixes the
set of truth values and the relationship between the conjunction and the implication
(the adjoint condition) occurring in our logic programs.

Definition 1 A residuated lattice is a tuple (L,≤, ∗,←) such that:

1. (L,≤) is a complete bounded lattice, with top and bottom elements 1 and 0.

2. (L, ∗, 1) is a commutative monoid with unit element 1.

3. (∗,←) forms an adjoint pair, i.e. z ≤ (x← y) iff y ∗ z ≤ x ∀x, y, z ∈ L.

In the rest of the paper we will consider a residuated lattice enriched with a negation
operator, (L, ∗,←,¬). The negation ¬ will model the notion of default negation often
used in logic programming. As usual, a negation operator, over L, is any decreasing
mapping n : L→ L satisfying n(0) = 1 and n(1) = 0.

Definition 2 Given a residuated lattice with negation (L,≤, ∗,←,¬), a normal resid-
uated logic program P is a set of weighted rules of the form

〈p← p1 ∗ · · · ∗ pm ∗ ¬pm+1 ∗ · · · ∗ ¬pn; ϑ〉

where ϑ is an element of L and p, p1, . . . , pn are propositional symbols.

It is usual to denote the rules as 〈p ← B; ϑ〉. The formula B is usually called the
body of the rule, p is called its head and ϑ is called its weight.

A fact is a rule with empty body, i.e facts are rules with this form 〈p← ; ϑ〉. The
set of propositional symbols appearing in P is denoted by ΠP.

Definition 3 A fuzzy L-interpretation is a mapping I : ΠP → L; note that the domain
of the interpretation can be lifted to any rule by homomorphic extension.

We say that I satisfies a rule 〈ℓ ← B; ϑ〉 if and only if I(B) ∗ ϑ ≤ I(ℓ) or,
equivalently, ϑ ≤ I(ℓ ← B). Finally, I is a model of P if it satisfies all rules (and
facts) in P.

Note that the ordering relation in the residuated lattice (L,≤) can be extended
over the set of all L-interpretations as follows: Let I and J be two L-interpretations,
then I ≤ J if and only if I(p) ≤ J(p) for all propositional symbol p ∈ ΠP.

Nicolás Madrid, Manuel Ojeda-Aciego

2.1 Stable Models

Our aim in this section is to recall the adaptation given in [10] of the original approach
by Gelfond and Lifschitz [4] to the framework of normal residuated logic programs just
defined in the section above.

Let us consider a normal residuated logic program P together with a fuzzy L-
interpretation I. To begin with, we will construct a new normal program PI by substi-
tuting each rule in P such as

〈p← p1 ∗ · · · ∗ pm ∗ ¬pm+1 ∗ · · · ∗ ¬pn; ϑ〉

by the rule1

〈p← p1 ∗ · · · ∗ pm; ¬I(pm+1) ∗ · · · ∗ ¬I(pn) ∗ ϑ〉

Notice that the new program PI is positive, that is, does not contain any negation; in
fact, the construction closely resembles that of a reduct in the classical case, this is why
we introduce the following:

Definition 4 The program PI is called the reduct of P wrt the interpretation I.

As a result of the definition, note that given two fuzzy L-interpretations I and J ,
then the reducts PI and PJ have the same rules, and might only differ in the values of
the weights. By the monotonicity properties of ∗ and ¬, we have that if I ≤ J then
the weight of a rule in PI is greater or equal than its weight in PJ .

It is not difficult to prove that every model M of the program P is a model of the
reduct PM .

Recall that a fuzzy interpretation can be interpreted as a L-fuzzy subset. Now, as
usual, the notion of reduct allows for defining a stable set for a program.

Definition 5 Let P be a normal residuated logic program and let I be a fuzzy L-
interpretation; I is said to be a stable set of P iff I is a minimal model of PI .

Theorem 1 Any stable set of P is a minimal model of P.

Thanks to Theorem 1 we know that every stable set is a model, therefore we will
be able to use the term stable model to refer to a stable set. Obviously, this approach
is a conservative extension of the classical approach.

In the following example we use a simple normal logic program with just one rule
in order to clarify the definition of stable set (stable model).

Example 1 Consider the program 〈p ← ¬q ; ϑ〉. Given a fuzzy L-interpretation
I : Π → L, the reduct PI is the rule (actually, the fact) 〈p ; ϑ ∗ ¬I(q)〉 for which the
least model is M(p) = ϑ ∗ ¬I(q), and M(q) = 0. As a result, I is a stable model of P

if and only if I(p) = ϑ ∗ ¬I(0) = ϑ ∗ 1 = ϑ and I(q) = 0. �

1Note the overloaded use of the negation symbol, as a syntactic function in the formulas and as the

algebraic negation in the truth-values.

