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Abstract. There exists a direct relation between fuzzy rough sets and
fuzzy preorders. On the other hand, it is well known the existing paral-
lelism between Formal Concept Analysis and Rough Set Theory. In both
cases, Galois connections play a central role. In this work, we focus on
adjunctions (also named isotone Galois connections) between fuzzy pre-
ordered sets; specifically, we study necessary conditions that have to be
fulfilled in order such an adjunction to exist.
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1 Introduction

Adjunctions, together with their antitone counterparts (also called Galois con-
nections), have played an important role in computer science because its many
applications, both theoretical and practical, and in mathematics because of its
ability to link apparently very disparate worlds; this is why Denecke, Erné, and
Wismath stated in their monograph [12] that Galois connections provide the
structure-preserving passage between two worlds of our imagination.

Finding an adjunction (or Galois connection) between two fields is extremely
useful, since it provides a strong link between both theories allowing for mutual
synergistic advantages. The algebraic study of complexity of valued constraints,
for instance, has been studied in terms of establishing a Galois connection [10].

This work is focused on the study of adjunctions between fuzzy (pre-)ordered
structures. Both research topics are related to, on the one hand, the theory of
formal concept analysis (FCA) and, on the other hand, to rough set theory.
For instance, in[22] Pawlak’s information systems are studied in terms of Galois
connections and functional dependencies; there are also papers which develop
rough extensions of FCA by using rough Galois connections, see for instance [25];
there are works which study whether certain extensions of the upper and lower
approximation operators form a Galois connection [11].

There is a number of papers which study Galois connections from the ab-
stract algebraic standpoint [1, 2, 8, 9, 14, 15, 20] and also focusing on its appli-
cations [12, 13, 24, 26–29]. In previous works [18, 19], the authors studied the
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problem of defining a right adjoint for a mapping f : (A,≤A) → B from a par-
tially (pre)ordered set A to an unstructured set B. The natural extension of that
approach is to consider a fuzzy preordered set (A, ρA).

In this paper, we start the study of conditions which guarantee the existence
of adjunctions between sets with a fuzzy preorder. Specifically, we provide here a
set of necessary conditions for an adjunction exists between (A, ρA) and (B, ρB).

2 Preliminary Definitions and Results

The most usual underlying structure for considering fuzzy extensions of Ga-
lois connections is that of residuated lattice, L = (L,∨,∧,>,⊥,⊗,→). An L-
fuzzy set is a mapping from the universe set to the membership values structure
X : U → L where X(u) means the degree in which u belongs to X. Given X
and Y two L-fuzzy sets, X is said to be included in Y , denoted as X ⊆ Y , if
X(u) ≤ Y (u) for all u ∈ U .

An L-fuzzy binary relation on U is an L-fuzzy subset of U × U , that is
ρU : U × U → L, and it is said to be:

– Reflexive if ρU (a, a) = > for all a ∈ U .
– Transitive if ρU (a, b)⊗ ρU (b, c) ≤ ρU (a, c) for all a, b, c ∈ U .
– Symmetric if ρU (a, b) = ρU (b, a) for all a, b ∈ U .
– Antisymmetric if ρU (a, b) = ρU (b, a) = > implies a = b, for all a, b ∈ U .

Definition 1 (Fuzzy poset).
An L-fuzzy partially ordered set is a pair U = (U, ρU ) in which ρU is a

reflexive, antisymmetric and transitive L-fuzzy relation on U .
A crisp ordering can be given in U by a ≤U b if and only if ρU (a, b) = >.

From now on, when no confusion arises, we will omit the prefix “L-”.

Definition 2. For every element a ∈ U , the extension to the fuzzy setting of
the notions of upset and downset of the element a are defined by a↑, a↓ : U → L
where a↓(u) = ρU (u, a) and a↑(u) = ρU (a, u) for all u ∈ U.

