
On reductants in the framework of multi-adjoint logic
programmingI

P. Julián-Iranzoa, J. Medinab, M. Ojeda-Aciegoc

aDep. of Information Technologies and Systems, Univ. of Castilla-La Mancha, Spain.
bDep. de Matemáticas, Universidad de Cádiz, Spain.

cUniversidad de Málaga. Departamento de Matemática Aplicada, Spain.

Abstract

Reductants are a special kind of fuzzy rules which constitute an essential theoretical
tool for proving correctness properties. As it has been reported, when interpreted
on a partially ordered structure, a multi-adjoint logic program has to include all
its reductants in order to preserve the (approximate) completeness property. After
a short survey of the different notions of reductant that have been developed for
multi-adjoint logic programs, we introduce a new and more adequate, notion of
reductant in the multi-adjoint framework. We study some of its properties and
its relationships with other notions of reductants. In addition, we give an efficient
algorithm for computing all the reductants associated with a multi-adjoint logic
program.

Keywords: Fuzzy Logic Programming, Multi-adjoint Logic Programming,
Reductants.

1. Introduction

General forms of logic programming, mainly related to fuzzy extensions,
can be found in the literature since the late eighties [8, 5, 13, 1, 25]; more
recently, some authors introduced some generalizations and studied their
interrelationships [2, 22, 16, 14, 6, 24]; nowadays, the field of fuzzy logic
programming is still an appealing research topic which is being studied from

IThis is an extended version of the work “Revisiting reductants in the multi-adjoint logic programming
framework”. Lect. Notes in Artificial Intelligence 8761:694–702, 2014

Email addresses: Pascual.Julian@uclm.es (P. Julián-Iranzo),
jesus.medina@uca.es (J. Medina), aciego@uma.es (M. Ojeda-Aciego)

Preprint submitted to Fuzzy Set and Systems March 7, 2016

different standpoints, see for instance [15, 4, 20]. This paper focuses on the
general framework of multi-adjoint logic programming [18] and, specifically,
on the most adequate notion of reductant for a multi-adjoint logic program.

The multi-adjoint logic programming (MALP) paradigm is a flexible gen-
eralization of logic programming which allows for combining many fuzzy
logic-related features within the machinery of logic programming. Roughly
speaking, a multi-adjoint logic program can be seen as a set of implicational
rules annotated by a truth degree which is an element of a complete residu-
ated lattice. Among the many new features of the multi-adjoint framework,
it is worth to remark its flexibility, in that rules need not be written with the
same (fuzzy) implication, the most suitable for each rule can be considered
instead; a second important feature is that it allows using conjunctors in the
body of the rules which are neither commutative or associative.

To the best of our knowledge, the notion of reductant was firstly intro-
duced in [13], for the so-called generalized annotated logic programs, as a tool
to deal with problems related to incompleteness. The multi-adjoint paradigm
has to face similar problems related to incompleteness, which arise specially
when one interprets programs over a non-linear lattice. Specifically, incom-
parable elements in such a lattice allow for constructing programs for which
it is not possible to compute the greatest correct answer, see [18]; therefore,
should we wish to preserve the approximate completeness property, the re-
sulting multi-adjoint programs will have to include all the reductants, but
this would dramatically increase the difficulty of implementing efficient pro-
gramming environments for the multi-adjoint paradigm.

A common problem of the first approaches to the notion of reductant in
this field is that, very often, infinitely many reductants are required to be con-
sidered in order to guarantee approximate completeness for some programs.
Thus, in order to develop complete and efficient implementation systems for
the multi-adjoint logic framework, it is essential to define more accurate no-
tions of reductants and methods for optimizing their computation. In this
work, after surveying the previous notions of reductant already available for
multi-adjoint programs, we define a new and more adequate notion of reduc-
tant inspired on the one proposed by Kifer and Subrahmanian in the context
of generalized annotated logic programs [13]. We study some of its formal
properties and we give an efficient algorithm for computing all the reductants
associated to a multi-adjoint logic program.

