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Abstract

Several fuzzifications of formal concept analysis have been proposed to deal with
uncertain information. In this paper, we focus on concept lattices under a multi-
adjoint paradigm, which enriches the language providing greater flexibility to the
user in that she can choose from a number of different connectives. Multi-adjoint
concept lattices are shown to embed different fuzzy extensions of concept lattices
found in the literature, the main results of the paper being the representation the-
orem of this paradigm and the embedding of other well-known approaches.
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1 Introduction

Handling uncertainty, imprecise data or incomplete information has become
an important research topic in the recent years. Developing reasoning meth-
ods under this kind of, so to say, ‘imperfect’ information is more a must than
a simply need; just consider the enormous amount of information available
in the web. Most of the current research areas have received this message,
one frequent solution being to develop fuzzified versions of several well-known
standard structures. In this paper, we focus on the area of formal concept anal-
ysis and, specifically, on the different generalisations of the classical definition
of concept lattice to the fuzzy case.

A number of different approaches have been proposed which generalise the
classical concept lattices given by Ganter and Wille [10, 24] by allowing some
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uncertainty in data. One of these approaches was proposed by Burusco and
Fuentes-González [7] where fuzzy concept lattices were first presented, al-
though they did not use residuated implications in their work and this is
the reason why they could not advance much beyond the basic definitions.

Another approach was proposed independently by Pollandt [23] and Běloh-
lávek [2] who use complete residuated lattices as structures for the truth de-
grees; for this approach, a representation theorem was proved directly in a
fuzzy framework in [3], setting the basis of most of the subsequent direct
proofs. Bělohlávek, in [5], later extended this to the case when a fuzzy partial
order is considered on a fuzzy concept lattice instead of on an ordinary partial
order. Georgescu and Popescu extended this framework to non-commutative
logic and similarity in a series of papers [11–14]; in a different direction, it was
also extended in an asymmetric way, although only for the case of classical
equality (L = {0, 1}), by Krajči, which introduced the so-called generalised
concept lattices in [17,18].

In the context of general logical frameworks, the recently introduced multi-
adjoint approach is receiving considerable attention [16,21]. The multi-adjoint
framework originated as a generalisation of several non-classical logic pro-
gramming frameworks whose semantic structure is the multi-adjoint lattice,
in which a lattice is considered together with several conjunctors and impli-
cations making up adjoint pairs. The particular details of the different ap-
proaches were abstracted away, retaining only the minimal mathematical re-
quirements guaranteeing operability. In particular, conjunctors were required
to be neither commutative nor associative.

A new general approach to formal concept analysis has been recently proposed
in [19, 22] where the multi-adjoint concept lattices were introduced, applying
the philosophy of the multi-adjoint framework to formal concept analysis.
Non-commutative conjunctors have been used in topics such as fuzzy concept
lattices and fuzzy logic programming [11, 12, 20], and have been studied on
their own, for instance in [1]. In this paper, we focus on non-commutative
conjunctors and on the consequences that its use generates in the setting of
formal concept analysis.

With the idea of providing a general framework in which the different ap-
proaches stated above could be conveniently accommodated, the authors worked
in a general non-commutative environment; and this naturally leads to the con-
sideration of adjoint triples, also called implication triples [1] or bi-residuated
structures [20] as the main building blocks of a multi-adjoint concept lattice.

The main result introduced in this paper, apart from the introduction of multi-
adjoint concept lattices, is the representation theorem, which gives conditions
for a complete lattice in order to be isomorphic to a multi-adjoint concept
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lattice. The proof of this theorem follows the line of that given in [3] but the
presentation is given in a more structured and readable way. In addition, we
also show the embedding of several of the paradigms stated above into the
multi-adjoint concept lattice framework. The paper finishes with a detailed
example on which all the capabilities of the proposed framework are shown.

2 Multi-adjoint concept lattices

The basic building blocks of the multi-adjoint concept lattices are the ad-
joint triples, which are generalisations of the notion of adjoint pair under the
hypothesis of non-commutative conjunctors.

Before presenting the formal definition, let us recall the notion of adjoint pair:

An adjoint pair on a poset (P,≤) is a pair of binary operations in P (&,←)
such that:

(1) Operation & is order-preserving in both arguments;
(2) Operation ← is order-preserving in the first argument (the consequent)

and order-reversing in the second argument (the antecedent);
(3) For any x, y, z ∈ P , we have that

x ≤ (z ← y) if and only if (x& y) ≤ z

This last property is related to the fuzzy modus ponens rule, see [15], in that
it can be recovered from natural requirements on the fuzzy MP.

The lack of commutativity of the conjunctor directly provides two different
ways of generalising the adjoint property above, depending on which argument
of the conjunction is fixed. This would lead to two different implications ↙
and ↖ satisfying the following chain of equivalences:

x ≤ z ↙ y iff x& y ≤ z iff y ≤ z ↖ x

Furthermore, we can be even more general and consider conjunctors whose
domains are formed by different sorts, thus providing a more flexible language
to a potential user. This leads to the definition of adjoint triple given below:

Definition 1 Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and &: P1×P2 → P3,
↙ : P3 × P2 → P1, ↖ : P3 × P1 → P2 be mappings, then (&,↙,↖), is an
adjoint triple with respect to P1, P2, P3 if:

• & is order-preserving in both arguments.
• ↙ and ↖ are order-preserving in the consequent and order-reversing in the

antecedent.
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• x ≤1 z ↙ y iff x& y ≤3 z iff y ≤2 z ↖ x, where x ∈ P1, y ∈ P2

and z ∈ P3.

The last property, which will be referred to as the adjoint property, can be
seen as related to the fuzzy modus ponens rule for non-necessarily commutative
conjunctors. Notice that no boundary condition is required, in difference to
the usual definition of multi-adjoint lattice [21] or implication triples [1].

Some interesting consequences which will be used later, and whose proof is
straightforward from the adjoint property, are stated in the following lemma.

Lemma 2 If (P1,≤1), (P2,≤2), (P3,≤3) have bottom element, (P1,≤1) and
(P2,≤2) have top element, and (&,↙,↖) is an adjoint triple, then for all
x ∈ P1, y ∈ P2 and z ∈ P3 the following properties hold:

(1) ⊥1 & y = ⊥3, x&⊥2 = ⊥3.
(2) z ↖ ⊥1 = >2, z ↙ ⊥2 = >1.

