Proceedings of the 10th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2010 27–30 June 2010.

An embedding of ChuCors in L-ChuCors

Ondrej Krídlo¹, Stanislav Krajči¹ and Manuel Ojeda-Aciego²

¹ Department of Computer Science, University of P. J. Šafárik in Košice, Slovakia

² Department of Applied Mathematics, University of Málaga, Spain

emails: o.kridlo@gmail.com, stanislav.krajci@upjs.sk, aciego@uma.es

Abstract

An L-fuzzy generalization of the so-called Chu correspondences between formal contexts forms a category called L-ChuCors. In this work we show that this category naturally embeds ChuCors.

Key words: Formal Concept Analysis, Category theory, L-fuzzy logic

1 Preliminaries

Formal concept analysis (FCA) introduced by Ganter and Wille [6] has become an extremely useful theoretical and practical tool for formally describing structural and hierarchical properties of data with "object-attribute" character. Bělohlávek in [1, 2] provided an *L*-fuzzy extension of the main notions of FCA, such as context and concept, by extending its underlying interpretation on classical logic to the more general framework of *L*-fuzzy logic [7].

In this work, we aim at formally describing some structural properties of intercontextual relationships [5,11] of *L*-fuzzy formal contexts by using category theory [3], following the results in [12,13]. The category *L*-ChuCors is formed by considering the class of *L*-fuzzy formal contexts as objects and the *L*-fuzzy Chu correspondences as arrows between objects.

The main result here is that L-ChuCors embeds the category ChuCors. This result is illustrated by showing different categories L-ChuCors built on different underlying truth-values sets L.

In order to make this contribution as self-contained as possible, we proceed now with the preliminary definitions of complete residuated lattice, *L*-fuzzy context, *L*-fuzzy concept and *L*-Chu correspondence.

Definition 1 An algebra $\langle L, \wedge, \vee, \otimes, \rightarrow, 0, 1 \rangle$ is said to be a complete residuated lattice if

- 1. $\langle L, \wedge, \vee, 0, 1 \rangle$ is a complete bounded lattice with least element, 0, and greatest element, 1,
- 2. $\langle L, \otimes, 1 \rangle$ is a commutative monoid,
- 3. \otimes and \rightarrow are adjoint, i.e. $a \otimes b \leq c$ if and only if $a \leq b \rightarrow c$, for all $a, b, c \in L$, where \leq is the ordering in the lattice generated from \wedge and \vee .

Definition 2 Let L be a complete residuated lattice, an L-fuzzy context is a triple $\langle B, A, r \rangle$ consisting of a set of objects B, a set of attributes A and an L-fuzzy binary relation r, i.e. a mapping $r: B \times A \to L$, which can be alternatively understood as an L-fuzzy subset of $B \times A$

We now introduce the *L*-fuzzy extension provided by Bělohlávek [1], where we will use the notation Y^X to refer to the set of mappings from X to Y.

Definition 3 Consider an L-fuzzy context $\langle B, A, r \rangle$. A pair of mappings $\uparrow : L^B \to L^A$ and $\downarrow : L^A \to L^B$ can be defined for every $f \in L^B$ and $g \in L^A$ as follows:

$$\uparrow f(a) = \bigwedge_{o \in B} \left(f(o) \to r(o, a) \right) \qquad \qquad \downarrow g(o) = \bigwedge_{a \in A} \left(g(a) \to r(o, a) \right) \tag{1}$$

Lemma 1 Let L be a complete residuated lattice, let $r \in L^{B \times A}$ be an L-fuzzy relation between B and A. Then the pair of operators \uparrow and \downarrow form a Galois connection between $\langle L^B; \subseteq \rangle$ and $\langle L^A; \subseteq \rangle$, that is, $\uparrow: L^B \to L^A$ and $\downarrow: L^A \to L^B$ are anti tonic and, furthermore, for all $f \in L^B$ and $g \in L^A$ we have $f \subseteq \downarrow \uparrow f$ and $g \subseteq \uparrow \downarrow g$.

Definition 4 Consider an L-fuzzy context $C = \langle B, A, r \rangle$. An L-fuzzy set of objects $f \in L^B$ (resp. an L-fuzzy set of attributes $g \in L^A$) is said to be closed in **C** iff $f = \downarrow \uparrow f$ (resp. $g = \uparrow \downarrow g$).

