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1. Introduction

There are some multimodal logics for order of magnitude reasoning dealing with the
relations of negligibility and comparability, see for instance [Balbiani, 2016, Burrieza
and Ojeda-Aciego, 2005, Golińska-Pilarek and Muñoz-Velasco, 2009]; however, as far
as we know, the only published reference on the notion of closeness in a logic-based
context is [Burrieza et al., 2010], where the notions of closeness and distance are treated
using Propositional Dynamic Logic, and their definitions are based on the concept of
qualitative sum; specifically, in [Burrieza et al., 2010] two values are assumed to be close
if one of them can be obtained from the other by adding a small number, and small
numbers are defined as those belonging to a fixed interval.

In this work, we consider a new logic-based alternative to the notion of closeness in
the context of multimodal logics. Our notion of closeness stems from the idea that two
values are considered to be close if they are inside a prescribed area or proximity interval.
This idea applies to the situations described in the previous paragraph, although it may
differ from other intuitions based on distances since it leads to an equivalence relation,
particularly, transitivity holds. Neither reflexivity nor symmetry of closeness generate
any discussion among the different authors, but transitivity does. The original notion of
closeness given in [Raiman, 1991] allows a certain form of transitivity which he had to
tame by using a number of arbitrary limitations to avoid an unrestricted application of
chaining. This arbitrariness was criticized in [Ali et al., 2003], in which a fuzzy set-based
approach for handling relative orders of magnitude was introduced. It is remarkable
to note that the criticism was made against the arbitrary limitations on chaining the
relation, or the impossibility of considering suitable modified versions of transitivity,
but not on transitivity per se.

The limitations stated above do not apply to our approach, which can be seen as
founded on the notion of granularity as given in [Dubois et al., 2002], which was already
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suggested in [Zadeh, 1996]. The main difficulties in accepting closeness as a transitive
relation arise in a distance-based interpretation because, then, its unrestricted use would
collapse the relation since all the elements would be close. As stated above, our notion
will be based not on distance but on membership to a certain element of a given set of
proximity intervals, since our driving force is to define an abstract framework for dealing
with natural or artificial barriers, so that the closeness relation is considered “locally.”
In order to clarify this idea, assume the speed limit is 100 km/h and somebody is
detected by the radar driving at a higher speed v; then the driver is fined with an
amount which depends on whether v belongs to, say, (105, 120], (120, 140] or (140,+∞);
in this example, our approach reflects the fact that two velocities can be considered to
be close if and only if they are subject to the same fine, in other words, transitivity of
the closeness relation is confined to elements in the same proximity interval.

On the other hand, the negligibility notion provided in this paper is a slight gener-
alization of the one given in [Burrieza et al., 2006] where, following the line of other
classical approaches, for instance [Travé-Massuyès et al., 2005], the class of 0 is con-
sidered to be just a singleton. This choice makes little sense in a qualitative approach,
since considering the class of 0 to be just a singleton would require to have measures
with infinite precision. Instead, we consider the qualitative class inf of infinitesimals
which, of course, will be all close to each other. Note that these infinitesimals will be
interpreted as numbers indistinguishable from 0 in the sense that their difference cannot
be measured, not in the sense of hyperreal numbers.

In this work, we introduce a multimodal logic for order of magnitude reasoning which
manages the notions of closeness and negligibility, then an axiom system is introduced
which is proved to be sound and complete.

2. Preliminary definitions

We will consider a subset of real numbers (S, <) divided into the following qualitative
classes:

nl = (−∞,−γ) ps = (+α,+β]

nm = [−γ,−β) inf = [−α,+α] pm = (+β,+γ]

ns = [−β,−α) pl = (+γ,+∞)

Note that all the intervals are defined in terms of the landmarks α, β, γ ∈ S and are
considered relative to S.

The labels correspond to “negative large” (nl), “negative medium”(nm), “negative
small”(ns), “infinitesimals”(inf), “positive small” (ps), “positive medium” (pm) and
“positive large” (pl). It is worth to note that this classification is slightly more general
than the standard one [Travé-Massuyès et al., 2005], since the qualitative class contain-
ing the element 0, i.e. inf, needs not be a singleton; this allows for considering values
very close to zero as null values in practice, which is more in line with a qualitative
approach where accurate measurements are not always possible.