It is worth to note that the occurrence of non-commutative or non-associative
connectives is not completely unusual. For instance, consider that a variable
represented by x can be observed with m+ 1 different values, then surely we
should be working with a regular partition of [0, 1] into m pieces, denoted
[0, 1]m. This means that a given value x should be fitted to this “observa-
tion” scale as the least upper bound with the form k/m (analytically, this
corresponds to dm · xe/m where d e is the ceiling function). A similar con-
sideration can be applied to both, variable y and the resulting conjunction;
furthermore, it might be possible that each variable has different granularity.
Formally, assume in x-axis we have a partition into n pieces, in y-axis into
m pieces, and in z-axis into k pieces. Then the approximation of the product
conjunction is given in the following example.

Example 3 Given positive integers n,m, k > 0, let us consider the mapping
Ck
n,m : [0, 1]n × [0, 1]m → [0, 1]k, defined for each x ∈ [0, 1]n and y ∈ [0, 1]m as:

Ck
n,m(x, y) =

dk · x · ye
k

where · denotes the usual product of real numbers

There are connectives of the form Ck
n,m which are non-associative and there are

connectives of the same form which are non-commutative as well, for example
C10

10,10 and C4
10,5 as it is shown in [20].

Note that Ck
n,m is order-preserving in both variables and generalises the classi-

cal conjunction. Now, if we define implications↙k
n,m : [0, 1]k× [0, 1]m → [0, 1]n

and ↖k
n,m : [0, 1]k × [0, 1]n → [0, 1]m as follows:
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z ↙k
n,m y = max{x ∈ [0, 1]n | Ck

n,m(x, y) ≤ z}
z ↖k

n,m x = max{y ∈ [0, 1]m | Ck
n,m(x, y) ≤ z}

then (Ck
n,m,↙k

n,m,↖k
n,m) is an adjoint triple, as stated in [20].

Connectives as those in the example above can be reasonably justified as fol-
lows: If we are looking for a hotel which is close to downtown, with reasonable
price and being a new building, then classical fuzzy approaches would assign
a user “his” particular interpretation of “close”, “reasonable” and “new”. As,
in practice, we can only recognize finitely many degrees of being close, rea-
sonable, new, then the corresponding fuzzy sets have a stepwise shape. This
motivates the lattice-valued approach we will assume in this paper: it is just
a matter of representation that the outcome is done by means of intervals of
granulation and/or indistinguishability.

Similarly to introducing several adjoint pairs in order to form a multi-adjoint
lattice, we will consider several adjoint triples to introduce the notion of multi-
adjoint frame.

Definition 4 A multi-adjoint frame L is a tuple

(L1, L2, P,�1,�2,≤,&1,↙1,↖1, . . . ,&n,↙n,↖n)

where (Li,�i) are complete lattices, (P,≤) is a poset, and (&i,↙i,↖i) is an
adjoint triple with respect to L1, L2, P for all i = 1, . . . , n.

A multi-adjoint frame as above will be denoted as (L1, L2, P,&1, . . . ,&n), for
short. It is convenient to note that, in principle, L1, L2 and P could be simply
posets, the reason to consider complete lattices is that multi-adjoint frames
will be used as the underlying lattice on which the operations will be made;
hence, general joins and meets are required.

Given a frame, the notion of context is defined as a tuple consisting of sets of
objects and attributes, a fuzzy relation among them and a function assigning
an adjoint triple to each object (or attribute). Formally, the definition is the
following:

Definition 5 Given a multi-adjoint frame (L1, L2, P,&1, . . . ,&n), a context
is a tuple (A,B,R, σ) such that A and B are non-empty sets (usually inter-
preted as objects and attributes), R is a P -fuzzy relation R : A× B → P and
σ : B → {1, . . . , n} is a mapping which associates any element in B with some
particular adjoint triple in the frame. 2

2 A similar theory could be developed by considering a mapping τ : A→ {1, . . . , n}
which associates any element in A with some particular adjoint triple in the frame.
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The fact that in a multi-adjoint context each object (or attribute) has an
associated implication is interesting in that subgroups with different degrees of
preference can be established in a convenient way, see the example in Section 5.

Now, given a multi-adjoint frame and a context for that frame, we can define
the following mappings ↑σ : LB2 −→ LA1 and ↓

σ
: LA1 −→ LB2 which can be seen

as generalisations of those given in [5, 18]:

g↑σ(a) = inf{R(a, b)↙σ(b) g(b) | b ∈ B}
f ↓

σ

(b) = inf{R(a, b)↖σ(b) f(a) | a ∈ A}

It is worth to point out that these mappings generate a Galois connection. For
sake of self-containment, this concept is defined below:

Definition 6 Let (P1,≤1) and (P2,≤2) be posets, and ↓ : P1 → P2, ↑ : P2 → P1

mappings, the pair (↑, ↓) forms a Galois connection between P1 and P2 if and
only if:

(1) ↑ and ↓ are order-reversing.
(2) x ≤1 x

↓↑ for all x ∈ P1.
(3) y ≤2 y

↑↓ for all y ∈ P2.

Proposition 7 Given a multi-adjoint frame (L1, L2, P,&1, . . . ,&n) and a con-
text (A,B,R, σ), the pair (↑σ , ↓

σ
) is a Galois connection between LA1 and LB2 .

PROOF. From now on, to improve readability, we will write (↑, ↓) instead of
(↑σ , ↓

σ
) and ↙b, ↖b instead of ↙σ(b), ↖σ(b).

By definition, we have to prove that:

(1) ↑ and ↓ are order-reversing. This is trivial since the implications are order-
reversing in the second argument.

(2) g ≤ g↑↓ for all g ∈ LB2 . Given a ∈ A and b ∈ B the next chain of
inequalities holds because of the definition of g↑(a) as an infimum and
the adjoint property:

g↑(a) �1 R(a, b)↙b g(b) ⇐⇒ g↑(a) &b g(b) ≤ R(a, b)

⇐⇒ g(b) �2 R(a, b)↖b g
↑(a)

As these inequalities hold for all a ∈ A, by applying properties of the
infimum we obtain

g(b)�2 inf{R(a, b)↖b g
↑(a) | a ∈ A} = g↑↓(b)

(3) f ≤ f ↓↑ for all f ∈ LA1 . The proof is similar. 2
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Now, we are in a position to define what a concept in our framework is. A
concept is a pair 〈g, f〉 satisfying that g ∈ LB2 , f ∈ LA1 and that g↑ = f and
f ↓ = g; with (↑, ↓) being the Galois connection defined above.