Lemma 2 Under the conditions of Lemma 1, the following equalities hold for arbitrary $f \in L^B$ and $g \in L^A$, $\uparrow f = \uparrow \downarrow \uparrow f$ and $\downarrow g = \downarrow \uparrow \downarrow g$, that is, both $\downarrow \uparrow f$ and $\uparrow \downarrow g$ are closed in C.

Definition 5 An L-fuzzy concept is a pair $\langle f, g \rangle$ such that $\uparrow f = g, \downarrow g = f$. The first component f is said to be the **extent** of the concept, whereas the second component g is the **intent** of the concept.

The set of all L-fuzzy concepts associated to a fuzzy context (B, A, r) will be denoted as L-FCL(B, A, r).

An ordering between L-fuzzy concepts is defined as follows: $\langle f_1, g_1 \rangle \leq \langle f_2, g_2 \rangle$ if and only if $f_1 \subseteq f_2$ if and only if $g_1 \supseteq g_2$.

Proposition 1 The poset (L-FCL $(B, A, r), \leq)$ is a complete lattice where

$$\bigwedge_{j \in J} \langle f_j, g_j \rangle = \left\langle \bigwedge_{j \in J} f_j, \uparrow \left(\bigwedge_{j \in J} f_j \right) \right\rangle$$
$$\bigvee_{j \in J} \langle f_j, g_j \rangle = \left\langle \downarrow \left(\bigwedge_{j \in J} g_j \right), \bigwedge_{j \in J} g_j \right\rangle$$

ONDREJ KRÍDLO, STANISLAV KRAJČI, MANUEL OJEDA-ACIEGO

Finally, we proceed with the definition of L-Chu correspondences, for which we need the notion of L-multifunction.

Definition 6 An L-multifunction from X to Y is a mapping $\varphi \colon X \to L^Y$. The set L-Mfn(X, Y) of all the L-multifunctions from X to Y can be endowed with a poset structure by defining the ordering $\varphi_1 \leq \varphi_2$ as $\varphi_1(x)(y) \leq \varphi_2(x)(y)$ for all $x \in X$ and $y \in Y$.

Definition 7 Consider two L-fuzzy contexts $C_i = \langle B_i, A_i, r_i \rangle$, (i = 1, 2), then the pair $\varphi = (\varphi_l, \varphi_r)$ is called a **correspondence** from C_1 to C_2 if φ_l and φ_r are L-multifunctions, respectively, from B_1 to B_2 and from A_2 to A_1 (that is, $\varphi_l : B_1 \to L^{B_2}$ and $\varphi_r : A_2 \to L^{A_1}$).

The L-correspondence φ is said to be a **weak** L-Chu correspondence if the equality $\hat{r}_1(\chi_{o_1}, \varphi_r(a_2)) = \hat{r}_2(\varphi_l(o_1), \chi_{a_2})$ holds for all $o_1 \in B_1$ and $a_2 \in A_2$. By unfolding the definition of \hat{r}_i this means that

$$\bigwedge_{a_1 \in A_1} (\varphi_r(a_2)(a_1) \to r_1(o_1, a_1)) = \bigwedge_{o_2 \in B_2} (\varphi_l(o_1)(o_2) \to r_2(o_2, a_2))$$
(2)

A weak Chu correspondence φ is an L-Chu correspondence if $\varphi_l(o_1)$ is closed in C_2 and $\varphi_r(a_2)$ is closed in C_1 for all $o_1 \in B_1$ and $a_2 \in A_2$. We will denote the set of all Chu correspondences from C_1 to C_2 by L-ChuCors (C_1, C_2) .

In the following definition and lemma, we introduce some connections between the right and the left sides of *L*-Chu correspondences.