On the existence of stable models in normal residuated logic programs

3 The Main Result

The existence of stable models can be guaranteed by simply imposing conditions on
the underlying residuated lattice:

Theorem 2 Let L ≡ ([0, 1],≤, ∗,←,¬) be a residuated lattice with negation. If ∗ and ¬
are continuous operators, then every finite normal program P defined over L has at least
a stable model.

Proof: The idea is to apply Brouwer’s fix-point theorem. Specifically, we show that the
operator assigning each interpretation I the interpretation R(I) = lfp(TPI

) is continu-
ous. Note that this operator can be seen as a composition of two operators F1(I) = PI

and F2(P) = lfp(TP). Actually, we will show that F1 and F2 are continuous.

To begin with, note that F1 can be seen as an operator from the set of [0, 1]-
interpretations to the Euclidean space [0, 1]k where k is the number of rules in P. This
is due to the fact that F1 just changes the weights of P, and nothing else. Now, the
continuity of F1 is trivial since the weight of each rule in P is changed only by using
the continuous operator ¬.

Concerning F2, the syntactic part of P can be considered fixed and positive. This
is due to the fact that its only inputs are of the form PI , therefore, the number of
rules is fixed, negation does not occur in P, and the only elements which can change
are the weights. As a result, F2 can be seen as a function from [0, 1]k to the set of
interpretations. Note that this restriction over F2 does not disallow the composition
between F1 and F2. To prove that F2 is continuous note, firstly, that the immediate
consequence operator is continuous with respect to the weights in P, since every operator
in the definition of TP (namely sup and ∗) is continuous. Secondly, a direct consequence
of the termination result introduced in [2, see Cor. 29] ensures that if P is a finite positive
program, then lfp(TP) can be obtained by iterating finitely many times the immediate
consequence operator; in other words, lfp(TP) = T k

P
(I⊥) where k is the number of rules

in P. Therefore, as the operator F2 is a finite composition of continuous operators, F2

is also continuous.

Finally, as R(I) = lfp(TPI
) is a composition of two continuous operators, R(I)

is continuous as well. Hence we can apply Brouwer’s fix-point theorem to R(I) and
ensure that it has at least a fix-point. To conclude, we only have to note that every
fix-point of R(I) is actually a stable model of P. �

Example 2 The existence of stable model for the normal residuated logic program
below

〈p← ¬q ; 0.8〉

〈q ← ¬r ; 0.7〉

〈r ← ¬p ; 0.9〉

Nicolás Madrid, Manuel Ojeda-Aciego

is not always guaranteed. For example, if we consider the residuated lattice L =
([0, 1], ∗,←,¬) determined by x ∗ y = x · y and

¬(x) =

{

0 if x > 0.5
1 if x ≤ 0.5

then the program has not stable models. However, if we consider the residuated lattice
L = ([0, 1], ∗,←,¬) determined by x ∗ y = x · y and ¬(x) = 1−x the normal residuated
logic program has the following stable model

M = {(p, 0.4946808); (q, 0.3816489); (r, 0.4547872)}

Obviously, the sufficient condition provided in Theorem 2 is not a necessary condition.
Considering the residuated lattice L = ([0, 1], ∗,←,¬) determined by

x ∗ y =

x if y = 1
y if x = 1
0 otherwise

¬(x) =

{

0 if x > 0.5
1 if x ≤ 0.5

the program above has one stable model, M = {(p, 0); (q, 0); (r, 0)}; although the con-
nectives ∗ and ¬ are not continuous.

Remark 1 It is important to recall that most connectives in fuzzy logic are defined
on the unit interval [0, 1]. Thus the condition about continuity on a Euclidean space
as sets of truth-values is not much restrictive. Moreover, most t-norms used currently
in fuzzy logic are continuous (Gödel, Lukasiewicz, product, . . .), therefore the theorem
establishes that in the most used fuzzy frameworks, the existence of fuzzy stable models
is always guaranteed.

4 Related Work

As stated in the introduction, one can find several conditions in the literature which
guarantee the existence of stable models. Whereas in logic programming the syntactic
characterization of consistent normal program was done in [1], the existence of stable
models in fuzzy logic programming is an open problem; and apparently more compli-
cated.

To the best of our knowledge, there are only other two sufficient conditions in fuzzy
logic programming to guarantee the existence of stable model. The first one is given in
the fuzzy description logic paradigm, and can be found in [9]. It is done at the syntactic
dimension and extends a result already known in logic programming [6].