Definition 8 The multi-adjoint concept lattice associated to a multi-adjoint
frame (L1, L2, P,&1, . . . ,&n) and a context (A,B,R, σ) is the set

M = {〈g, f〉 | g ∈ LB2 , f ∈ LA1 and g↑ = f, f ↓ = g}

in which the ordering is defined by 〈g1, f1〉 � 〈g2, f2〉 if and only if g1 �2 g2

(equivalently f2 �1 f1).

We have just defined a poset of concepts, but recall that Proposition 7 proved
that the pair of arrows (↑, ↓) forms a Galois connection between the complete
lattices LA1 and LB2 , hence the poset (M,�) defined above is a complete lattice
by the theorem below.

Theorem 9 (See [9]) Let (L1,�1), (L2,�2) be complete lattices, (↑, ↓) a Ga-
lois connection between L1, L2 and C = {〈x, y〉 | x↑ = y, x = y↓;x ∈ L1, y ∈
L2} then C is a complete lattice, where∧

i∈I
〈xi, yi〉 = 〈

∧
i∈I
xi, (

∨
i∈I
yi)
↓↑〉 and

∨
i∈I
〈xi, yi〉 = 〈(

∨
i∈I
xi)
↑↓,

∧
i∈I
yi〉

It is convenient to note that this well-known theorem can prevent the devel-
opment of ad hoc proofs, as that in [17], of the complete lattice structure, by
a simple checking the existence of the Galois connection.

3 Comparison with other approaches

In this section we will consider (M,�) to be the multi-adjoint concept lattice
associated to fixed multi-adjoint frames and contexts.

3.1 Pollandt concept lattices

In this section we will show how Pollandt’s first approach to concept lattices
can be embedded into the framework of multi-adjoint concept lattices.

The following description of Pollandt’s original approach is taken from [8]. Let
us consider the unit interval [0, 1] with its usual ordering as the underlying
lattice, together with two sets A and B representing the sets of attributes and
objects respectively. Then the fuzzy subsets on A and B are considered, that
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is the sets [0, 1]A and [0, 1]B and, finally, a fuzzy relation R ∈ [0, 1]A×B; so the
context used is the following ([0, 1], A,B,R).

Then, a pair of mappings ↑ : [0, 1]B → [0, 1]A and ↓ : [0, 1]A → [0, 1]B is defined
as follows:

g↑(a) = inf
b∈B
{R(a, b)←L g(b)} , f ↓(b) = inf

a∈A
{R(a, b)←L f(a)}

where ←L is the  Lukasiewicz implication, i. e., y ←L x = min{1, 1 − x + y}.
Pollandt shows that the set of fixed points of the composition ϕ of these two
mappings, defined as ϕ(g) = g↑↓, forms a complete lattice. Thus, a concept is
defined as a pair 〈g, f〉 such that g↑ = f and f ↓ = g, that is, the fixed points
of ϕ, and the concept lattice is the set C = {〈g, f〉 | g↑ = f and f ↓ = g}.

Now we will show how this concept lattice can be embedded into the multi-
adjoint framework. For the  Lukasiewicz implication ←L it is well-known that
the pair (&L,←L) forms an adjoint pair, where &L is the  Lukasiewicz conjunc-
tion x&L y = max(0, x+y−1). Moreover, as &L is obviously commutative we
have that considering ↖L = ←L = ↙L, then (&L,↙L,↖L) is an adjoint
triple.

Pollandt’s fuzzy concept lattice C can be seen as a multi-adjoint concept lattice
just considering the frame ([0, 1], [0, 1], [0, 1],≤,≤,≤,&L,↙L,↖L) and con-
text (A,B,R, σ) where σ associates to each object the unique conjunctor &L,
i.e., σ(b) = &L for every b ∈ B.

It is worth to note that Pollandt generalized her approach in [23] to a general
framework by considering a complete residuated lattice instead of the unit
interval; such a generalization was independently obtained by Bělohlávek [2]
(see [4] for an overview). The embedding of this more general approach into
the multi-adjoint concept lattices can be obtained similarly as above.

3.2 L-fuzzy concept lattices by Burusco and Fuentes-González

We will first recall the L-fuzzy concept lattices given by Burusco and Fuentes-
González in [7,8]. The essential components form a tuple L = (L,�, ,̄⊕) such
that (L,�) is a complete lattice, ¯ is a complementation operator on L, and
⊕ is a t-conorm on L.

Let A, B be two sets representing the sets of attributes and objects and con-
sider a fuzzy relation R ∈ LA×B, the fuzzy sets LA and LB and the mappings
(↑, ↓) defined as follows for g ∈ LB and f ∈ LA:

g↑(a) = inf
b∈B
{R(a, b)⊕ g(b)} f ↓(b) = inf

a∈A
{R(a, b)⊕ f(a)}
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The authors show, by using Knaster-Tarski theorem, that set of fixed points
of the mapping ϕ : LB → LB, defined as ϕ(g) = g↑↓, forms a complete lattice;
therefore, the set of L-fuzzy concepts, called the L-fuzzy concept lattice, is
defined as C = {〈g, f〉 | g↑ = f and f ↓ = g}.

The L-fuzzy concept lattice generalises that by Pollandt, since, in the partic-
ular case of L = [0, 1] the  Lukasiewicz implication satisfies y ←L x = y ⊕ x
where ⊕ is the t-conorm given by x ⊕ y = min(1, x + y) and ¯ is Zadeh’s
negation.

In the general case, given a L-fuzzy concept lattice it is obvious that we can
consider the construction y ⊕ x as an implication operator y ← x, since it
increases in the consequent and decreases in the antecedent. However, this is
not sufficient for ← having an associated conjunctor, &, such that (&,←) is
an adjoint pair.

It is not difficult to prove that if ← is inf-preserving in the first argument,
i.e., (inf{z ∈ Z}) ← y = inf{z ← y | z ∈ Z}, then the following definition
x& y = inf{z ∈ L | x � z ← y} provides a conjunctor such that (&,←)
is an adjoint pair. Under the additional hypothesis of commutativity of this
conjunctor we can define ↖ = ← = ↙ so that (&,↙,↖) is an adjoint
triple. In this case, the L-fuzzy concept lattice can be seen as a multi-adjoint
concept lattice just by considering the frame (L,L, L,�,�,�,&,↙,↖) and
the context (A,B,R, σ) where σ(b) = & for every b ∈ B.