Definition 8 Given a mapping $\varpi : X \to L^Y$ we consider the following associated mappings $\varpi_* : L^X \to L^Y$ and $\varpi^* : L^Y \to L^X$, defined for all $f \in L^X$ and $g \in L^Y$ by

- 1. $\varpi_*(f)(y) = \bigvee_{x \in X} (f(x) \otimes \varpi(x)(y))$
- 2. $\varpi^*(g)(x) = \bigwedge_{y \in Y} \varpi(x)(y) \to g(y)$

Lemma 3 Let $C_i = \langle B_i, A_i, r_i \rangle$ for i = 1, 2 be L-fuzzy contexts. Let $\varphi = (\varphi_l, \varphi_r) \in L$ -ChuCors (C_1, C_2) . Then

• for all $f \in L^{B_1}$ and $g \in L^{A_2}$, the following equalities hold

$$\uparrow_2 (\varphi_{l*}(f)) = \varphi_r^*(\uparrow_1 (f)) \quad and \quad \downarrow_1 (\varphi_{r*}(g)) = \varphi_l^*(\downarrow_2 (g))$$

• for all $o_1 \in B_1$ and $a_2 \in A_2$, the following equalities hold

$$\varphi_l(o_1) = \downarrow_2 (\varphi_r^*(\uparrow_1(\chi_{o_1}))) \quad and \quad \varphi_r(a_2) = \uparrow_1 (\varphi_l^*(\downarrow_2(\chi_{a_2})))$$

2 The category *L*-ChuCors

We introduce now the category of L-Chu correspondences between L-fuzzy formal contexts as follows:

- objects *L*-fuzzy formal contexts
- arrows *L*-Chu correspondences
- composition $\varphi_2 \circ \varphi_1 : C_1 \to C_3$ of arrows $\varphi_1 : C_1 \to C_2, \varphi_2 : C_2 \to C_3$ $(C_i = \langle B_i, A_i, r_i \rangle, i \in \{1, 2\})$

$$- (\varphi_2 \circ \varphi_1)_l : B_1 \to L^{B_3} \text{ and } (\varphi_2 \circ \varphi_1)_r : A_3 \to L^{A_1}$$
$$- (\varphi_2 \circ \varphi_1)_l(o_1) = \downarrow_3 \uparrow_3 (\varphi_{2l*}(\varphi_{1l}(o_1))), \text{ where}$$
$$\varphi_{2l*}(\varphi_{1l}(o_1))(o_3) = \bigvee_{o_2 \in B_2} \varphi_{1l}(o_1)(o_2) \otimes \varphi_{2l}(o_2)(o_3)$$
$$- (\varphi_2 \circ \varphi_1)_r(a_3) = \uparrow_1 \downarrow_1 (\varphi_{1r*}(\varphi_{2r}(a_3))), \text{ where}$$
$$\varphi_{1r*}(\varphi_{2r}(a_3))(a_1) = \bigvee_{a_2 \in A_2} \varphi_{2r}(a_3)(a_2) \otimes \varphi_{1r}(a_2)(a_1)$$

Theorem 1 L-fuzzy Chu correspondences between L-fuzzy formal contexts form a category with the composition defined above.

Proof: We just have to check the existence of identity arrows and the associativity of composition. The latter is just a matter of straightforward calculation, the identity arrows $\iota: C \to C$ are defined as follows for any given *L*-fuzzy context $C = \langle B, A, r \rangle$:

- $\iota_l(o) = \downarrow \uparrow (\chi_o)$, for all $o \in B$
- $\iota_r(a) = \uparrow \downarrow (\chi_a)$, for all $a \in A$.

3 L-ChuCors embeds ChuCors

In the following paragraph, we sketchily argue that ChuCors can be embedded in any of the extensions L-ChuCors where L is a complete residuated lattice.

Assume that $\langle L_1, \wedge, \vee, \otimes, \rightarrow, 0, 1 \rangle$ and $\langle L_2, \wedge, \vee, \otimes, \rightarrow, 0, 1 \rangle$ are two complete residuated lattices, such that L_2 is a sublattice of L_1 . Any L_2 -fuzzy formal context $\langle B, A, r \rangle$ satisfies that $r \in L_2^{B \times A} \subseteq L_1^{B \times A}$. This inclusion implies that the class of all objects of L_2 -ChuCors is a subclass of L_1 -ChuCors. Moreover, every concept constructed in $\langle B, A, r \rangle$ by using the underlying logic provided by L_2 can be seen as well as a concept under the logic of L_1 . As a result, the concept lattice L_2 -FCL(B, A, r) is a sublattice of the concept lattice L_1 -FCL(B, A, r).

The following example illustrates the previous results on the light of two particular cases for L_i .