We will consider each qualitative class to be divided into disjoint intervals called
proximity intervals, as shown in Figure 1. The qualitative class inf is itself one proximity
interval.

Definition 1. Let (S, <) be the set of numbers introduced above.

• An r-proximity structure is a finite set I(S) = {I1, I2, . . . , Ir} of intervals in S,
such that:
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−γ γ−β β−α α

nl nm ns inf ps pm pl

Figure 1. Proximity intervals.

(1) For all Ii, Ij ∈ I(S), if i 6= j, then Ii ∩ Ij = ∅.
(2) I1 ∪ I2 ∪ · · · ∪ Ir = S.
(3) For all x, y ∈ S and Ii ∈ I(S), if x, y ∈ Ii, then x, y belong to the same

qualitative class.
(4) inf ∈ I(S).

• Given a proximity structure I(S), the binary relation of closeness c is defined, for
all x, y ∈ S, as follows: x cy if and only if there exists Ii ∈ I(S) such that x, y ∈ Ii.

Notice that, by definition, the number of proximity intervals is finite, regardless of
the cardinality of the set S. This choice is justified by the applications (the number of
values we can consider is always finite) and the nature of the measuring devices that
after reaching a certain limit, they do not distinguish among nearly equal amounts; for
instance, consider the limits to represent numbers in a pocket calculator, thermometer,
speedometer, etc.

The informal notion of negligibility we will use in this paper is the following: x is said
to be negligible with respect to y if and only if either (i) x is infinitesimal and y is not,
or (ii) x is small (but not infinitesimal) and y is sufficiently large. Formally:

Definition 2. The binary relation of negligibility n is defined on (S, <) as x n y if and
only if one of the following situations holds:

(i) x ∈ inf and y /∈ inf,

(ii) x ∈ ns ∪ ps and y ∈ nl ∪ pl.

3. A logic for closeness

In this section, we will use as special modal connectives
−→
� and

←−
� to deal with the usual

ordering <, so
−→
�A and

←−
�A have the informal readings: A is true for all numbers greater

than the current one and A is true for all numbers less than the current one, respectively.
Two other modal operators will be used, �c for closeness, where the informal reading of
�c A is: A is true for all numbers close to the current one, and �n for negligibility, where
�n A means A is true for all numbers that are negligible with respect to the current onee.

The alphabet of the language L(MQ)P is defined by using a stock of atoms or
propositional variables, V, the classical connectives ¬,∧,∨ and →; the constants for
milestones α−, α+, β−, β+, γ−, γ+; a finite set C of constants for proximity intervals,

C = {c1, . . . , cr} 1; the unary modal connectives
−→
� ,
←−
� , �n , �c , and the parentheses ‘(’

and ‘)’. We define the formulas of L(MQ)P as follows:

A = p | ξ | ci | ¬A | (A ∧A) | (A ∨A) | (A→ A) | −→�A | ←−�A | �n A | �c A

where p ∈ V, ξ ∈ {α+, α−, β+, β−, γ+, γ−} and ci ∈ C. In order to refer to any constant
for positive milestones as α+ we will use ξ+ and for negative ones as β− we will use ξ−.

1There are at least as many elements in C as qualitative classes.
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The mirror image of a formula A is the result of replacing in A each occurrence of−→
� ,
←−
� , α+, β+ and γ+ respectively by

←−
� ,
−→
� , α−, β− and γ− and reciprocally. We

will use the symbols
−→
♦ ,
←−
♦ ,♦c ,♦n as abbreviations, respectively, of ¬−→�¬, ¬←−�¬, ¬�c ¬ and

¬�n ¬. Moreover, we will introduce nl, . . . pl as abbreviations for qualitative classes, for

instance, ps for (
←−
♦α+ ∧

−→
♦β+) ∨ β+. By means of qc we denote any element of the set

{nl, nm, ns, inf, ps, pm, pl}.
The cardinality r of the set C of constants for proximity intervals will play an important

role since it, somehow, encodes the granularity of the underlying logic. This implies that,
actually, we are introducing a family of logics which depend parametrically on r.

