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Abstract— Formal concept analysis has become an important
and appealing research topic. There exist a number of different fuzzy
extensions of formal concept analysis and of its representation the-
orem, which gives conditions for a complete lattice in order to be
isomorphic to a concept lattice. In this paper we concentrate on the
study of operational properties of the mappings α and β required in
the representation theorem.
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1 Introduction
Formal concept analysis [12] has become an important and
appealing research topic both from a theoretical perspec-
tive [18, 29, 32] and from the applicative one. Regarding ap-
plications, we can find papers ranging from ontology merg-
ing [10, 27], to applications to the Semantic Web by using the
notion of concept similarity [11], and from processing of med-
ical records in the clinical domain [14] to the development of
recommender systems [8].

Soon after the introduction of “classical” formal concept
analysis, a number of different approaches for its generaliza-
tion were introduced and, nowadays, there are works which
extend the theory with ideas from fuzzy set theory [3, 21, 22]
or fuzzy logic reasoning [2, 4, 9] or from rough set the-
ory [20, 30, 33] or some integrated approaches such as fuzzy
and rough [31], or rough and domain theory [19].

In this paper we concentrate on the fuzzy extensions of
formal concept analysis, for which a number of different ap-
proaches have been presented. To the best of our knowledge,
the first one was given in [6], although they did not advance
much beyond the basic definitions, probably due to the fact
that they did not use residuated implications. Later, in [3, 28]
the authors independently used complete residuated lattices as
structures for the truth degrees; for this approach, a representa-
tion theorem was proved directly in a fuzzy framework in [5],
setting the basis of most of the subsequent direct proofs.

In [23, 24] as a new general approach to formal concept
analysis multi-adjoint concept lattices were introduced, in
which the philosophy of the multi-adjoint paradigm [15, 26]
to formal concept analysis is applied. With the idea of pro-
viding a general framework in which the different approaches
stated above could be conveniently accommodated, the au-
thors worked in a general non-commutative environment; and
this naturally led to the consideration of adjoint triples, also
called implication triples [1] or bi-residuated structures [25]
as the main building blocks of a multi-adjoint concept lattice.

The representation (or fundamental) theorem gives condi-
tions for a complete lattice in order to be isomorphic to a con-
cept lattice. This theorem is proved in the classical case [12]

and in the fuzzy paradigms [5, 13, 16, 23, 28]. As a conse-
quence, to obtain the isomorphism it is necessary to search two
mappings α and β that satisfy some properties, one of these
relate the mappings with the relation. In this paper, we present
a characterization of this last property, which is more efficient
than the actual from the computationally point of view. More-
over, some other interesting properties of mappings α and β
are introduced.

The structure of the paper is as follows: in Section 2 we
recall the definition of the multi-adjoint concept lattices and,
in particular, the mappings α and β required in the definition
of lattice representing a multi-adjoint concept lattice. Then,
in Section 3, we prove some new results concerning α and β.
Finally, some concluding remarks are added.

2 Multi-adjoint concept lattices

In this section we will recall the more important definitions
and results from [23]. The first definition introduces the ba-
sic building blocks of the multi-adjoint concept lattices, the
adjoint triples, which are generalisations of the notion of ad-
joint pair under the hypothesis of having a non-commutative
conjunctor.

The lack of commutativity of the conjunctor, directly pro-
vides two different ways of generalising the well-known ad-
joint property between a t-norm and its residuated implication,
depending on which argument is fixed in the conjunction.

Definition 1 Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and
&:P1 × P2 → P3,↙:P3 × P2 → P1,↖:P3 × P1 → P2 be
mappings, then (&,↙,↖) is an adjoint triple with respect to
P1, P2, P3 if:

1. & is order-preserving in both arguments.

2. ↙ and ↖ are order-preserving in the consequent and
order-reversing in the antecedent.

3. x ≤1 z ↙ y iff x& y ≤3 z iff y ≤2 z ↖ x,
where x ∈ P1, y ∈ P2 and z ∈ P3.

Note that in the domain and codomain of the considered con-
junctor we have three (in principle) different sorts, thus pro-
viding a more flexible language to a potential user. Further-
more, notice that no boundary condition is required, in dif-
ference to the usual definition of multi-adjoint lattice [26] or
implication triple [1]. Nevertheless, some boundary condi-
tions follow from the definition, specifically, from the adjoint
property (condition (3) above) [23].