An element a ∈ U is a maximum for a fuzzy set X if X(a) = > and X ⊆ a↓.
The definition of minimum is similar.

Note that maximum and minimum elements are necessarily unique, because of
antisymmetry.

Definition 3. Let A = (A, ρA) and B = (B, ρB) be fuzzy ordered sets.

1. A mapping f : A → B is said to be isotone if ρA(a1, a2) ≤ ρB(f(a1), f(a2))
for each a1, a2 ∈ A.

2. Moreover, a mapping f : A→ A is said to be inflationary if ρA(a, f(a)) = >
for all a ∈ A. Similarly. a mapping f is deflationary if ρA(f(a), a) = > for
all a ∈ A.



Definition 4 (Fuzzy adjunction). Let A = (A, ρA), B = (B, ρB) be fuzzy
posets, and two mappings f : A → B and g : B → A. The pair (f, g) forms an
adjunction between A and B, denoted (f, g) : A� B if, for all a ∈ A and b ∈ B,
the equality ρA(a, g(b)) = ρB(f(a), b) holds.

Notation 1 From now on, we will use the following notation, for a mapping
f : A → B and a fuzzy subset Y of B, the fuzzy set f−1(Y ) is defined as
f−1(Y )(a) = Y (f(a)), for all a ∈ A.

Finally, we recall the following theorem which states different equivalent
forms to define a fuzzy adjunction.

Theorem 1 ([16]). Let A = (A, ρA), B = (B, ρB) be fuzzy posets, and two
mappings f : A→ B and g : B → A. The following conditions are equivalent:

1. (f, g) : A� B.
2. f and g are isotone, g ◦ f is inflationary, and f ◦ g is deflationary.
3. f(a)↑ = g−1(a↑) for all a ∈ A.
4. g(b)↓ = f−1(b↓) for all b ∈ B.
5. f is isotone and g(b) = max f−1(b↓) for all b ∈ B.
6. g is isotone and f(a) = min g−1(a↑) for each a ∈ A.

Theorem 2 ([17]). Let (A, ρA) be a fuzzy poset and a mapping f : A −→ B. Let
Af be the quotient set over the kernel relation a ≡f b ⇐⇒ f(a) = f(b). Then,
there exists a fuzzy order ρB in B and a map g : B −→ A such that A � B if
and only if the following conditions hold:

1. There exists max[a]f for all a ∈ A.
2. ρA(a1, a2) ≤ ρA(max[a1]f ,max[a2]f ), for all a1, a2 ∈ A.

3 Building Adjunctions between Fuzzy Preordered Sets

In this section we start the generalization of Theorem 2 above to the framework
of fuzzy preordered sets.

The construction will follow that given in [19] as much as possible. Therefore,
we need to define a suitable fuzzy version of the p-kernel relation.

Firstly, we need to set the corresponding fuzzy notion of transitive closure of
a fuzzy relation, and this is done in the definition below:

Definition 5. Given a fuzzy relation S : U×U → L, for all n ∈ N, the iterations
Sn : U × U → L are recursively defined by the base case S1 = S and, then,

Sn(a, b) =
∨
x∈U

(
Sn−1(a, x)⊗ S(x, b)

)
The transitive closure of S is a fuzzy relation Str : U × U → L defined by

Str(a, b) =

∞∨
n=1

Sn(a, b)



The relation ≈A allows for gettting rid of the absence of antisymmetry, by
linking together elements which are ‘almost coincident’; formally, the relation
≈A is defined on a fuzzy preordered set (A, ρA) as follows:

(a1 ≈A a2) = ρA(a1, a2)⊗ ρA(a2, a1) for a1, a2 ∈ A

The kernel equivalence relation ≡f associated to a mapping f : A → B is
defined as follows for a1, a2 ∈ A:

(a1 ≡f a2) =

{
⊥ if f(a1) 6= f(a2)

> if f(a1) = f(a2)

Definition 6. Let A = (A, ρA) be a fuzzy preordered set, and f : A→ B a map-
ping. The fuzzy p-kernel relation ∼=A is the fuzzy equivalence relation obtained
as the transitive closure of the union of the relations ≈A and ≡f .