Definition 3. A multimodal qualitative frame for L(MQ)P (a frame, for short) is a
tuple Σ = (S,D, <, I(S),P), where:

(1) (S, <) is an ordered subset of real numbers.
(2) D = {+α,−α,+β,−β,+γ,−γ} is a set of designated points in S satisfying −γ <
−β < −α < +α < +β < +γ.

(3) I(S) is an r-proximity structure.
(4) P is a bijection (called proximity function), P : C −→ I(S), that assigns to each

proximity constant c a proximity interval.

Definition 4. Let Σ be a frame for L(MQ)P , a multimodal qualitative model on Σ (a
MQ-model, for short) is an ordered pair M = (Σ, h), where h is a meaning function
(or, interpretation) h : V −→ 2S. Any interpretation can be uniquely extended to the set
of all formulas in L(MQ)P (also denoted by h) by means of the usual conditions for the
classical Boolean connectives and the following conditions:

h(
−→
�A) = {x ∈ S | y ∈ h(A) for all y such that x < y}

h(
←−
�A) = {x ∈ S | y ∈ h(A) for all y such that y < x}

h(�c A) = {x ∈ S | y ∈ h(A) for all y such that x c y}

h(�n A) = {x ∈ S | y ∈ h(A) for all y such that x n y}

h(α+) = {+α} h(β+) = {+β} h(γ+) = {+γ}

h(α−) = {−α} h(β−) = {−β} h(γ−) = {−γ}

h(ci) = {x ∈ S | x ∈ P(ci)}

The definitions of truth, satisfiability and validity are the usual ones.

Now, we consider the axiom system MQP for the language L(MQ)P , consisting of
all the tautologies of classical propositional logic together with the following axiom
schemata and rules of inference:

For white connectives

K1
−→
�(A→ B)→ (

−→
�A→ −→�B)

K2 A→ −→�
←−
♦A

K3
−→
�A→ −→�−→�A

K4
(−→
�(A ∨B) ∧ −→�(

−→
�A ∨B) ∧ −→�(A ∨ −→�B)

)
→
(−→
�A ∨ −→�B

)
For constants ξ ∈ {α+, β+, γ+, α−, β−, γ−}

c1
←−
♦ ξ ∨ ξ ∨

−→
♦ ξ

c2 ξ → (
←−
�¬ξ ∧ −→�¬ξ)

c3 γ− →
−→
♦β−

c4 β− →
−→
♦α−

c5 α− →
−→
♦α+

c6 α+ →
−→
♦β+
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c7 β+ →
−→
♦ γ+

For proximity constants (for all i, j ∈ {1, . . . , n})

p1
∨n
i=1 ci

p2 ci → ¬cj (for i 6= j)

p3 (
←−
♦ ci ∧

−→
♦ ci)→ ci

p4
←−
♦ ci ∨ ci ∨

−→
♦ ci

Mixed axioms (for all i ∈ {1, . . . , n})

m1 (ci ∧ qc)→
(←−
�(ci → qc) ∧ −→�(ci → qc)

)
m2 (ci ∧ inf)→

(←−
�(inf→ ci) ∧

−→
�(inf→ ci)

)
m3 �c A↔

(
A ∧

∨r
i=1

(
ci ∧
←−
�(ci → A) ∧ −→�(ci → A)

))
m4 �n A↔

((
inf→

(←−
�(¬inf→ A) ∧ −→�(¬inf→ A)

))
∧(

(ns ∨ ps)→
(←−
�(nl→ A) ∧ −→�(pl→ A)

)))
The mirror images of K1, K2 and K4 are also considered as axioms.