A first difficulty arises from the fact that, unfortunately, the properties of ←
shown above need not imply the commutativity of the conjunctor, as shown in
the following example, thus showing that, in general, L-fuzzy concept lattices
cannot be seen as particular cases of multi-adjoint concept lattices.

Example 10 If we consider the lattice [0, 1] with the usual ordering, the max-
imum operator max as t-conorm, and x = 1 − x as complementation, what
we get is Kleene-Dienes implication, that is, y ← x = max{y, 1 − x}. It is
easy to check that it is inf-preserving in its first argument, hence the equation
x& y = inf{z ∈ [0, 1] | x � z ← y} defines a conjunctor such that (&,←) is
an adjoint pair. However, & is not commutative because

1 & 1
2

= inf{z ∈ [0, 1] | 1 ≤ z ← 1
2
} = inf{z ∈ [0, 1] | 1 ≤ max{1

2
, z}} = 1

1
2 & 1 = inf{z ∈ [0, 1] | 1

2
≤ z ← 1} = inf{z ∈ [0, 1] | 1

2
≤ max{0, z}} = 1

2

Moreover, even assuming the existence of an adjoint triple (&,↙,↖) for the
resulting non-commutative conjunctor, the definition of ↓ in the framework of
L-fuzzy concept lattices needs not match that given in the case of multi-adjoint
concept lattices.
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Last but not least, another important difference between L-fuzzy concept lat-
tices and multi-adjoint concept lattices is that, in the latter case, the pair
(↑, ↓) forms a Galois connection; as a result, ϕ is a closure operator, and the
concepts, that is the fixed points of ϕ(g) = g↑↓, are obtained after just two
iterations of ϕ. In the former case, the pair (↑, ↓) is not necessarily a Galois
connection, as note, hence the number of iterations needed in order to obtain
the fixed points is not known in advance.

3.3 Krajči’s generalised concept lattices

The purpose of this section is to compare the multi-adjoint framework for
concept analysis with that introduced by Krajči. To begin with, let us recall
the following definition of left continuity, introduced in [18].

Definition 11 Let (P,≤) be a poset and (L1,�1), (L2,�2) complete lattices:

• &: L1 × L2 → P is left-continuous in the first argument if given y ∈ L2,
z ∈ P and a non-empty subset X ⊆ L1, the condition “x& y ≤ z holds for
all x ∈ X” implies that (supX) & y ≤ z.
• &: L1×L2 → P is left-continuous in the second argument if given x ∈ L1,
z ∈ P and a non-empty subset Y ⊆ L2, the condition “x& y ≤ z holds for
all y ∈ Y ” implies x&(supY ) ≤ z.
• &: L1×L2 → P is left-continuous if it is left-continuous in both arguments.

The following proposition generalises the existence of residuated implication
for continuous t-norms to the context of adjoint triples.

Proposition 12 Let &: L1×L2 → P be an order-preserving operator in both
arguments where P has a bottom element, then the following two conditions
are equivalent:

1. & is left-continuous and ⊥1 & y = ⊥, x&⊥2 = ⊥, for all x ∈ L1, y ∈ L2.
2. There exist two functions, ↙ and ↖, such that (&,↙,↖) is an adjoint

triple.

PROOF. (1 implies 2)

The function↙ : P ×L2 → L1 is defined as expected: given y ∈ L2 and z ∈ P
consider the set X = {x ∈ L1 | x& y ≤ z}, now

z ↙ y = supX = sup{x ∈ L1 | x& y ≤ z}

we will now prove that it satisfies the adjoint property with respect to &.
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Consider elements x ∈ L1, y ∈ L2, z ∈ P such that x& y ≤ z. Obviously, we
have that x ∈ X and x �1 supX, hence x �1 z ↙ y = supX.

Conversely, assume that we have x �1 z ↙ y. By the boundary conditions,
the set X is non-empty for it contains the bottom element; therefore by left-
continuity we have (supX) & y ≤ z, that is, (z ↙ y) & y ≤ z. Finally, by the
assumption and the monotonicity of & in the first argument we obtain

x& y ≤ z

The rest of this part concerns the definition of ↖ and checking its adjoint
properties. The definition of the function↖ : P ×L1 → L2, for all x ∈ L1 and
z ∈ P , is given as

z ↖ x = sup{y ∈ L2 | x& y ≤ z}
the proof of the adjoint property is similar to the previous one, as a result
(&,↙,↖) is an adjoint triple.

(2 implies 1)

Let us assume the adjoint property, and consider y ∈ L2, z ∈ P , and a non-
empty subset X ⊆ L1 such that x& y ≤ z, for all x ∈ X.

By the adjoint property, for all x ∈ X the inequality x& y ≤ z implies that
x �1 z ↙ y and, by definition of supremum, (supX) �1 z ↙ y. Using the
adjoint property again, we obtain (supX) & y ≤ z, and & is left-continuous
in the first argument. The proof of left-continuity in the second argument is
similar just using ↖.

The boundary conditions follow directly from Lemma 2. 2

The requirement of the boundary conditions is essential to construct the ad-
joint triple. It is not difficult to show an example of a left-continuous order-
preserving operator which does not fulfill them, as a result the two-sided im-
plications do not allow to form an adjoint triple.

Example 13 Let &: [0, 1] × [0, 1] −→ [0, 1] be the constant operator defined
as x& y = 0.5, for all x, y ∈ [0, 1], hence & is order-preserving.

Left-continuity of & is straightforward: In the first argument, given y ∈ [0, 1]
and X ⊆ [0, 1], if 0.5 = x& y ≤ z holds for z ∈ [0, 1] and all x ∈ X,
then (supX) & y = 0.5 ≤ z; analogously in the second argument. However,
obviously it doesn’t verifies the required boundary condition with the bottom
element, since 0 & y = 0.5 6= 0.

A version of Proposition 12 above is stated without proof in [6, theorem 5]
without the additional requirement of the boundary conditions for &; however,
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the boundary conditions are necessary as stated above. It seems that the au-
thors overlooked that left-continuity does not imply the boundary conditions;
moreover, Krajči explicitly requires boundary conditions in his statement of
the basic theorem of generalised concept lattices [18].

Now, in order to formally prove the embedding of Krajči’s approach into the
multi-adjoint framework, let us introduce the definition of generalised concept
lattices.