As stated before, this paper is an extended and improved version of [10]
and, necessarily, has the same structure (note that, in the following descrip-

2

tion of the content of this manuscript, the differences and extensions with
respect to the conference paper are explicitly emphasized): in Section 2, we
summarize the syntax and semantics of multi-adjoint logic programs; then,
in Section 3, we recall different notions of reductants (the original one, G-
reductants and PE-reductants — the latter were not included in [10]) along
with their basic properties; in Section 4, the new definition of critical re-
ductant is presented; then, in Section 5 its formal properties are stated (to-
gether with their proofs). The rest of the paper is completely new, that
is, Sections 5.1, 5.2, 5.3 and 6 form a proper extension of [10]: specifi-
cally, Section 5.1 includes a detailed comparison between the new notion of
critical reductant and PE-reductants (and, hence, with the original reduc-
tants as well), whereas in Section 5.2 we compare critical reductants with
G-reductants (in particular, we prove that G-reductants do not preserve ap-
proximate completeness). Then, in Section 5.3, we consider the problem of
how many reductants should be computed in order to guarantee approximate
completeness and, then, in Section 6 we describe an efficient algorithm for
computing all the reductants associated with a multi-adjoint program. The
final section contains some conclusions and prospects for future work.

2. Syntax and Semantics of Multi-adjoint Logic Programs

For the sake of self-completion, the preliminary definitions on the multi-
adjoint framework are given in this section.

Hereafter, we will be working with a first order language, L, containing
variables, function symbols, predicate symbols, constants, the classical quan-
tifiers (∀ and ∃), and several (arbitrary) connectives, which are intended to
provide extended expressiveness features to the language.

As usual in a fuzzy setting, we assume a number of implication connec-
tives (←i) together with other connectives, so-called “aggregators” (usually
denoted @j), used to build the bodies of the rules. The general definition
of aggregation operator subsumes conjunctors (denoted by &k), disjunctors
(∨l), and hybrid operators. The truth function1 for an n-ary aggregation op-
erator @: Ln → L is required to be monotone and fulfill @(>, . . . ,>) = >,
@(⊥, . . . ,⊥) = ⊥.

1Note that, as no confusion arises, we use the same notation for a formal function
symbol and its semantic meaning.

3

A rule is a formula H ←i B, where H is an atomic formula (usually called
the head) and B (which is called the body) is a formula built from atomic
formulas B1, . . . , Bn, n ≥ 0, truth values of L and aggregation operators.
Rules whose body is > are called facts (usually, we will represent a fact as
a rule with an empty body). A goal is a body submitted as a query to the
system. Variables in a rule are assumed to be universally quantified. Roughly
speaking, a multi-adjoint logic program is a set of pairs 〈R;α〉, where R is a
rule and α is a weight from L, usually assigned by an expert.

Concerning the semantics, formulas will be interpreted on a multi-adjoint
lattice, i.e. the underlying set of truth-values is a complete lattice L together
with a collection of adjoint pairs intended to reproduce the application of
modus ponens [7]. In this framework, it is sufficient to consider Herbrand
interpretations in order to define a declarative semantics. See [18] for a formal
characterization of a fuzzy interpretation I as a mapping from the Herbrand
base BL into the multi-adjoint lattice of truth values L and a notion of
evaluation and satisfiability of formulas.

The procedural semantics can be formalized as an operational phase fol-
lowed by an interpretive one. The operational phase uses a residuum-based
generalization of modus ponens [7] that, given an atomic goal A and a pro-
gram rule 〈H←iB; v〉 for which there is a most general unifier substitution
θ = mgu({A = H}) the atom A is substituted by the expression (v&iB)θ. In
the following, we write C[A] to denote a formula where A is a sub-expression
(usually an atom) occuring in the (possibly empty) context C[]. Moreover,
C[A/H] means the replacement of A by H in context C[]. Also we use Var(s)
for referring to the set of variables occurring in the syntactic object s, whereas
θ[Var(s)] denotes the substitution obtained from θ by restricting its domain,
Dom(θ), to Var(s).

Definition 2.1 (Admissible Steps). Let Q be a goal and let σ be a substi-
tution. The pair 〈Q;σ〉 is a state and we denote by E the set of states. Given
a program P, an admissible computation is formalized as a state transition
system, whose transition relation AS ⊆ (E×E) is the smallest relation satis-
fying the following admissible rules (where we consider that A is the selected
atom in Q):

1) 〈Q[A];σ〉 AS〈(Q[A/v&iB])θ;σθ〉 if θ = mgu({A = H}), 〈H←iB; v〉
in P.