The intuitive meaning of the previous axioms is the following: K1-K4 (and their
mirror images) constitute a fragment of basic linear-time temporal logic; c1 and c2
state the existence and the unicity of the milestones in a frame, respectively; c3-c7
state the relative ordering of these milestones. Axioms p1 and p2 state the existence
and unicity, respectively, of proximity intervals; p3 states that all points denoted by a
proximity constant form an interval; p4 states that every proximity constant denotes
some proximity interval. m1 states that the length of a qualitative class qc fully covers
a given proximity interval. m2 is specific to deal with inf, and states that this class
is totally covered by a proximity interval (in combination with m1, this axiom implies
that inf constitutes itself a proximity interval). m3 states that �c A is true in x if and
only if A is true in all the points which are close to x, namely, in all the points belonging
to the same proximity interval labeled by some proximity constant ci. m4 specifies �n in
terms of the properties of the negligibility relation in Definition 2. The fact that m3 and
m4 enable the representation of closeness and negligibility in terms of white connectives
and constants allows us to use, from now on, only white connectives and constants.

Rules of inference:

(MP) Modus Ponens for →.

(N
−→
�) If ` A then ` −→�A.

(N
←−
�) If ` A then ` ←−�A.

The syntactical notions of theorem and proof for MQP are defined as usual.

4. Completeness

Soundness is straightforward, since it is easy to check that all the axioms are valid
formulas and the inference results preserve validity. In order to prove the completeness,
we will follow the step-by-step method, which is a Henkin-style proof, see [Burgess,
1984]. The idea is to show that for any consistent formula A, a model for A can be built,
and this is done by successive finite approximations.
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It is worth to note that, although the spirit of the completeness proof is to follow a
well-known method, the actual construction of the successive finite approximations has
a number of particular problems, mainly related to the need of the proximity functions
within a frame.

4.1 Preliminary results and definitions

In this section, we introduce a number of lemmas about maximal consistency which
will be needed late, together with the specific notions for the actual application of the
step-by-step method.

The notions of consistency and maximal consistency for MQP are the usual ones, and
some familiarity with the basic properties of maximal consistent sets (mc-sets) will be
assumed; MC will denote the set of all mc-sets of formulas. The following definition
introduces two relations between mc-sets:

Definition 5. The relations B and ∼ are defined on MC as follows:

• Γ1 B Γ2 if and only if {A | −→�A ∈ Γ1} ⊆ Γ2.
• Γ1 ∼ Γ2 if and only if Γ1 B Γ2 or Γ1 = Γ2 or Γ2 B Γ1.

The proofs of the following lemmas can be obtained directly from the axioms and the
definitions.

Lemma 6.

(1) Γ1 B Γ2 if and only if {A | ←−�A ∈ Γ2} ⊆ Γ1.

(2) Γ1 B Γ2 iff {
−→
♦A | A ∈ Γ2} ⊆ Γ1 iff {

←−
♦A | A ∈ Γ1} ⊆ Γ2.

(3) B is a transitive relation on MC.
(4) If Γ1 B Γ2 and Γ1 B Γ3, then Γ2 ∼ Γ3, for all Γ1,Γ2,Γ3 ∈MC.
(5) If Γ2 B Γ1 and Γ3 B Γ1, then Γ2 ∼ Γ3, for all Γ1,Γ2,Γ3 ∈MC.

The following lemma is specific; its proof is straightforward from the axioms for prox-
imity constants.

Lemma 7.

(1) Given Γ ∈MC there is exactly one proximity constant c ∈ C such that c ∈ Γ.
(2) For all Γi ∈MC and c ∈ C, if Γ1 B Γ2 B Γ3 and c ∈ Γ1,Γ3, then c ∈ Γ2.

Lemma 8 (Lindenbaum Lemma). Any consistent set of formulas in MQP can be ex-
tended to an mc-set in MQP .

Lemma 9. Assume Γ1 ∈MC. Then:

(1) If
−→
♦A ∈ Γ1, then there exists Γ2 ∈MC such that Γ1 B Γ2 and A ∈ Γ2.

(2) If
←−
♦A ∈ Γ1, then there exists Γ2 ∈MC such that Γ2 B Γ1 and A ∈ Γ2.

The specific construction of the successive approximations of the required model for
a consistent formula A forces us to consider the following weaker version of the notion
of frame:

Definition 10. Given a denumerable infinite set S, a partial frame is a tuple Σ =
(S,D, <, I(S),P) where S is a subset of S, D is a set of designated points in S, < is a
total strict ordering on S, I(S) is a proximity structure, and P : C → I(S) is a partial
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bijective function1 where C is the set of proximity constants.
The set of all partial frames will be denoted by ΞS .