Notice that the fuzzy equivalence classes [a]∼=A
: A→ L are fuzzy sets defined as

[a]∼=A
(x) = (x ∼=A a) (1)

The notion of maximum or minimum element of a fuzzy subset X of a fuzzy
preordered set is the same as in Definition 2. There is an important difference
which justifies the introduction of special terminology in this context: due to
the absence of antisymmetry, there exists a crisp set of maxima (resp. minima)
forX, which is not necessarily a singleton, which we will denote p-max(X) (resp.,
p-min(X)).

The following theorem states the different equivalent characterizations of the
notion of adjunction between fuzzy preordered sets. As expected, the general
structure of the definitions is preserved, but those concerning the actual defini-
tion of the adjoints have to be modified by using the notions of p-maximum and
p-minimum.

Theorem 3 ([16]). Let A = (A, ρA),B = (B, ρB) be two fuzzy preordered sets,
and f : A → B and g : B → A be two mappings. The following statements are
equivalent:

1. (f, g) : A� B.
2. f and g are isotone, and g ◦ f is inflationary, f ◦ g is deflationary.
3. f(a)↑ = g−1(a↑) for all a ∈ A.
4. g(b)↓ = f−1(b↓) for all b ∈ B.
5. f is isotone and g(b) ∈ p-max f−1(b↓) for all b ∈ B.
6. g is isotone and f(a) ∈ p-min g−1(a↑) for all a ∈ A.

The following definitions recall the notion of Hoare ordering between crisp
subsets, and then introduces an alternative statement in the subsequent lemma:

Definition 7. Consider a fuzzy preordered set (A, ρA), and C,D crisp subsets
of A, we define the following relations



– (C vW D) =
∨
c∈C

∨
d∈D

ρA(c, d)

– (C vH D) =
∧
c∈C

∨
d∈D

ρA(c, d)

– (C vS D) =
∧
c∈C

∧
d∈D

ρA(c, d)

Lemma 1. Consider a fuzzy preordered set (A, ρA), and X,Y ⊆ A such that
p-minX 6= ∅ 6= p-minY , then(

p-minX vW p-minY
)
=
(
p-minX vH p-minY

)
=
(
p-minX vS p-minY

)
and their value coincides with ρA(x, y) for any x ∈ p-minX and y ∈ p-minY

Proof. Firstly, notice that if u1, u2 ∈ p-minX, then ρA(u1, u2) = >, by the
definition of p-minX.

Secondly, ρA(x1, y1) = ρA(x2, y2) for all x1, x2 ∈ p-minX, y1, y2 ∈ p-minY .
Indeed, ρA(x1, y1) ≥ ρA(x1, x2) ⊗ ρA(x2, y1) = > ⊗ ρA(x2, y1) ≥ ρA(x2, y2) ⊗
ρA(y2, y1) = ρA(x2, y2). Analogously, ρA(x2, y2) ≥ ρA(x1, y1). ut

We can now state the main contribution of this work: some necessary condi-
tions for the existence of fuzzy adjunctions between fuzzy preordered sets. The
result obtained resembles that in the crisp case [19]:

Theorem 4. Given fuzzy preordered sets A = (A, ρA) and B = (B, ρB), and
mappings f : A→ B and g : B → A such that (f, g) : A� B then

1. gf(A) ⊆
⋃
a∈A

p-max[a]∼=A

2. p-min(UB[a]∼=A
∩ gf(A)) 6= ∅, for all a ∈ A.

3. ρA(a1, a2) ≤
(
p-min(UB[a1]∼=A

∩ gf(A)) v p-min(UB[a2]∼=A
∩ gf(A))

)
for all a1, a2 ∈ A.