4

2) 〈Q[A];σ〉 AS〈(Q[A/⊥]);σ〉 if there is no rule in P whose head unifies
with A.

Formulas involved in admissible computation steps are renamed apart before
being used. The symbols +

AS and ∗AS denote, respectively, the transitive
closure and the reflexive, transitive closure of AS.

Definition 2.2. Let P be a program and let Q be a goal. An admissible
derivation is a sequence 〈Q; id〉 ∗AS 〈Q′; θ〉. When Q′ is a formula not con-
taining atoms (i.e., containing truth values instead), the pair 〈Q′;σ〉, where
σ = θ[Var(Q)], is called an admissible computed answer (a.c.a.) for that
derivation.

If we exploit all atoms of a goal, by applying admissible steps as much
as needed during the operational phase, then it becomes a formula with no
atoms which, then, can be directly interpreted in the multi-adjoint lattice L.

Definition 2.3 (Interpretive Step). Let P be a program, Q a goal and σ a
substitution. We formalize the notion of interpretive computation as a state
transition system, whose transition relation IS⊆ (E × E) is the smallest
one satisfying: 〈Q[@(r1, . . . , rn)];σ〉 IS 〈Q[@(r1, . . . , rn)/v];σ〉, where v is
the truth value obtained after evaluating @(r1, . . . , rn) in the lattice 〈L,�〉
associated with P.

Definition 2.4. Let P be a program and 〈Q;σ〉 an a.c.a., that is, Q is a goal
not containing atoms. An interpretive derivation is a sequence 〈Q;σ〉 ∗IS

〈Q′;σ〉. When Q′ = r ∈ L, 〈L,�〉 being the lattice associated with P, the
state 〈r;σ〉 is called a fuzzy computed answer (f.c.a.) for that derivation.

We denote by +
IS and ∗IS the transitive closure and the reflexive, transi-

tive closure of IS, respectively. Also note that, sometimes, when it is not
important to pay attention to the substitution component of a f.c.a. 〈r; θ〉
(maybe, because θ = id) we shall refer to the value component r as the
“f.c.a.”.

Incluir ejemplo explicativo

5

3. On the notion of reductant for MALP: state of the art

In this section we survey the different notions of reductants raised over the
last years in the field of fuzzy logic programming, specially those extended to
MALP, describing some of their features which are important for the present
work.

The original notion of reductant appeared in the framework of generalized
annotated logic programming [13], and was initially adapted to the multi-
adjoint logic programming framework in the following terms [18]:

Definition 3.1 (Reductant). Given a program P, a ground atom A, and
a (non-empty) set of rules {〈Ci←i Bi; vi〉 | 1 ≤ i ≤ n} in P whose head
matches with A (i.e., for each Ci there exists a θi such that A = Ciθi). A
reductant for A in P is a rule 〈A← @(B1, . . . ,Bn)θ;>〉 where θ = θ1 · · · θn,
the connective ← is any implication with an adjoint conjunctor, and the
truth function for the intended aggregator @ is defined as @(b1, . . . , bn) =
sup{v1&1b1, . . . , vn&nbn}.

This notion was introduced as a valuable theoretical tool for proving the
(approximate) completeness property of the multi-adjoint logic programming
framework. It is worth to note that this definition of reductant is linked with
a program and a ground atom, contrary to the original definition of reductant
given in [13], which is uniquely linked with a program.

In order to preserve the approximate completeness property, it is neces-
sary to construct the “completion” of a program, extending it with all their
reductants. So, to compute all the reductants associated with a program, one
has to take into account all the atoms in the Herbrand base of that program,
which might be infinitely many. Hence, although this notion of reductant is
theoretically valuable it may easily turn impractical because of its potential
non-termination. Also, as we have just commented, reductants introduce ef-
ficiency penalties when a “completed” program is executed. Therefore, it was
soon clear that if we wanted to implement complete systems we needed a new
notion of reductant leading to finite completions and producing reductants
that can be executed more efficiently.