Remark. Note that partial frames satisfy the conditions in Definition 3, with the ex-
ception that P is a partial bijective function.

As usual in the step-by-step method, we introduce now the definition of trace and
conditional associated (in this case) to a partial frame.

Definition 11. Let Σ = (S,D, <, I(S),P) be a partial frame.

(1) A trace of Σ is a function fΣ : S −→MC.
(2) A trace of Σ, fΣ, is called:

• Coherent if it satisfies for all x, y ∈ S:
(a) ξ ∈ fΣ(ξ) 1

(b) If x < y, then fΣ(x) B fΣ(y)
(c) Let ci ∈ C and I ∈ I(S). If ci ∈ fΣ(x) and x ∈ I, then P(ci) = I.

• Full if it is coherent and, for all formulas A, and all x ∈ S, it satisfies the
following conditions:

(a) if
−→
♦A ∈ fΣ(x), there exists y such that x < y and A ∈ fΣ(y)

(b) if
←−
♦A ∈ fΣ(x), there exists y such that y < x and A ∈ fΣ(y)

The expressions (a) (resp., (b)) are called prophetic (resp., historic) conditionals for

fΣ and x. A prophetic conditional is said to be active if
−→
♦A ∈ fΣ(x), but there is no y

such that x < y and A ∈ fΣ(y); otherwise, the conditional is said to be exhausted. For
conditionals of type historic the definitions are similar.

The trace lemma below follows easily by induction on the complexity of A.

Lemma 12 (Trace lemma). Let fΣ be a full trace of a frame Σ. Let h be an interpretation
assigning to each propositional variable p the set h(p) = {x ∈ S | p ∈ fΣ(x)}. Then, for
any formula A we have h(A) = {x ∈ S | A ∈ fΣ(x)}.

4.2 Step-by-step method

We have just introduced the necessary technical terms in order to formally state the
different steps in the proof. The Trace Lemma 12 will provide the model of a consistent
formula A, but the application of the lemma requires a full trace of a frame Σ. Actually,
it is the construction of this frame, and its corresponding full trace, what is done in a
step-by-step manner, as given in the Exhausting Lemma below.

First of all, in order to start the step by step construction, we will consider an indexed
denumerable infinite set S = {xi | i ∈ N} whose elements will be used to build the
elements in a sequence of finite and partial frames {Σn}n∈N.

The initial partial frame and its trace are built upon mc-sets containing the formula A
and the milestones. As, in principle, the trace in this initial step need not be full, a new
step has to be considered. Each of these steps adds a new point where certain previously
active conditional is exhausted. The countable union of these finite and partial frames
will be the desired frame Σ, and the union of their respective traces will be the full trace
fΣ.

The following lemma inductively states how to build the next step Σn+1 from Σn

in the previously sketched construction. It is worth to state that the main technical

1This means that the restriction of P to its domain is a bijection.
1We are abusing the notation by using the metasymbol ξ to refer to the milestones indistinctly in the syntax and

in the semantics. This convention will be applied hereafter whenever no ambiguity occurs.
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difficulty in every step is to prove that the resulting construction actually satisfies the
definition of partial frame given above; essentially, this amounts to checking that the
properties of the proximity structure (see Definition 1) still hold in the new setting.

Lemma 13 (Exhausting lemma). Let fΣ be a coherent trace of a finite and partial
frame Σ, and suppose that there is a conditional for fΣ which is active. Then, there is
a finite and partial frame Σ′, extending Σ, and a coherent trace fΣ′ extending fΣ, such
that this conditional for fΣ′ is exhausted.