Consider non-empty sets A and B, a P -fuzzy relation on their Cartesian prod-
uct R : A×B → P , and a monotone left-continuous operator &: L1×L2 → P .

The mappings ↑ : LB2 → LA1 and ↓ : LA1 → LB2 are defined as follows:

g↑(a) = sup{x ∈ L1 | (∀b ∈ B)x& g(b) ≤ R(a, b)}
f ↓(b) = sup{y ∈ L2 | (∀a ∈ A)f(a) & y ≤ R(a, b)}

The set G = {(g, f) | g ∈ LB2 , f ∈ LA1 and g↑ = f, f ↓ = g} with the following
order: 〈g1, f1〉 � 〈g2, f2〉 iff g1 �2 g2 is called a generalised concept lattice.

Now, we introduce the main result which relates both frameworks (a similar
result under different terminology is stated without proof in [6, Thm 6]).

Theorem 14 Given a generalised concept lattice (G,�), where the conjunctor
operator &: L1×L2 → P satisfies ⊥1 & y = ⊥ and x&⊥2 = ⊥, for all x ∈ L1,
y ∈ L2, then there exist a multi-adjoint frame and a context such that the
corresponding multi-adjoint concept lattice equals (G,�).

PROOF. By Proposition 12 we have that there exist two functions, ↙ and
↖, such that (&,↙,↖) is an adjoint triple.

We easily obtain that

sup{x ∈ L1 | (∀b ∈ B)x& g(b) ≤ R(a, b)}

is equal to
sup{x ∈ L1 | (∀b ∈ B)x �1 R(a, b)↙ g(b)}

because both sets are equal by the adjoint property for (&,↙). Furthermore,
by the characterization of the infimum as the supremum of the lower bounds,
the latter turns out to be equal to

inf{R(a, b)↙ g(b) | b ∈ B}

As a result we obtain

sup{x ∈ L1 | (∀b ∈ B)x& g(b) ≤ R(a, b)} = inf{R(a, b)↙ g(b) | b ∈ B} (1)
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and a similar argument allows to prove that

sup{y ∈ L2 | (∀a ∈ A)f(a) & y ≤ R(a, b)} = inf{R(a, b)↖ f(a) | a ∈ A} (2)

Now, consider the multi-adjoint concept lattice (M,�) defined from the frame
(L1, L2, P,�1,�2,≤,&,↙,↖), and the context (A,B,R, σ), where σ assigns
the operator & to every b ∈ B.

Equalities (1) and (2) show that the Galois connections used to build the gener-
alised concept lattice and the multi-adjoint concept lattice coincide; therefore,
both lattices coincide as well. 2

4 The representation theorem

An extension of the representation (or fundamental) theorem on the classical
concept lattice [10] for the multi-adjoint framework is presented below. In some
sense, the result is similar to those given in previous extensions of the classical
concept lattices to the fuzzy case, but the presentation has been simplified.

To begin with, we need to introduce some definitions and preliminary results.
We start by introducing the notions of infimum-dense, supremum-dense, and
representability, which will be used later in the statement of Proposition 17.

Firstly, an infimum-dense (resp. supremum-dense) subset K ⊆ L is such that
the set of the infima (resp. suprema) of all its subsets coincides with L. For-
mally, we have:

Definition 15 Given a complete lattice L, a subset K ⊆ L is infimum-dense
(resp. supremum-dense) if and only if for all x ∈ L there exists K ′ ⊆ K such
that x = inf(K ′) (resp. x = sup(K ′)).

A multi-adjoint concept lattice is said to be represented by a complete lattice
provided there is a pair of functions satisfying the conditions stated in the
definition below:

Definition 16 A multi-adjoint concept lattice 3 (M,�) is represented by a
complete lattice (V,v) if there exists a pair of mappings α : A×L1 → V and
β : B × L2 → V such that:

1a) α[A× L1] is infimum-dense;
1b) β[B × L2] is supremum-dense; and

3 Recall that we are considering a multi-adjoint concept lattice on a fixed frame
(L1, L2, P,&1, . . . ,&n), and the context (A,B,R, σ).
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2) For each a ∈ A, b ∈ B, x ∈ L1 and y ∈ L2:

β(b, y) v α(a, x) if and only if x&b y ≤ R(a, b)

The following proposition presents some consequences which can be obtained
from the definition of representability.

Proposition 17 Given a complete lattice (V,v) which represents a multi-
adjoint concept lattice (M,�), and mappings f ∈ LA1 and g ∈ LB2 , we have:

(1) β is order-preserving in the second argument.
(2) α is order-reversing in the second argument.
(3) g↑(a) = sup{x ∈ L1 | vg v α(a, x)}, where vg = sup{β(b, g(b)) | b ∈ B}.
(4) f ↓(b) = sup{y ∈ L2 | β(b, y) v vf}, where vf = inf{α(a, f(a)) | a ∈ A}.
(5) If gv(b) = sup{y ∈ L2 | β(b, y) v v}, then sup{β(b, gv(b)) | b ∈ B} = v.
(6) If fv(a) = sup{x ∈ L1 | v v α(a, x)}, then inf{α(a, fv(a)) | a ∈ A} = v.

PROOF. We give the proofs for items 1, 3 and 5, since the other are similar.

(1). Let y1 �2 y2 ∈ L2, and let us check that β(b, y1) v β(b, y2) for all b ∈ B.

As α[A× L1] is infimum-dense, by considering β(b, y2) ∈ V there exists a set
K ⊆ A × L1 such that β(b, y2) = inf α[K]; hence, in particular β(b, y2) v
α(a, x) for all (a, x) ∈ K.

Now, by Definition 16(2), for all (a, x) ∈ K it follows that x&b y2 ≤ R(a, b)
and, as y1 �2 y2, by monotonicity

x&b y1 ≤ x&b y2 ≤ R(a, b) for all (a, x) ∈ K

This, again by Definition 16(2), implies that β(b, y1) is a lower bound of the
set α[K], that is β(b, y1) v α(a, x) for all (a, x) ∈ K. Finally, as β(b, y2) =
inf α[K], the inequality β(b, y1) v β(b, y2) follows, and β is order-preserving
in the second argument.

(3). Recall that g↑(a) = inf{R(a, b)↙b g(b) | b ∈ B}.