Lemma 1 If (P1,≤1), (P2,≤2), (P3,≤3) have bottom ele-
ment and (&,↙,↖) is an adjoint triple, then (P1,≤1) and
(P2,≤2) have top element and for all x ∈ P1, y ∈ P2 and
z ∈ P3 the following properties hold:

1. ⊥1 & y = ⊥3, x&⊥2 = ⊥3.

2. z ↖ ⊥1 = >2, z ↙ ⊥2 = >1.

In order to provide more flexibility into our language, we
will allow the existence of several adjoint triples for a given
triplet of posets. Notice, however, that since these frames will
be used as the underlying structures of our generalization of
concept lattice, it is reasonable to require the lattice structure
on some of the posets in the definition of adjoint triple.

Definition 2 A multi-adjoint frame L is a tuple

(L1, L2, P,�1,�2,≤,&1,↙1,↖1, . . . ,&n,↙n,↖n)

where (L1,�1) and (L2,�2) are complete lattices, (P,≤) is
a poset and, for all i = 1, . . . , n, (&i,↙i,↖i) is an adjoint
triple with respect to L1, L2, P .

For short, a multi-adjoint frame will be denoted as
(L1, L2, P,&1, . . . ,&n).

Following the usual approach to formal concept analysis,
given a frame, a multi-adjoint context is a tuple consisting
of sets of objects and attributes and a fuzzy relation among
them; in addition, the multi-adjoint approach also includes a
function which assigns an adjoint triple to each object (or at-
tribute). This feature is important in that it allows for defining
subgroups of objects or attributes in terms of different degrees
of preference, see [23]. Formally, the definition is the follow-
ing:

Definition 3 Let (L1, L2, P,&1, . . . ,&n) be a multi-adjoint
frame, a context is a tuple (A,B,R, σ) such that A and B
are non-empty sets (usually interpreted as attributes and ob-
jects, respectively), R is a P -fuzzy relation R:A × B → P
and σ:B → {1, . . . , n} is a mapping which associates any el-
ement in B with some particular adjoint triple in the frame.1

Once we have fixed a multi-adjoint frame and a context for
that frame, we can define the following mappings ↑σ :LB2 −→
LA1 and ↓

σ

:LA1 −→ LB2 which can be seen as generalisations
of those given in [4, 17]:

g↑σ (a) = inf{R(a, b)↙σ(b) g(b) | b ∈ B} (1)
f↓

σ

(b) = inf{R(a, b)↖σ(b) f(a) | a ∈ A} (2)

These two arrows, (↑σ , ↓
σ

), generate a Galois connection [23].
For the sake of self-containment, this concept is defined be-
low:

Definition 4 Let (P1,≤1) and (P2,≤2) be posets, and
↓:P1 → P2, ↑:P2 → P1 mappings, the pair (↑, ↓) forms a
Galois connection between P1 and P2 whenever the following
conditions hold:

1. ↑ and ↓ are order-reversing.
1A similar theory could be developed by considering a mapping

τ :A → {1, . . . , n} which associates any element in A with some
particular adjoint triple in the frame.

2. x ≤1 x
↓↑ for all x ∈ P1.

3. y ≤2 y
↑↓ for all y ∈ P2.

Proposition 1 ( [23]) Let (L1, L2, P,&1, . . . ,&n) be a mul-
ti-adjoint frame and (A,B,R, σ) be a context, then the pair
(↑σ , ↓

σ

) is a Galois connection between LA1 and LB2 .

As usual in the different frameworks of formal concept
analysis, a multi-adjoint concept is a pair 〈g, f〉 satisfying that
g ∈ LB2 , f ∈ LA1 and that g↑σ = f and f↓

σ

= g; with (↑σ , ↓
σ

)
being the Galois connection defined above.

Definition 5 The multi-adjoint concept lattice associated to
a multi-adjoint frame (L1, L2, P,&1, . . . ,&n) and a context
(A,B,R, σ) is the set

M = {〈g, f〉 | g ∈ LB2 , f ∈ LA1 and g↑σ = f, f↓
σ

= g}

where the ordering is defined by 〈g1, f1〉 � 〈g2, f2〉 if and only
if g1 �2 g2 (equivalently f2 �1 f1).

The ordering just defined above actually providesM with
the structure of a complete lattice [23]. This follows from
proposition 1 (the arrows (↑σ , ↓

σ

) forms a Galois connection)
and the theorem below.