Proof. Let Σ = (S,D, <, I(S),P) be a frame, fΣ a coherent trace of a finite and partial

frame Σ and x ∈ S. Consider an active prophetic conditional such that we have
−→
♦A ∈

fΣ(x), but there exists no y such that x < y and A ∈ fΣ(y). By Lemma 9(1), there
exists Γ such that fΣ(x) B Γ and A ∈ Γ. We define an extension Σ′ of Σ containing
a new point y ∈ S r S to which Γ is assigned to preserve coherence; that is, we have
S′ = S ∪ {y} and fΣ′ = fΣ ∪ {(y,Γ)}. Now we reason by induction on the number l of
successors of x in S:

Base case : If l = 0, then +γ ≤ x and then y is introduced in pl. By Lemma 7(1) there
are proximity constants c, cx such that c ∈ Γ and cx ∈ fΣ(x) and they are unique. Given
I ∈ I(S), consider x ∈ I. Now we have two situations:

If c = cx We define
• I(S′) = (I(S) r {I}) ∪ {I ′}, where I ′ = I ∪ {y}
• <′ =< ∪{(x, y)} ∪ {(z, y) | z < x}
• P ′ = (P r {(c, I)}) ∪ {(c, I ′)}

Now we prove that the structure Σ′ with the new definitions above belongs to the
class of partial frames ΞS .

We start with the conditions 1-4 of Definition 1 to show that I(S′) is a proximity
structure. The proof of conditions 1 and 2 is immediate. With respect to condition
3, we only have to show that y belongs to the same qualitative class than x; if
+γ < x, since x <′ y, then both x, y ∈ pl; on the other hand, the case x = +γ
cannot hold since, by coherence of fΣ, we have γ+ ∈ fΣ(x) and as fΣ(x) B Γ, then
←−
♦ γ+ ∈ Γ; now, we have γ+ ∧ c ∈ fΣ(x), thus by axiom m1 we have

−→
�(c→ pm) ∈

fΣ(x) and, taking into account fΣ(x) B Γ once again, we obtain pm ∈ Γ reaching

a contradiction with
←−
♦ γ+ ∈ Γ. For condition 4, just note that inf is the same

class in Σ and Σ′, hence the result. Finally, the set D is the same in Σ and Σ′, <′

is clearly an strict order relation on S′ so defined, and P ′ is a partial bijection by
its construction.

Property (b) of the coherence of fΣ′ follows from Lemma 6(3), properties (a)
and (c) are immediate. This same observation applies to the coherence of all the
following cases.

If c 6= cx, the extended structure is the following:
• I(S′) = I(S) ∪ {I ′}, where I ′ is the singleton interval [y]
• <′ =< ∪{(x, y)} ∪ {(z, y) | z < x}
• P ′ = P ∪ {(c, I)}.

Inductive case : Assume the result is true for l − 1.
Let xs be the immediate successor of x. If

−→
♦A ∈ fΣ(xs) we reduce to the induction

hypothesis l−1 by replacing x by xs; otherwise, ¬A∧−→�¬A ∈ fΣ(xs), hence Γ B fΣ(xs).
Moreover, by Lemma 7(1) there are proximity constants c, cx, cxs such that c ∈ Γ, cx ∈
fΣ(x) and cxs ∈ fΣ(xs), and they are unique.

Now, we have to consider several cases:

(A) x, xs ∈ I for some I ∈ I(S). Then, by coherence of fΣ (Definition 11), we obtain
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y
c

A

xs

cxs

¬A ∧ −→�¬A

x
cx−→
♦A

-� I

Figure 2. Inductive Case (A)

y xsx

-� I ′

-�
I -� J

Figure 3. Inductive Case (b1)

P(cx) = P(cxs) = I and, as P is a bijection, cx = cxs . Now, since fΣ(x) B Γ B fΣ(xs),
we obtain cx = cxs = c by Lemma 7(2). Thus (see Fig. 2):

• I(S′) = (I(S) r {I}) ∪ {I ′}, where I ′ = I ∪ {y}
• <′=< ∪{(x, y), (y, xs)} ∪ {(z, y) | z < x} ∪ {(y, z) | xs < z}
• P ′ = (P r {(c, I)}) ∪ {(c, I ′)}

In order to prove that Σ′ belongs to the class ΞS we have just to prove the conditions
of Definition 1 for I(S′). Conditions 1 and 2 are obviously satisfied; for condition 3, as
x, xs ∈ I, then x, xs belong to the same qualitative class since Σ is in ΞS . Now y is
inserted between them, so it is easy to see by the construction that y belongs to the
same qualitative class as x and xs. For condition 4, provided that I ′ = I ∪ {y}, it is
obvious that inf is a proximity interval.