Definition 6 A normal residuated logic program P is called locally stratified if there
is a level function || · || such that for every rule 〈p← p1 ∗ · · · ∗ pk ∗ ¬pk+1 ∗ · · · ∗ ¬pn; ϑ〉
of P:

• ||p|| ≥ ||pi|| for all i ∈ {1, . . . , k}

On the existence of stable models in normal residuated logic programs

• ||p|| > ||pi|| for all i ∈ {k + 1, . . . , n}

Proposition 1 A stratified normal residuated logic program has one, and only one,
stable model.

The other result appears in [8], and is due to the use of bilattices as the set of
truth-values. Briefly, a bilattice is a tuple (L,≤t,≤k) where (L,≤t) and (L,≤k) form
two complete lattices. Such a structure is used in [7] in order to define the well-founded
semantics in fuzzy logic programming through the least stable model under the ordering
≤k; i.e by generalizing a result provided in [3] for the classical case which relates the
well-founded semantics and stable model semantics.

Proposition 2 Let P be a normal logic program defined over the residuated lattice
(L,≤, ∗,←,¬). If there is an ordering ≤k such that:

• (L,≤,≤k) is a bilattice

• ∗ and ¬ are monotonic w.r.t. ≤k

then, there exists at least one stable model of P.

The key-point of proposition 2 is to find an ordering over L such that ∗ and ¬ are
monotonic with respect it, thus we can to asure the existence of stable model.

5 Future Work

The result of Theorem 2 has interesting potential applications. To begin with, we
can avoid the inconsistency in fuzzy logic programs by using continuous connectives.
Moreover, the result is useful to resolve inconsistencies of normal programs defined on
a linear lattice by extending them over [0, 1] with continuous connectives. For example,
consider the following normal program in classical logic programming:

r1 : p← ¬q, s r2 : r ← ¬t,¬p

r3 : q ← ¬r r5 : s←

r5 : u← ¬t, s r6 : v ← ¬v,¬r

where “,” denotes the classical conjunction. Clearly the program is inconsistent but we
can assign a fuzzy stable model semantics by embedding the program into a residuated
lattice ([0, 1], ∗,←,¬). For example, consider the connectives x ∗ y = x · y and ¬(x) =
1 − x, then the program above (substituting “,” by “∗” and including the weight 1 in
each rule) has the following stable model:

M = {(p, 0.5); (q, 0.5); (r, 0.5); (s, 1); (t, 0); (u, 1); (v, 1/3)}

Notice that if we collapse each x ∈ (0, 1) to one undefined value (that is, M assigns
to p, q, r and v the same truth-value “undefined”) the semantics is equivalent to the
well-founded semantics. Notice, however, that the residuated semantics is slightly more
expressive, due to its ability to assign any value in the unit interval.

Nicolás Madrid, Manuel Ojeda-Aciego

Acknowledgements

This work has been partially supported by Junta de Andalućıa grant P09-FQM-5233,
and by the EU (FEDER), and the Spanish Science Ministry under grant TIN2009-
14562-C05-01.

References

[1] S. Costantini. On the existence of stable models of non-stratified logic programs. Journal
of Theory and Practice of Logic Programming, 6(1-2):169–212, 2006.

[2] C. Damásio, J. Medina, and M. Ojeda-Aciego. Termination of logic programs with imper-
fect information: applications and query procedure. Journal of Applied Logic, 5(3):435–458,
2007.

[3] M. Fitting. The family of stable models. The Journal of Logic Programming, 17(2-4):197
– 225, 1993.

[4] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proc. of
ICLP-88, pages 1070–1080, 1988.

[5] M. L. Ginsberg. Multivalued logics: a uniform approach to reasoning in artificial intelli-
gence. Computational Intelligence, 4:265–316, 1988.

[6] J. Lloyd. Foundations of Logic Programming. Springer Verlag, 1987.

[7] Y. Loyer and U. Straccia. The well-founded semantics in normal logic programs with
uncertainty. Lect. Notes in Computer Science, 2441:152–166, 2002.

[8] Y. Loyer and U. Straccia. Epistemic foundation of stable model semantics. Journal of
Theory and Practice of Logic Programming, 6:355–393, 2006.

[9] T. Lukasiewicz. Fuzzy description logic programs under the answer set semantics for the
semantic web. Fundamenta Informaticae, 82(3):289–310, 2008.

[10] N. Madrid and M. Ojeda-Aciego. Towards a fuzzy answer set semantics for residuated logic
programs. In Proc of WI-IAT’08. Workshop on Fuzzy Logic in the Web, pages 260–264,
2008.

[11] N. Madrid and M. Ojeda-Aciego. On coherence and consistence in fuzzy answer set seman-
tics for residuated logic programs. Lect. Notes in Computer Science, 5571:60–67, 2009.

[12] T. Przymusinski. Well-founded semantics coincides with three-valued stable semantics.
Fundamenta Informaticae, 13:445–463, 1990.