Proof. 1. Consider a ∈ A, and let us show that gf(a) ∈ p-max[gf(a)]∼=A
.

By definition of p-maximum element of a fuzzy set, we have to prove that
it is an element of its core, and also an upper bound. To begin with, it is
straightforward that [gf(a)]∼=A

(gf(a)) = >, therefore we have just to prove
the inclusion [gf(a)]∼=A

⊆ (gf(a))↓ between fuzzy sets, that is, we have to
prove [gf(a)]∼=A

(u) ≤ ρA(u, gf(a)) for all u ∈ A.
Recall that relation ∼=A has been defined as the transitive closure of the join
≈A ∪ ≡f , which we will denote R hereafter. Specifically, by using the defini-
tion of transitive closure (Defn. 5) and properties of the supremum, we will
prove by induction that any iteration Rn satisfies the following inequality:

gf(a)Rnu ≤ ρA(u, gf(a)) ∀u ∈ A (2)



– For n = 1 and u ∈ A, let us prove the inequality by using the definition
of the relations involved we obtain

gf(a)Ru = (gf(a) ≈A u) ∨ (gf(a) ≡f u)

= (ρA(gf(a), u)⊗ ρA(u, gf(a)) ∨ (gf(a) ≡f u)

≤ ρA(u, gf(a)) ∨ (gf(a) ≡f u)

Depending on the value of gf(a) ≡f u, which is a crisp relation, there
are just two possible cases to consider, and both are straightforward:
If (gf(a) ≡f u) = ⊥, there is nothing to prove, as the previous inequality
collapses to inequality (2).
If (gf(a) ≡f u) = >, inequality (2) degenerates to a tautology since
the upper bound turns out to be >. In effect, we have fgf(a) = f(u)
by definition of the kernel relation ≡f , in addition, using the hypothesis
(f, g) : A� B, we have that

ρA(u, gf(a)) = ρB(f(u), f(a))

= ρB(fgf(a), f(a)) = ρA(gf(a), gf(a)) = >

– Assume inequality (2) holds for n−1. By definition of the n-th iteration
of a fuzzy relation, and the induction hypothesis, we have that

gf(a)Rnu =
∨
x∈A

(
gf(a)Rn−1x⊗ xRu

)
≤
∨
x∈A

(
ρA(x, gf(a))⊗

(
(x ≈A u) ∨ (x ≡f u)

))
=
∨
x∈A

(
ρA(x, gf(a))⊗

(
(ρA(x, u)⊗ ρA(u, x)) ∨ (x ≡f u)

))
≤
∨
x∈A

(
ρA(x, gf(a))⊗

(
ρA(u, x) ∨ (x ≡f u)

))
.

Now, similarly to case n = 1, for every disjunct above there are two cases
depending on the outcome of the kernel relation:
If (x ≡f u) = ⊥, by commutativity of ⊗ and transitivity of ρA, then the
corresponding disjunct simplifies to ρA(u, gf(a)).
If (x ≡f u) = >, then the disjunct simplifies to ρA(x, gf(a)); but, more-
over, using the fact that f(x) = f(u) and the hypothesis (f, g) : A� B,
we have that

ρA(x, gf(a)) = ρB(f(x), f(a)) = ρB(f(u), f(a)) = ρA(u, gf(a))

Summarizing, inequation (2) holds for all n and, by definition of the
transitive closure, we have [gf(a)]∼=A

(u) ≤ ρA(u, gf(a)) for all u ∈ A.
2. Note that the set of upper bounds and the image involved in this condition

are crisp sets. Specifically, we will prove that gf(a) belongs to the intersection
p-min(UB[a]∼=A

∩ g(f(A)).