Theorem 1 ( [7]) Let (L1,�1), (L2,�2) be complete lat-
tices, let (↑, ↓) be a Galois connection between L1, L2 and
consider C = {〈x, y〉 | x↑ = y, x = y↓;x ∈ L1, y ∈ L2};
then (C,�) is a complete lattice, where∧

i∈I
〈xi, yi〉 = 〈

∧
i∈I

xi, (
∨
i∈I

yi)↓↑〉;∨
i∈I
〈xi, yi〉 = 〈(

∨
i∈I

xi)↑↓,
∧
i∈I

yi〉

and 〈x1, y1〉 � 〈x2, y2〉 if and only if x1 �1 x2.

From now on, we will fix a multi-adjoint frame
(L1, L2, P,&1, . . . ,&n) and context (A,B,R, σ). Moreover,
to improve readability, we will write (↑, ↓) instead of (↑σ , ↓

σ

)
and↙b,↖b instead of↙σ(b),↖σ(b).

In the next section, we will present some new properties
about the functions α and β involved in the representation (or
fundamental) theorem for the multi-adjoint framework pre-
sented in [23]. In order to do this, we will recall some nec-
essary definitions.

Definition 6 Given a complete lattice L, a subset K ⊆ L is
infimum-dense (resp. supremum-dense) if and only if for all
x ∈ L there exists K ′ ⊆ K such that x = inf(K ′) (resp. x =
sup(K ′)).

A multi-adjoint concept lattice is said to be represented by
a complete lattice provided there is a pair of functions, α and
β, satisfying the conditions stated in the definition below:

Definition 7 A multi-adjoint concept lattice2 (M,�) is rep-
resented by a complete lattice (V,v) if there exists a pair of
mappings α:A× L1 → V and β:B × L2 → V such that:

2Recall that we are considering a multi-adjoint concept lattice on
a fixed frame (L1, L2, P,&1, . . . ,&n) and context (A,B,R, σ).



1a) α[A× L1] is infimum-dense;

1b) β[B × L2] is supremum-dense; and

2) For all a ∈ A, b ∈ B, x ∈ L1, y ∈ L2:

β(b, y) v α(a, x) if and only if x&b y ≤ R(a, b)

From the definition of representability above the following
properties follow:

Proposition 2 Given a complete lattice (V,v) which repre-
sents a multi-adjoint concept lattice (M,�), and mappings
f ∈ LA1 and g ∈ LB2 , we have:

1. β is order-preserving in the second argument.

2. α is order-reversing in the second argument.

3. g↑(a) = sup{x ∈ L1 | vg v α(a, x)}, where
vg = sup{β(b, g(b)) | b ∈ B}.

4. f↓(b) = sup{y ∈ L2 | β(b, y) v vf}, where
vf = inf{α(a, f(a)) | a ∈ A}.

5. If gv(b) = sup{y ∈ L2 | β(b, y) v v}, then
sup{β(b, gv(b)) | b ∈ B} = v.

6. If fv(a) = sup{x ∈ L1 | v v α(a, x)}, then
sup{α(a, fv(a)) | a ∈ A} = v.

Finally, the fundamental theorem for multi-adjoint concept
lattices presented in [23] is the following.

Theorem 2 A complete lattice (V,v) represents a multi-
adjoint concept lattice (M,�) if and only if (V,v) is iso-
morphic to (M,�).

3 New results about the mappings α and β

In this section, we introduce some new interesting properties
about the mappings α and β. So, let us assume a complete
lattice (V,v) which represents a multi-adjoint concept lattice
(M,�) and the mappings α:A× L1 → V , β:B × L2 → V .

We will restate below the isomorphism constructed in fun-
damental theorem, based on both the α and β functions, since
these expressions will be used later.

Proposition 3 ( [23]) If a complete lattice (V,v) represents
a multi-adjoint concept lattice (M,�), then there exists an
isomorphism ϕ:M→ V and two mappings β:B ×L2 → V ,
α:A× L1 → V , such that:

ϕ(〈g, f〉) = sup{β(b, g(b)) | b ∈ B}
= inf{α(a, f(a)) | a ∈ A}

for all concept 〈g, f〉 ∈ M.

The following result shows continuity-related properties of
α and β in their second argument.