Now, given x ∈ L1, by the adjoint property, x �1 R(a, b)↙b g(b) is equivalent
to x&b g(b) ≤ R(a, b) which, in turn, is also equivalent, by Definition 16(2), to
β(b, g(b)) v α(a, x) for all b ∈ B, and by taking the supremum, is equivalent
to vg = sup{β(b, g(b)) | b ∈ B} v α(a, x). As a result, we obtain the equality
of the sets:

{x ∈ L1 | x �1 R(a, b)↙b g(b) for all b ∈ B} = {x ∈ L1 | vg v α(a, x)}

Therefore:

14



g↑(a) = inf{R(a, b)↙b g(b) | b ∈ B}
= sup{x ∈ L1 | x �1 R(a, b)↙b g(b) for all b ∈ B}
= sup{x ∈ L1 | vg v α(a, x)}

(5). In order to prove the equality, we will firstly show that for any v ∈ V , the
inequality sup{β(b, gv(b)) | b ∈ B} v v holds.

Consider v ∈ V , as the set α[A×L1] is infimum-dense, there is a set K ⊆ A×L1

such that v = inf{α(a, x) | (a, x) ∈ K}. As a result, in order to prove

sup{β(b, gv(b)) | b ∈ B} v inf{α(a, x) | (a, x) ∈ K} (= v)

it is enough to show that β(b, gv(b)) v α(a, x) for all b ∈ B and (a, x) ∈ K.

Fix elements (a, x) ∈ K and b ∈ B, and assume the existence of an element
y ∈ L2 such that β(b, y) v v. Then, by the representation of v as an infimum,
we get β(b, y) v v v α(a, x). Now, we can apply the chain of equivalences

β(b, y) v α(a, x) ⇐⇒ x&b y ≤ R(a, b) ⇐⇒ y �2 R(a, b)↖b x

and compute the supremum on y to obtain gv(b) �2 R(a, b) ↖b x. Note that
if there is no y ∈ L2 such that β(b, y) v v, then gv(b) = ⊥ and we obtain
gv(b) �2 R(a, b) ↖b x as well. Applying back the equivalences above, we
finally get β(b, gv(b)) v α(a, x).

For the other inequality, we use that β[B×L2] is supremum-dense in order to
write v = sup{β(b, y) | (b, y) ∈ K ′} for some subset K ′ ⊆ B×L2. This means,
in particular, that given (b, y) ∈ K ′, we have that β(b, y) v v and, moreover,
y �2 sup{y ∈ L2 | β(b, y) v v} = gv(b).

As β is order-preserving in the second argument, we obtain for all (b, y) ∈ K ′:

β(b, y) v β(b, gv(b))

v sup{β(b, gv(b)) | (b, y) ∈ K ′}
v sup{β(b, gv(b)) | b ∈ B}

Finally, applying that v is the supremum on (b, y) ∈ K ′, we get the inequality
v v sup{β(b, gv(b)) | b ∈ B}. 2

The last notion we need is not related to the statement of the representation
theorem, but to its proof: the characteristic mappings.

Definition 18 Given a set A, a poset P with bottom element ⊥, and elements
a ∈ A, x ∈ P , the characteristic mapping @x

a : A → P , read “at point a the

15



value is x”, is defined as:

@x
a(a
′) =

x, if a′ = a

⊥, otherwise

Lemma 19 In the multi-adjoint concept lattice (M,�), given a ∈ A, b ∈ B,
x ∈ L1 and y ∈ L2, the following equalities hold:

@x
a
↓(b′) =R(a, b′)↖b′ x for all b′ ∈ B

@y
b
↑(a′) =R(a′, b)↙b y for all a′ ∈ A

PROOF. By definition of ↓ on the mapping @x
a, we get

@x
a
↓(b′) = inf{R(a′, b′)↖b′ @x

a(a
′) | a′ ∈ A} = R(a, b′)↖b′ x

where the last inequality follows because R(a, b′) ↖b′ ⊥1 = >2 (this fact is a
consequence of the adjoint property, since ⊥1 �1 R(a, b′)↙b′ >2).

The other equality follows similarly. 2

We can now state and prove the fundamental theorem for multi-adjoint con-
cept lattices.

Theorem 20 A complete lattice (V,v) represents a multi-adjoint concept lat-
tice (M,�) if and only if (V,v) is isomorphic to (M,�).

PROOF. Assume that (V,v) represents (M,�), then we have the existence
of the mappings α : A × L1 → V , β : B × L2 → V , these mappings will be
used to construct an isomorphism ϕ : M→ V .

For every concept 〈g, f〉 ∈ M the mapping ϕ is defined as follows:

ϕ(〈g, f〉) = sup{β(b, g(b)) | b ∈ B}

Firstly, let us introduce another mapping ψ : V → M, which will be proven
to be the inverse of ϕ. This ψ is defined for each v ∈ V as

ψ(v) = 〈gv, fv〉

where the functions gv and fv are defined, for each b ∈ B and a ∈ A, as in
Proposition 17(items 5 and 6). This proposition will be used to show that ψ is
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well-defined, that is, 〈gv, fv〉 is a concept. We have only to take into account
that by items 3 and 5, vgv and v coincide; therefore

gv
↑(a) = sup{x ∈ L1 | vgv v α(a, x)} (Proposition 17(3))

= sup{x ∈ L1 | v v α(a, x)} (vgv = v)

= fv(a) (Proposition 17(5))

The equality fv
↓ = gv is proved analogously.

In order to prove ψ ◦ ϕ = id, note that given a concept 〈g, f〉, the equality
ψ(ϕ(〈g, f〉)) = 〈g, f〉 holds if f = fϕ(〈g,f〉). But this is obvious, since by defini-
tion of ϕ and Proposition 17(3) we have that vg = sup{β(b, g(b)) | b ∈ B} =
ϕ(〈g, f〉); moreover, taking into account that g↑ = f , we can write

f(a) = g↑(a) = sup{x ∈ L1 | vg v α(a, x)}
= sup{x ∈ L1 | ϕ(〈g, f〉) v α(a, x)}
= fϕ(〈g,f〉)(a)

Proposition 17(5) directly implies that the other composition gives the iden-
tity, since v = sup{β(b, gv(b)) | b ∈ B} = ϕ(〈gv, fv〉) = ϕ(ψ(v)) for all v ∈ V .

Once we have that ϕ is a bijection, it is sufficient to prove that it preserves and
reflects the ordering, see [9, Thm. 2.19], in order to prove that it is a lattice
isomorphism.