The second chapter in this story was the attempt to construct an improved
version of the previous notion of reductant (Definition 3.1) which, while still
preserving the essential semantic properties, can be more efficiently executed.
In [12], we showed how such a refined notion of reductant can be built by
using Partial Evaluation techniques [9]. In a nutshell, the idea was to use

6

an arbitrary unfolding tree2 τ for a program P and a ground atom A, to
construct a new notion of a reductant, called PE-reductant for A in P .
Intuitively, a PE-reductant is constructed by

1. Generating an unfolding tree τ for P and A, that is, the tree obtained
by unfolding (as much as possible) the atom A in the program;

2. Collecting the set of leaves S = {D1, . . . ,Dn} in τ ; and
3. Constructing the rule 〈A ← @sup(D1, . . . ,Dn);>〉, which is the PE-

reductant of A in P with regard to τ .

Formally, we have:

Definition 3.2 (PE-reductant). Let P be a program, A a ground atom,
and τ an unfolding tree for A in P . A PE-reductant for A in P with respect
to τ , is a rule 〈A← @sup(D1, . . . ,Dn);>〉, where the truth function for the
intended aggregator @sup is defined as @sup(d1, . . . , dn) = sup{d1, . . . , dn},
and D1, . . . ,Dn are, respectively, the leaves of τ .

Notice that the definition of PE-reductant assumes an extended syntax
for our language where truth degrees and adjoint conjunctions are allowed
in the body of program rules. PE-reductants incorporate information about
all the relevant aspects of the rules 〈Ci←i Bi; vi〉 used for the evaluation of
the atom A: the truth degree vi, the adjoint implication and conjunction
operators, the computed substitutions and the instances of the bodies Bi.
Also, note that, for readability reasons, in the sequel we will name those
PE-reductants which are obtained from unfolding trees of depth k, PEk-
reductants. The semantical equivalence between reductants of Definition 3.1
and PE-reductants was established in [12].

Despite PE-reductants may improve the efficiency of multi-adjoint com-
putations they do not overcome the need to compute, sometimes, infinitely
many reductants, since they are still linked to the Herbrand base of ground
atoms.

As a further step in the path of trying to avoid the proliferation reduc-
tants, the new notion of G-reductant was introduced in [19, 20]. The aim was

2An unfolding tree for a program P and a goal Q is a possibly incomplete search tree
whose branches are derivations of Q in P interleaving admissible and interpretative steps.
An unfolding tree may contain unevaluated leaves where no atom (or interpretable expres-
sion) has been selected for a further unfolding step, ending derivations at any adequate
point.

7

that a single generalized reductant was required to cover all the (infinitely
many) possible calls to atoms headed by a specific predicate symbol defined
in a program.

Definition 3.3 (G-Reductant). Given a program P and a definite predi-
cate p in P, a G-reductant for the predicate p in P is a rule

〈p(X1, . . . , Xm)← @(θ̂1&B1, . . . , θ̂n&Bn);>〉
where

• {〈Ci←i Bi; vi〉 | 1 ≤ i ≤ n} is the non-empty set of rules such that
every Ci is an instance of p(X1, . . . , Xm) via the substitution θi =
{X1/ti1, . . . , Xm/tim};

• θ̂i = (X1 ≈ ti1& · · ·&Xm ≈ tim) with ≈ being a unification operator
defined by the fact R≈ = 〈X ≈ X;>〉, which is considered to be included
in every multi-adjoint program;

• the connective ← is any implication with an adjoint conjunction &,
and the truth function for the intended aggregator @ is the same as in
Definition 3.1.

A common way of quantifying the efficiency of a computation is counting
its number of steps. Notice that, although only finitely many G-reductants
are generated for a given program (just one for each definite predicate in the
program), due to the fact that they are built in a non-evaluated form, some
extra steps are necessary when using G-reductants in a computation. As a
result, computing with this kind of reductants becomes inefficient. This is
why unfolding-based techniques were applied in [21] for simplifying general
reductants: the idea was to perform computational steps on the body of
G-reductants at transformation time in order to improve their efficiency at
execution time.

REWRITE PARAGRAPHDespite the accomplishments obtained by these
transformation techniques, the overall process is far from being intuitive and,
what is worst, it does not guarantee the approximate completeness of a multi-
adjoint logic programming framework (as shown by Proposition 5.10 together
with Example 3).