Proposition 4 The mappings β:B × L2 → V and α:A ×
L1 → V satisfy that:

1. For all indexed set Y = {yi}i∈I ⊆ L2 and b ∈ B:

β(b, sup{yi | i ∈ I}) = sup{β(b, yi) | i ∈ I}

2. For all indexed set X = {xi}i∈I ⊆ L1 and a ∈ A:

α(a, sup{xi | i ∈ I}) = inf{α(a, xi) | i ∈ I}

Proof : 1. Consider b ∈ B and Y = {yi}i∈I ⊆ L2, as α[A ×
L1] is infimum-dense and β(b, supY ) ∈ V , there exists an
indexing set Λ such that β(b, supY ) = inf{α(aj , xj) | j ∈
Λ}; as a result β(b, supY ) v α(aj , xj) for every j ∈ Λ.
From proposition 2(1), we obtain that β(b, yi) v α(aj , xj),
for every i ∈ I and j ∈ Λ, and hence sup{β(b, yi) | i ∈ I} v
α(aj , xj) for every j ∈ Λ, then

sup{β(b, yi) | i ∈ I} v inf{α(aj , xj) | j ∈ Λ}
= β(b, supY )

For the other inequality, let us consider sup{β(b, yi) | i ∈ I}
and, as α[A × L1] is infimum-dense, there exists an indexing
set Λ′ such that sup{β(b, yi) | i ∈ I} = inf{α(aj , xj) |
j ∈ Λ′}. Now, for all i ∈ I and j ∈ Λ′ we obtain
that β(b, yi) v α(aj , xj), therefore, from Definition 7(2),
xj &b yi ≤ R(aj , b). Now, as (&b,↙b,↖b) is an adjoint
triple, we have the following chain of equivalent statements:

xj &b yi ≤ R(aj , b) for all i ∈ I
yi �2 R(aj , b)↖b xj for all i ∈ I

supY �2 R(aj , b)↖b xj

xj &b supY ≤ R(aj , b)

so, β(b, supY ) v α(aj , xj) for every j ∈ Λ′, and thus

β(b, supY ) v inf{α(aj , xj) | j ∈ Λ′}
= sup{β(b, yi) | i ∈ I}

2. This proof is analogous using that β[B×L2] is supremum-
dense. �

We continue below by proving some boundary conditions
fulfilled by α and β.

Proposition 5 The two mappings α:A×L1 → V and β:B×
L2 → V are such that α(a,⊥1) = >V and β(b,⊥2) = ⊥V
for all b ∈ B and a ∈ A.

Proof : Given a ∈ A, let us prove that α(a,⊥1) = >V . Firstly,
recall that lemma 1 implies that ⊥1 &b y ≤ R(a, b) for all
b ∈ B and y ∈ L2; now, from Definition 7(2) we obtain
that β(b, y) v α(a,⊥1) for all b ∈ B and y ∈ L2, that is,
α(a,⊥1) is an upper bound of the set of elements β(b, y) for
all b ∈ B and y ∈ L2. Now, as β is supremum-dense, there
is an indexing set Λ such that >V = sup{β(bi, yi) | i ∈
Λ}, therefore, we have that: >V v α(a,⊥1). Hence, >V =
α(a,⊥1).

The other equality follows similarly. �

From the propositions above, we obtain the following corol-
lary which states the behaviour of α and β regarding suprema
of any set (either empty or non-empty).

Corollary 1 The mappings β:B×L2 → V , α:A×L1 → V
satisfy that:



1. β(b, supY ) = sup{β(b, y) | y ∈ Y }, for all Y ⊆ L2

and b ∈ B.

2. α(a, supX) = inf{α(a, x) | x ∈ X}, for all X ⊆ L1

and a ∈ A.

As a consequence of the property above we have the fol-
lowing result, which gives us a more efficient form to write
Property (2) in Definition 7 to check if a lattice is isomorphic
to a concept lattice, that is, in order to apply Theorem 2.

Proposition 6 Given a ∈ A, b ∈ B, the applications
βb:L2 → V , αa:L1 → V have residuated mappings, that
is, there exist β′b:L2 → V , α′a:L1 → V such that:

βb(y) v v if and only if y �2 β
′
b(v)

v v αa(x) if and only if x �1 α
′
a(v)

for all x ∈ L1, y ∈ L2 and v ∈ V .