(B) x ∈ I and xs ∈ J for some I, J ∈ IS with I 6= J . This means, by coherence of fΣ

and bijectivity of P, that cx 6= cxs . Now, we have three subcases:

(b1) cx = c 6= cxs

(b2) cx 6= c = cxs

(b3) cx 6= c 6= cxs

The cases (b1) and (b2) are analogous, so we will just prove case (b1) (see Fig. 3).
Firstly, let us define Σ′ as in case (A) above; we just check that Σ satisfies the conditions
in Definition 1. Conditions 1 and 2 are immediate; for Condition 3, given a qualitative
class qc such that x ∈ qc, as x ∈ I ′ = I ∪ {y}, it is enough to show that y ∈ qc, and
we will consider the different the possibilities for x:

• It cannot be case that x = −α, since its successor xs would be less than or equal
to +α and I = J (contradiction).
• Moreover, x cannot be ξ, where ξ ∈ {+α,+β,+γ}: in effect, as cx = c, fΣ(ξ) =

fΣ(x) and ξ+ ∈ fΣ(ξ), then c ∧ ξ+ ∈ fΣ(x) and by theorem (c ∧ ξ+) → −→�¬c we

have
−→
�¬c ∈ fΣ(x).

Now, as fΣ(x) B Γ we finally obtain c /∈ Γ reaching a contradiction.
• If any other situation, obviously, y belongs to qc.

For condition 4, once again provided that I ′ = I ∪ {y}, it is obvious that inf is a
proximity interval.

In case (b3) (see Fig. 4), we introduce a new proximity interval K between I and J
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y xsx

-�
K-� I -� J

Figure 4. Inductive Case (b3)

consisting of a unique point y between x and xs as above. In this case, x is the upper
bound of the interval I and xs is the lower bound of the interval J . Thus, we define
I(S′) = I(S) ∪ {K}, where K = [y] (a singleton interval) and P ′ = P ∪ {(c,K)}.

It is easy to verify that Σ′ as defined is a partial frame. The proof of conditions 1,
2 and 3 of Definition 1 is immediate. With respect to condition 4, note that inf is the
same class in Σ and Σ′, because y /∈ inf, since x ∈ I and xs ∈ J and I 6= J , so these
points cannot be the extreme points of the interval [−α,+α].

The case for an active historic conditional is treated in a similar way.

Theorem 14 (Completeness). If A is valid formula of L(MQ)P , then A is a theorem
of MQP .

Proof. We prove that any consistent formula A of L(MQ)P is satisfiable.
In order to carry out the construction of a model for A, let us first consider the class

of frames ΞS of Definition 10.
Given an enumeration of formulas A0, A1, . . . , An, . . . of the language L(MQ)P , and

taking into account the set S = {xi | i ∈ N}, we can also give an enumeration to each
prophetic (historic) conditional.

Now, since A is consistent, there exists a mc-set Γ containing A. We will start with a
finite and partial frame Σ0 = (S0,D, <0, I(S0),P0) which is the basis of the construction
of the required frame, and a corresponding trace fΣ0

. By Lemma 7(1), we have that Γ
contains at most one of the constants α+, α−, β+, β−, γ+, γ−. Now, the construction of
Σ0 depends on whether Γ contains one constant or not:

• If none of the milestones are in Γ, we define Σ0 in a coherence-preserving way by
using the theorem nl ∨ nm ∨ ns ∨ inf ∨ ps ∨ pm ∨ pl.