8

4. A new notion of reductant: sets of critical rules

The new notion of reductant, once again in the line of [13], was introduced
in [10] with the aim at solving the aforementioned problems inherent to the
other notions of reductant, seeking a new notion of reductant satisfying that:

1. It is not attached to a certain kind of goals for its computation,
2. It can be computed efficiently, and
3. There is no need to consider infinitely many of them.

To begin with, we will informally discuss the underlying idea, and then
proceed with the formal definition. Firstly, note that the need of using re-
ductants arises when, for a program P and an atom A (with or without vari-
ables) launched as a goal, there exist different derivations leading to fuzzy
computed answers with the same computed substitution but leading to in-
comparable truth-values: 〈v1; θ〉, . . . , 〈vn; θ〉. In this case, 〈sup{v1, . . . , vn}; θ〉
can be proven to be a correct answer which is not computed by the opera-
tional mechanism. INCLUIR CORRECT ANSWER EN PRELIMINARES

To better understand this problem and to identify its source, we must in-
vestigate whether there exists some relationship between the program rules
that take part in the derivations that cause the problem. In order to sim-
plify the discussion, we analyze the situation of a program containing just
two facts R1 = 〈H1, a〉, R2 = 〈H2, b〉, where a and b are incomparable ele-
ments of a partially ordered multi-adjoint lattice, and a non-ground atom A
launched as a goal to be solved. In order to reproduce the problem, it must
be possible to perform admissible steps both with R1 and R2 computing the
fuzzy computed answers 〈a; θ〉 and 〈b; θ〉 respectively. But this is only possi-
ble when the heads of R1 and R2 unify with A: Aθ = H1θ and Aθ = H2θ,
which leads to the condition that the heads of R1 and R2 should also unify.3
This is an interesting observation that gives a criterion to decide when a set
of rules may cause the problem. In general, this problem may occur when,
in our program, sets of rules exist whose heads unify. We shall say that such
sets are “sets of critical rules”.

Definition 4.1 (Critical Rules). Let P be a program, and R1 = 〈H1←B1,
v1〉, and R2 = 〈H2←B2, v1〉 two rules in P that are renamed-apart. The rules

3Recall that, if H1 and H2 unify, they have a most general unifier.

9

R1 and R2 are said to be critical iff H1 and H2 unify, that is, there exists a
substitution θ = mgu{H1, H2} 6= fail.

A set of rules in P which are renamed-apart is said to be a set of critical
rules iff the set of their heads unify.

Note that a set of critical rules is composed by a subset of rules defining a
certain predicate p in P .

Example 1. Let P = {R1 : 〈p(a, g(Z))←1; v1〉,R2 : 〈p(Y, g(Y))←2; v2〉} be
a program. The rules R1 and R2 are critical rules, since mgu{p(a, g(Z)),
p(Y, g(Y))} = {Y/a, Z/a} 6= fail. �

The new notion of reductant is introduced in the following definition:

Definition 4.2 (Critical Reductant). Given a program P and a set of
critical rules in P, {〈Hi←i Bi; vi〉 | 1 ≤ i ≤ n}, with θ = mgu{H1, . . . , Hn}.
Then, the rule 〈H1θ← @sup(v1&1B1, . . . , vn&nBn)θ;>〉 is a critical reductant
of P, where the connective ← is any implication with an adjoint conjunctor,
and the truth function for the aggregator @sup is the supremum operator.

It is worth to recall that we are assuming an extended language where truth
degrees and adjoint conjunctions are allowed in the body of program rules.

Observe that for programs with finitely many rules there always exist
finitely many critical reductants. If Pp is the set of rules defining a predicate
p, the elements in the powerset of Pp (excluding the empty set and the
singletons) are the candidates to generate critical reductants, but only those
which form sets of critical rules truly generate them. The sets of critical rules
ordered by inclusion form a partially ordered set. The critical reductants
obtained from the maximal elements of that set of sets will be called maximal
reductants.

Example 2. For the program P of Example 1 there exists just one reductant,
namely 〈p(a, g(a))← sup{v1, v2};>〉, which is obtained from the maximal set
of critical rules {R1,R2}. Therefore, this is a maximal reductant.