The proof of ϕ being order-preserving is a straightforward consequence of its
definition and Proposition 17(1). Consider 〈g1, f1〉, 〈g2, f2〉 in M such that
〈g1, f1〉 ≤ 〈g2, f2〉, we have that g1 ≤ g2 and therefore β(b, g1(b)) v β(b, g2(b))
for all b ∈ B, since β is order-preserving in the second argument. Thus, by
definition of ϕ, we obtain that:

ϕ(〈g1, f1〉) v ϕ(〈g2, f2〉)

To prove that ϕ reflects the ordering, we directly show that its inverse mapping
ψ is order-preserving as well. Consider v1 v v2, and let us show that gv1 ≤ gv2 .

Given b ∈ B, we obviously have that

{y ∈ L2 | β(b, y) v v1} ⊆ {y ∈ L2 | β(b, y) v v2}

now, applying suprema

gv1(b) = sup{y ∈ L2 | β(b, y) v v1}
≤ sup{y ∈ L2 | β(b, y) v v2} = gv2(b)
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This finishes the proof that M and V are isomorphic.

Conversely, given an isomorphism ϕ : M → V , let us show that V repre-
sents M.

To begin with, the mappings α : A × L1 → V and β : B × L2 → V can be
naturally defined, for every a ∈ A, b ∈ B, x ∈ L1 and y ∈ L2, as follows:

α(a, x) =ϕ(〈@x
a
↓,@x

a
↓↑〉) β(b, y) = ϕ(〈@y

b
↑↓,@y

b
↑〉)

Firstly, let us show that α[A × L1] is infimum-dense. By definition, we have
to prove that given v ∈ V there exists K ⊆ A× L1 such that v = inf(α[K]).

Since ϕ is an isomorphism, we will prove the corresponding statement onM.
Consider 〈g, f〉 = ϕ−1(v) ∈M, and define K = {(a, f(a)) | a ∈ A} ⊆ A× L1,
then it is sufficient to prove that

〈g, f〉 = inf{〈@f(a)
a

↓
,@f(a)

a

↓↑〉 | a ∈ A}

which, moreover, reduces to prove the corresponding statement on one of the

components of the concept. We will prove that g(b) = inf{@f(a)
a

↓
(b) | a ∈ A}.

By Lemma 19, we have that @f(a)
a

↓
(b) = R(a, b)↖b f(a), thus

inf{@f(a)
a

↓
(b) | a ∈ A} = inf{R(a, b)↖b f(a) | a ∈ A} = f ↓(b) = g(b)

Similarly, we can prove that β[B × L2] is supremum-dense.

It only remains to prove that given a ∈ A, b ∈ B, x ∈ L1 and y ∈ L2, we have
that β(b, y) v α(a, x) if and only if x&b y ≤ R(a, b).

By the definition of α and β above, and the fact that ϕ is order-isomorphism,
we have that β(b, y) v α(a, x) is equivalent to 〈@y

b
↑↓,@y

b
↑〉 ≤ 〈@x

a
↓,@x

a
↓↑〉 and,

in particular, to @y
b
↑↓ �2 @x

a
↓. From the properties of Galois connection and

Lemma 19 we obtain the following chain of inequalities

y = @y
b(b) �2 @y

b
↑↓(b) �2 @x

a
↓(b) = R(a, b)↖b x

now, from the properties of adjoint triple we obtain

x&b y ≤ R(a, b)

For the other implication, assume x&b y ≤ R(a, b) and let us prove @x
a �1

@y
b
↑, since this implies @y

b
↑↓ �2 @x

a
↓ which turns out to be equivalent to the

inequality β(b, y) v α(a, x).
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Consider a′ ∈ A with a′ 6= a, then @x
a(a
′) = ⊥1 and therefore @x

a(a
′) �1 @y

b
↑(a′)

holds. Otherwise, if a′ = a, as x&b y ≤ R(a, b) applying the adjoint property
and Lemma 19 we obtain that:

@x
a(a) = x �1 R(a, b)↙b y = @y

b
↑(a) 2

Just a quick note regarding an improvement of a previous representation theo-
rem: let us notice that, in Proposition 17 it is proved directly that the function
α is order-reversing and β is order-preserving in their second argument, hence
these hypotheses, which are explicitly required for the representation theorem
of [17], can be dropped.

Let us finish this section with a further proposition, stated without proof
because it is just an easy calculation, which relates the behaviour of the map-
pings α and β, and shows that the construction based on β done in the proof of
the fundamental theorem could have been done essentially in the same terms
using α.

Proposition 21 Given a multi-adjoint concept lattice (M,�), and a concept
〈g, f〉 ∈ M and two mappings β : B × L2 →M, α : A× L1 →M, where β is
(M, R)-related to α, we have that:

sup{β(b, g(b)) | b ∈ B} = inf{α(a, f(a)) | a ∈ A}

5 A worked example

Let us consider that we have written a scientific paper and we still have to
decide which journal the paper will be submitted to. According to the main
topics of the paper, a number of journals are considered as potential target.
The target journal will be chosen according to several parameters appearing
in the ISI Journal Citation Report.

The sets of attributes and objects are the following:

A= {Impact Factor, Immediacy Index,Cited Half-Life,Best Position}
B= {AMC,CAMWA,FSS, IEEE-FS, IJGS, IJUFKS, JIFS}

where the “best position” means the best quartile of the different categories
under which the journal is included, and the journals considered are Applied
Mathematics and Computation (AMC), Computer and Mathematics with Ap-
plications (CAMWA), Fuzzy Sets and Systems (FSS), IEEE transactions on
Fuzzy Systems (IEEE-FS), International Journal of General Systems (IJGS),
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International Journal of Uncertainty Fuzziness and Knowledge-based Systems
(IJUFKS), Journal of Intelligent and Fuzzy Systems (JIFS).

We will consider a multi-adjoint frame with three different lattices: one for
handling the information taken from the JCR, which is rounded to the second
decimal digit; a second one to handle information about the attributes, in
which we estimate steps of 0.05 in order to distinguish to appreciate a quali-
tative difference; and a third one, used to set the different levels of preference
of the journal, which is considered to be of 0.125 (hence the unit interval is
divided into eight equal pieces)

Let ([0, 1]20, [0, 1]8, [0, 1]100,≤,≤,≤,&∗P ,&∗L) be a multi-adjoint frame where 4

&∗P and &∗L are the discretisations of the product and  Lukasiewicz conjunctors
respectively, defined as in Example 3.