To begin with, we have to check that gf(a) ∈ UB[a]∼=A
∩ gf(A). As it is

obvious that gf(a) ∈ gf(A), we have just to show gf(a) ∈ UB[a]∼=A
, that

is, gf(a) is an upper bound of the fuzzy set [a]∼=A
. We have to prove that

(a ∼=A u) ≤ ρA(u, gf(a)) holds for all u ∈ A. Again, by using the definition
of ∼=A as transitive closure, and properties of the supremum, it is sufficient
to show that

aRnu ≤ ρA(u, gf(a)) ∀u ∈ A (3)

From now on, the proof follows the line of the previous item.

– For n = 1, and u ∈ A, we have that

aRu = (a ≈A u) ∨ (a ≡f u)

=
(
ρA(a, u)⊗ ρA(u, a)

)
∨ (a ≡f u)

≤ ρA(u, a) ∨ (a ≡f u).

Considering the two possible values of a ≡f u:
If (a ≡f u) = ⊥, by monotonicity of f and the adjunction property, we
have that

ρA(u, a) ≤ ρB(f(u), f(a)) = ρA(u, gf(a)).

If (a ≡f u) = >, inequality (3) once again degenerates to a tautology.
Specifically, using f(a) = f(u) and the adjunction property, we have

ρA(u, gf(a)) = ρB(f(u), f(a)) = ρB(f(a), f(a)) = >

– Assume the inequality (3) holds for n− 1, and let us prove it for n. For
this, consider x ∈ A,

aRnu =
∨
x∈A

aRn−1x⊗ xRu

≤
∨
x∈A

ρA(x, gf(a))⊗
(
(x ≈A u) ∨ (x ≡f u)

)
=
∨
x∈A

ρA(x, gf(a))⊗
(
(ρA(x, u)⊗ ρA(u, x)) ∨ (x ≡f u)

)
≤
∨
x∈A

ρA(x, gf(a))⊗
(
ρA(u, x) ∨ (x ≡f u)

)
.

Once again, we reason on each disjunct separately, considering the pos-
sible results of x ≡f a, and using monotonicity of f and the hypothesis
(f, g) : A� B when necessary:
If (x ≡f u) = ⊥, then the result follows by commutativity of ⊗ and
transitivity of ρA.
If (x ≡f u) = >, from f(x) = f(u), then we have

ρA(x, gf(a)) = ρB(f(x), f(a)) = ρB(f(u), f(a)) = ρA(u, gf(a))



Summarizing, we have proved that gf(a) is an upper bound of the fuzzy
set [a]∼=A

.
Finally, for the minimality, we have to check that ρA(gf(a), x) = > for all
x ∈ UB[a]∼=A

∩ g(f(A))).
Consider x ∈ UB[a]∼=A

∩ g(f(A)); then there exists a1 ∈ A such that x =
gf(a1) and (a ∼=A u) ≤ ρA(u, x) for all u ∈ A. Particularly, considering u = a
and using the monotonicity of g and the adjunction property, we have that,

> = (a ∼=A a) ≤ ρA(a, x) = ρA(a, gf(a1))

= ρB(f(a), f(a1))

≤ ρA(gf(a), gf(a1)) = ρA(gf(a), x).

3. Consider a1, a2 ∈ A, as f and g are isotone maps, then we have

ρA(a1, a2) ≤ ρA(g(f(a1)), g(f(a2)))

From the inequality above, we directly obtain the required condition

ρA(a1, a2) ≤
(
p-min(UB[a1]∼=A

∩ g(f(A))) v p-min(UB[a2]∼=A
∩ g(f(A)))

)
since we have just proved above that g(f(a)) ∈ p-min(UB[a]∼=A

∩ gf(A)) for
all a ∈ A. ut

Corollary 1. Let A = (A, ρA) be a fuzzy preordered set, let B be an unstructured
set and f : A→ B be a mapping. If f is the left adjoint for an adjunction, then
there exists a subset S ⊆ A such that

(1) S ⊆
⋃
a∈A

p-max[a]∼=A

(2) p-min(UB[a]∼=A
∩ S) 6= ∅, for all a ∈ A.