Taking into account that Γ does not contain milestones, the previous disjunction
reduces in Γ to one of the following cases:

Case Reduces to

nl
−→
♦ γ−

nm
←−
♦ γ− ∧

−→
♦β−

ns
←−
♦β− ∧

−→
♦α−

inf
←−
♦α− ∧

−→
♦α+

Case Reduces to

ps
←−
♦α+ ∧

−→
♦β+

pm
←−
♦α+ ∧

−→
♦β+

pl
←−
♦ γ+

For instance, if
−→
♦ γ− ∈ Γ, then by using Lemma 9(1) and axioms c3-c7, there

exist Γ1, . . . ,Γ6 ∈ MC such that γ− ∈ Γ1, β− ∈ Γ2, α− ∈ Γ3, α+ ∈ Γ4, β+ ∈ Γ5,
γ+ ∈ Γ6, and Γ B Γ1 B Γ2 B Γ3 B Γ4 B Γ5 B Γ6. Moreover, by Lemma 7(1) and
theorem qc → ¬qc′ (for qc 6= qc′) there are constants c0 ∈ Γ, c1 ∈ Γ1, c2 ∈ Γ2,
c3 ∈ Γ3, c3 ∈ Γ4, c4 ∈ Γ5 and c5 ∈ Γ6, which are all different from each other. We
define Σ0 as follows:

– S0 = {x0,+α,−α,+β,−β,+γ,−γ}, where x0 ∈ S;

10
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– D = {+α,−α,+β,−β,+γ,−γ};
– <0 is the transitive closure of
{((x0,−γ), (−γ,−β), (−β,−α), (−α,+α), (+α,+β), (+β,+γ)};

– I(S0) = {[x0], [−γ], [−β], [−α,+α], [+β], [+γ]};
– P0 = {(c0, [x0]), (c1, [−γ]), (c2, [−β]), (c3, [−α,+α]), (c4, [+β]), (c5, [+γ])};

and the corresponding trace fΣ0
is defined by

fΣ0
= {(x0,Γ)}, (−γ,Γ1), (−β,Γ2), (−α,Γ3), (+α,Γ4), (+β,Γ5), (+γ,Γ6)},

which is clearly coherent.
The other cases are treated similarly.

• If Γ contains a milestone, we proceed similarly as in the previous case, obtaining
γ− ∈ Γ1, β− ∈ Γ2, α− ∈ Γ3, α+ ∈ Γ4, β+ ∈ Γ5, γ+ ∈ Γ6, where Γ coincides with
some Γi (1 ≤ i ≤ 6), and defining Σ0 as follows

– S0 = D = {+α,−α,+β,−β,+γ,−γ};
– <0 is the transitive closure of
{(−γ,−β), (−β,−α), (−α,+α), (+α,+β), (+β,+γ)};

– I(S0) = {[−γ], [−β], [−α,+α], [+β], [+γ]};
– P0 = {(c1, [−γ]), (c2, [−β]), (c3, [−α,+α]), (c4, [+β]), (c5, [+γ])};

and the corresponding trace fΣ0
is defined as

fΣ0
= {(−γ,Γ1), (−β,Γ2), (−α,Γ3), (+α,Γ4), (+β,Γ5), (+γ,Γ6)},

which is coherent.

The base case of the construction is the frame Σ0 defined above. Now, assume that
Σn = (Sn,D, <n, I(Sn),Pn) and fΣn

are defined. Then, we choose the first active con-
ditional in the enumeration and, by the Exhausting Lemma (Lemma 13), an extension
Σn+1 = (Sn+1,D, <n+1, I(S)n+1,Pn+1) ∈ ΞS of Σn and an extension fΣn+1

of fΣn
are

constructed such that this conditional for fΣn+1
is exhausted.

Now, consider Σ =
⋃

Σi to be the union of the countable sequence of finite and
partial frames Σi, and fΣ its trace defined as the union of the corresponding traces
fΣi

. Following the ideas in [Burgess, 1984], the construction of Σ can be proved to be a
frame (we have just to take into account that P is a total bijective function by axioms
p1 and p4, and the Exhausting Lemma) and fΣ is full. Thus, the consistent formula A
is satisfiable by applying the Trace Lemma (Lemma 12).

5. Conclusions and future work

We have presented a multimodal logic for qualitative reasoning to deal with the concept
of closeness. The idea is based on the so called proximity intervals. We proved that this
logic in sound and complete. In [Burrieza et al., 2016], we have shown some examples of
its expressivity in order to denote particular positions of the proximity intervals. As a
future work, we consider the study of the decidability and complexity of this logic and
to apply it to real scenarios.
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