The corresponding residuated implications↙∗P ,↙∗L : [0, 1]100×[0, 1]8 → [0, 1]20

and ↖∗P ,↖∗L : [0, 1]100 × [0, 1]20 → [0, 1]8 are defined as:

b↙∗P a =
b20 ·min{1, b/a}c

20
b↖∗P c =

b8 ·min{1, b/c}c
8

b↙∗L a =
b20 ·min{1, 1 + b− a}c

20
b↖∗L c =

b8 ·min{1, 1 + b− c}c
8

where b c is the floor function.

The fuzzy relation between them, R : A×B → P , is the normalization to the
unit interval [0, 1] of the information in the JCR, and can be seen in Table 1.

Table 1
Fuzzy relation between the objects and the attributes.

R AMC CAMWA FSS IEEE-FS IJGS IJUFKS JIFS

Impact Factor 0.34 0.21 0.52 0.85 0.43 0.21 0.09

Immediacy Index 0.13 0.09 0.36 0.17 0.1 0.04 0.06

Cited Half-Life 0.31 0.71 0.92 0.65 0.89 0.47 0.93

Best Position 0.75 0.5 1 1 0.5 0.25 0.25

The problem of choosing a suitable journal to submit depends on the definition
of “suitability” we have in mind. For example, a fuzzy notion of suitability
can be defined as a journal with high impact factor, relatively big immediacy
index, more than 5.5 years of half-life and with not a bad position in the
listing of the category. Such a notion of suitability can be defined, in the

4 Recall that [0, 1]m denotes a regular partition of [0, 1] into m pieces.
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context (A,B,R, σ) where σ(b) = &P for every b ∈ B, by the fuzzy subset
f : A→ [0, 1] below:

f(Impact Factor) = 0.75, f(Immediacy Index) = 0.3,

f(Cited Half-Life) = 0.55, f(Best Position) = 0.5

Now, the problem consists in finding a multi-adjoint concept which represents
the suitable journal as defined by the fuzzy set f .

As any concept gets completely determined by any of its components, it is
sufficient to compute the component f ↓ which, in addition, will provide infor-
mation about the suitability (modulo f) of every journal. As explained in the
previous sections, the required computations are as follows:

f ↓(AMC) = inf{R(a,AMC)↖∗P f(a) : a ∈ A}
= inf{0.34↖∗P 0.75, 0.13↖∗P 0.3, 0.31↖∗P 0.55, 0.75↖∗P 0.5}

=
b8 ·min{1, 0.13/0.3}c

8
= 0.375

For the rest of the journals, the computation is similar, obtaining the following
results

f ↓(AMC) = 0.375 f ↓(CAMWA) = 0.25 f ↓(FSS) = 0.625

f ↓(JIFS) = 0 f ↓(IJGS) = 0.25 f ↓(IJUFKS) = 0.125

f ↓(IEEE-FS) = 0.5

based on which, the most suitable journal is FSS. Note that the use of this
particular definition for “suitability” does not directly select the one with
highest impact factor, despite being the property with the highest weight,
since other attributes are taken into account as well.

One important feature of the multi-adjoint framework is that it allows to
associate different adjoint triples to each object (resp. attribute). For instance,
if we would like to submit preferably to a journal listed under the Artificial
Intelligence category (i.e. IEEE-FS, IJUFKS, and JIFS), the multi-adjoint
framework allows for modifying the underlying context in order to assign a
different adjoint triple to the journals we are more interested in.

We will consider the context (A,B,R, σ′), where σ′(b) = &P for every b ∈ B1

and σ′(b) = &L for every b ∈ B2, where B1 = {AMC,CAMWA,FSS, IJGS}
and B2 = {IEEE-FS, IJUFKS, JIFS}.
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This particular selection of σ′ allows for using the  Lukasiewicz implication
in order to compute the values for journals in the AI category, hence the
definition of f ↓ is modified considering different cases:

f ↓(b1) = inf{R(a, b1)↖∗P f(a) : a ∈ A} for b1 ∈ B1

f ↓(b2) = inf{R(a, b2)↖∗L f(a) : a ∈ A} for b2 ∈ B2

The final result that we obtain in this case is

f ↓(AMC) = 0.375 f ↓(CAMWA) = 0.25 f ↓(FSS) = 0.625

f ↓(JIFS) = 0.25 f ↓(IJGS) = 0.25 f ↓(IJUFKS) = 0.375

f ↓(IEEE-FS) = 0.75

which states that the journal that better suits our needs is IEEE-FS.

It is important to note that the mere assignment of ‘greater’ operators to a
subset of objects does not imply that the better selection is necessarily in this
subset. For instance, consider the following modification f1 of the notion of
suitability:

f1(Impact Factor) = 0.65, f1(Immediacy Index) = 0.45,

f1(Cited Half-Life) = 0.55, f1(Best Position) = 0.5

The results associated to this f1 are shown below

f ↓1 (AMC) = 0.25 f ↓1 (CAMWA) = 0.125 f ↓1 (FSS) = 0.75

f ↓1 (JIFS) = 0.375 f ↓1 (IJGS) = 0.125 f ↓1 (IJUFKS) = 0.5

f ↓1 (IEEE-FS) = 0.625

Therefore, in spite of having increased the preference for journals in the AI
category, for this particular definition of suitable journal FSS remains as the
best journal, and IEEE-FS is the second best suited.

6 Conclusions and Future Work

Multi-adjoint concept lattices have been introduced as a generalisation of dif-
ferent existing approaches to fuzzified and/or generalised versions of the clas-
sical concept lattice. One of the interesting features is that in a multi-adjoint
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context each object (or attribute) has an associated implication and, thus,
subgroups with different degrees of preference can be easily established.

The proof of the representation theorem for multi-adjoint concept lattices has
been presented in a more structured and readable way than that given in [18]
for the generalized concept lattice; the idea has been to work with our adjoint
triples in the same way that [5]. Moreover, the multi-adjoint concept lattice has
been shown to embed the generalised concept lattice as well as other different
fuzzy extensions of the classical concept lattice [10], such as the fuzzy concepts
of [7] and of [5] for the case of {0, 1}-equality and crisp ordering.

Continuing with the comparison of the multi-adjoint frame with other fuzzy
approaches, one future work would be to study the relationship between the
concepts given in [11]. Another point to take into account is the introduction
of fuzzy orderings in order to completely embed the fuzzy concept lattice of [5].
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