(3) ρA(a1, a2) ≤
(
p-min(UB[a1]∼=A

∩ S) v p-min(UB[a2]∼=A
∩ S)

)
for all

a1, a2 ∈ A.

It is worth to notice that the necessary conditions obtained above closely
follow the characterizations one obtained in the crisp case for existence of ad-
junctions between preordered sets. Specifically, in [19], it was proved that given
any (crisp) preordered set A = (A,.A) and a mapping f : A → B, there exists
a preorder B = (B,.B) and g : B → A such that (f, g) forms a crisp adjunc-
tion between A and B if and only if there exists a subset S of A such that the
following conditions hold:

(1) S ⊆
⋃
a∈A

p-max[a]∼=A

(2) p-min(UB[a]∼=A
∩ S) 6= ∅, for all a ∈ A.

(3) If a1 .A a2, then
(
p-min(UB[a1]∼=A

∩ S) v p-min(UB[a2]∼=A
∩ S)

)
, for

a1, a2 ∈ A.



Obviously, although in this paper we have just proved one implication (the
necessary conditions), as the obtained results are exactly the corresponding fuzzy
translation of the crisp one, it seems likely that the converse should hold as well.

In order to provide some clue about the significance of the obtained condi-
tions, it is worth to recall the characterization of the existence of adjunctions
from a crisp poset to an unstructured set, which somehow unifies some well-
known facts about adjunctions in a categorical sense, i.e. if g is a right adjoint
then it preserves limits.

In [18] it was proved that given a poset (A,≤A) and a map f : A→ B, there
exists an ordering ≤B in B and a map g : B → A such that (f, g) is a crisp
adjunction between posets from (A,≤A) to (B,≤B) if and only if

(i) There exists max([a]≡f
) for all a ∈ A.

(ii) a1 ≤A a2 implies max([a1]≡f
) ≤A max([a2]≡f

), for all a1, a2 ∈ A.

where ≡f is the kernel relation wrt f .
These two conditions are closely related to the different characterizations of

the notion of adjunction, as stated in Theorem 1 (items 5 and 6); specifically,
condition (i) above states that if b ∈ B and f(a) = b, then necessarily g(b) =
max([a]∼=f

), whereas condition (ii) is related to the isotonicity of both f and g.
In some sense, the necessary conditions (1), (2), (3) obtained in Corollary 1

reflect the considerations given in the previous paragraph, but the different un-
derlying ordered structure leads to a different formalization. Formally, condition
(i) above is split into (1) and (2), since in a preordered setting, if b ∈ B and
f(a) = b, g(b) needs not be in the same class as a but being maximum in its
class (1). However, the latter condition is too weak and (2) provides exactly
the remaining requirements needed in order to adequately reproduce the desired
properties for g. Now, condition (3) it just the rephrasing of (ii) in terms of the
properties described in (2).

4 Future Work

We have provided a set of necessary conditions for the existence of right adjunc-
tion to a mapping f : (A, ρA) → B. The immediate future task is to study the
other implication in order to find a set of necessary and sufficient conditions so
that it is possible to define a fuzzy preorder on B such that f is a left adjoint.

Several papers on fuzzy Galois connections have been written since its in-
troduction in [1]; consider for instance [3, 14, 23] for some recent ones. Another
source of future work will be to study possible generalizations of the previ-
ously obtained results to the existence of fuzzy adjunctions within appropriate
structures, and study the potential relationship to other approaches based on
adequate versions of fuzzy closure systems [21].

Last but not least, in the recent years there has been some interesting devel-
opments on the study of both fuzzy partial orders and fuzzy preorders, see [4–7]
for instance. In these works, it is noticed that versions antisymmetry and reflex-
ivity commonly used are too strong and, as a consequence, the resulting fuzzy



partial orders are very close to the classical case. Accordingly, another line of
future work will be the adaptation of the current results to these alternative
weaker definitions.
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