Proof : If we define β′b(v) = sup{y ∈ L2 | βb(y) v v} and,
similarly, α′a(v) = sup{x ∈ L1 | v v αa(x)}, we obtain the
result straightforward from Corollary 1. �

The following proposition states a necessary and sufficient
condition for the mappings α and β to fulfill the second con-
dition in the definition of representable lattice.

Proposition 7 The mappings α and β satisfy Property (2) in
Definition 7 if and only if, for all a ∈ A, b ∈ B, x ∈ L1,
y ∈ L2, (some of QUITAR) the following equalities hold:

β′b(αa(x)) = R(a, b)↖ x

αa(β′b(y)) = R(a, b)↙ y

Proof : Firstly, we assume that the mappings α and β satisfy
Property (2) in Definition 7. The first equality is given from
the following chain of equivalences, given a ∈ A, b ∈ B,
x ∈ L1, y ∈ L2:

y �2 β
′
b(αa(x)) ⇐⇒ β(b, y) v α(a, x)

⇐⇒ x&b y ≤ R(a, b)
⇐⇒ y �2 R(a, b)↖ x

if we substitute y by R(a, b) ↖ x in the first sentence and
y by β′b(αa(x)) in the last one. The second equality follows
similarly.

Now, we assume that β′b(αa(x)) = R(a, b)↖ x, hence

β(b, y) v α(a, x) ⇐⇒ y �2 β
′
b(αa(x))

(∗)⇐⇒ y �2 R(a, b)↖ x

⇐⇒ x&b y ≤ R(a, b)

where (∗) is given from the hypothesis. �

As a result of the previous proposition, we obtain a straight-
forward mechanism to obtain the mappings α and β in order
to check whether a lattice is isomorphic to a concept lattice.

Finally, the following property shows that any subset ofA×
L1 or of B × L2 is related to a concept via α and ϕ, or β and
ϕ, respectively.

Proposition 8 Consider a multi-adjoint concept lattice
(M,�) represented by a complete lattice (V,v) and the map-
pings α:A × L1 → V , β:B × L2 → V , then for each
K ⊆ A× L1, there exists a unique concept 〈g, f〉 ∈ M such
that

inf{α(a, x) | (a, x) ∈ K} = ϕ(〈g, f〉)

Analogously, for each K ′ ⊆ B × L2, there exists a unique
concept 〈g, f〉 ∈ M such that

sup{β(b, y) | (b, y) ∈ K ′} = ϕ(〈g, f〉)

Proof : Given K ⊆ A × L1, let us consider the sets Ka =
{x | (a, x) ∈ K}, and the function h:A → L1 defined as
h(a) = supKa.

By Corollary 1, we have that, for all a′ ∈ A, the following
equality holds

α(a′, h(a′)) = inf{α(a′, x) | x ∈ Ka}

Therefore:

inf{α(a′, h(a′)) | a′ ∈ A} =
= inf{inf{α(a′, x) | x ∈ Ka′} | a′ ∈ A}
= inf{α(a′, x) | (a′, x) ∈ K}

Finally, we obtain the following chain of equalities:

inf{α(a, x) | (a, x) ∈ K} = inf{α(a′, h(a′)) | a′ ∈ A}
(1)
= sup{β(b′, h↓(b′)) | b′ ∈ B}
(2)
= ϕ(〈h↓, h↓↑)

where (1) follows by Proposition 2, (2) by Proposition 3. This
means that the concept whose existence is postulated in the
statement is 〈h↓, h↓↑〉.

Now, the uniqueness follows from the isomorphism ϕ:
If there would exist another concept 〈g, f〉 such that
sup{β(b, g(b)) | b ∈ B} = inf{α(a, x) | (a, x) ∈ K}, we
would have:

ϕ(〈h↓, h↓↑〉) = sup{β(b, h↓(b)) | b ∈ B}
= inf{α(a, x) | (a, x) ∈ K}
= sup{β(b, g(b)) | b ∈ B}
= ϕ(〈g, f〉)

Thus, 〈h↓, h↓↑〉 = 〈g, f〉.
The second statement follows similarly. �

4 Conclusions

The representation theorem is one of the most important re-
sults in the theory of formal concept analysis, since it provides
conditions in order to determine whether a given lattice is iso-
morphic to some concept lattice. In this paper, an analytic
expression for the mappings α and β involved in the represen-
tation theorem of t-concept lattices is provided, together with
some interesting properties.
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