Example 1 Consider L_1 and L_2 the lattices shown to the left of the picture below, together with the two L_2 -formal contexts shown in the right.

	a_{11}	a_{12}	1		1		
		1	1		a_{21}	a_{22}	a_{23}
011	1	1		021	a 1	1	1
o_{12}	a	c					
013	1	c		0_{22}	1	C	1

Consider two complete residuated lattice(s) to be consisting of the infimum on L_i , together with its residual implication defined as $k \to l = \bigvee \{m \in L \mid m \land k \leq l\}$, for all $k, l, m \in L_i$ where $i \in \{1, 2\}$. The concept lattices on the underlying logic of L_1 are shown in the pictures below, where the concepts in bold line are those in the frame associated to L_2 .

The common L_2 and L_1 -Chu correspondences are shown below:

Γ	φ_l	φ_r		φ_l	φ_r	
	1, c, c	a, c, 1	,	1, c, c	a, c, 1	
	<i>1,c,c</i>	a, c, 1		1, a, 1	a,1,1	

The following result formally states the general relation between L_i -ChuCors.

Lemma 4 Let C_1, C_2 be the L_2 -contexts. L_2 -ChuCors $(C_1, C_2) \subseteq L_1$ -ChuCors (C_1, C_2) .

It is easy to see that the connection of two L_2 -Chu correspondences make a new L_2 -Chu correspondence. In addition, the set of L_2 -Chu correspondences between two L_2 contexts is a subset of all L_1 -Chu correspondences between the same contexts. L_2 -Chu correspondences form a category, so the set of arrows is closed under the connections of arrows, as a result the set of L_1 -Chu correspondences is closed under connections of L_2 -Chu correspondences. Thus, we have just proved the following

Lemma 5 Let C_i for $i \in \{1, 2, 3\}$ be two L_2 -contexts. For every L_2 -Chu correspondence $\varphi \in L_2$ -ChuCors (C_1, C_2) and $\psi \in L_2$ -ChuCors (C_2, C_3) holds $\psi \circ \varphi \in L_1$ -ChuCors (C_1, C_3) .

In consequence, we can state

Theorem 2 Under the environment hypotheses of this section, the category L_2 -ChuCors naturally embeds in L_1 -ChuCors.

As the category ChuCors of classical Chu correspondences are defined on classical, twovalued logic, which is a special case of any logic defined on complete residuated lattice, we obtain

Corollary 1 The category ChuCors naturally embeds in L-ChuCors

References

- R. Bělohlávek. Fuzzy concepts and conceptual structures: induced similarities. In *Joint Conference on Information Sciences*, pages 179–182, 1998.
- [2] R. Bělohlávek. Lattices of fixed points of fuzzy Galois connections. Mathematical Logic Quartely, 47(1):111–116, 2001.
- [3] M. Barr, Ch. Wells. Category theory for computing science. Prentice Hall, 1995.
- [4] B. Davey and H. Priestley. Introduction to Lattices and Order. Cambridge University Press, second edition, 2002.
- [5] B. Ganter. Relational Galois connections. Lect Notes in Computer Science 4390:1–17, 2007
- [6] B. Ganter and R. Wille. Formal concept analysis. Springer-Verlag, 1999.
- [7] P. Hájek. Metamathematics of fuzzy logic. Kluwer Academic Publisher, 2001.
- [8] S. Krajči. Every concept lattice with hedges is isomorphic to some generalized concept lattice. In *Intl Workshop on Concept Lattices and their Applications*, pages 1–9, 2005.
- [9] S. Krajči. A generalized concept lattice. Logic Journal of IGPL, 13(5):543–550, 2005.
- [10] O. Kridlo, M. Ojeda-Aciego, On the L-fuzzy generalization of Chu correspondences, International Journal of Computer Mathematics, to appear.
- [11] M. Krötzsch, P. Hitzler, G-Q. Zhang, Morphisms in Context. Lecture Notes in Computer Science 3596:223–237, 2005.
- [12] H. Mori. Chu Correspondences. Hokkaido Matematical Journal, 37:147-214, 2008
- [13] H. Mori. Functorial properties of Formal Concept Analysis. Lecture Notes in Artificial Intelligence 4604:505–508, 2007