Notice, finally, that a set of critical rules can be formed by a program rule
R1 = 〈H1←1 B1; v1〉 and a variant of R1, say R2 = 〈H2←1 B2; v1〉. Then,
certainly there exists the mgu{H1, H2} = ρ, where ρ is just a renaming,
H1 = H1ρ = H2ρ and B1 = B1ρ = B2ρ. Hence, the critical reductant of this
pair of variant rules is:

10

〈H1ρ←1 @sup(v1&1B1, v1&1B2)ρ;>〉 =
〈H1ρ←1 @sup(v1&1B1ρ, v1&1B2ρ);>〉 = 〈H1←1 @sup(v1&1B1, v1&1B1);>〉 =

〈H1←1 v1&1B1;>〉

which, from a semantical point of view, is essentially the program rule R1.
Therefore, each program rule can be considered as a reductant of itself.

5. Formal properties of critical reductants

Some important properties of critical reductants, which are substantive
for the correctness of the multi-adjoint logic programming framework, are
stated and formally proved in this section.

The first result is a straightforward lemma, which will be used later.

Lemma 5.1. Let A be a formula, I an interpretation and θ a substitution.
Then I(A) ≤ I(Aθ).

The previous lemma is used to prove that reductants are true in every
model of a program. Specifically, we have the following proposition:

Proposition 5.2. If R is a critical reductant of a multi-adjoint program P,
then every interpretation I which is a model of P is also a model of the
critical reductant R, that is, P |= R.

Proof.
To begin with, note that by definition of critical reductant (Definition 4.2)

there must exist a set S = {〈Hi←i Bi; vi〉 | 1 ≤ i ≤ n} of critical rules in P ,
whose heads unify and θ = mgu{H1, . . . , Hn}, such that

R = 〈H1θ← @sup(v1&1B1, . . . , vn&nBn)θ;>〉.

On the other hand, if an interpretation I is a model of P , it is a model
of all rules in P , and specifically of the critical rules in S. Therefore, by
definition of model (see [18]), we have vi ≤ I(Hi←i Bi) and, by Lemma 5.1,
vi ≤ I(Hiθ←i Biθ). Now, applying adjointness, it follows that I(vi&i Biθ) ≤
I(Hiθ) = I(H1θ).

Finally, note that, by the previous lemma, I(H1θ) is an upper bound of
the set {v1&1I(B1θ), . . . , vn&nI(Bnθ)}, so

@sup(v1&1I(B1θ), . . . , vn&nI(Bnθ)) ≤ I(H1θ).

11

therefore, as we are working with residual implications

I(H1θ← @sup(v1&1B1, . . . , vn&nBn)θ) = >

and we can affirm that I is a model of the reductant R. �

The converse result is not true in general; in fact, the natural requirement
for it to be true is very restrictive, as we will show in Proposition 5.3.

Given a program P , the set of the critical reductants of P will be denoted
as PR, and the following result shows a procedure in order to obtain a model
from PR.

¿Se puede relajar la condición poniendo ≥ en lugar de =?

Proposition 5.3. Given a multi-adjoint program P and a model I of PR, if
I(A) = inf{I(Aθ) | 〈Aθ← @sup(v1&1B1,. . . ,vn&nBn)θ;>〉is a critical reductant}
then I is a model of P.

Proof. Given a rule 〈A←i B; v〉 in P and a model I of PR, it is enough to
prove that v&iI(B) ≤ I(A). If no critical reductant with head Aθ exist for a
substitution θ then, by hypothesis, I(A) = > and the inequality is trivially
satisfied.

Otherwise, since I is a model of PR, for all critical reductant

〈Aθ← @sup(v1&1B1, . . . , vn&nBn)θ;>〉

the inequality I(@sup(v1&1B1, . . . , vn&nBn)θ) ≤ I(Aθ) holds and so, by
Lemma 5.1, we have:

v&iI(B) ≤ I(@sup(v1&1B1, . . . , vn&nBn))

≤ I(@sup(v1&1B1, . . . , vn&nBn)θ)

≤ I(Aθ)

for each critical reductant. Consequently, by hypothesis, the result is ob-
tained.

v&iI(B) ≤ inf{I(Aθ) |
〈Aθ← @sup(v1&1B1, . . . , vn&nBn)θ;>〉 is a critical reductant}

= I(A)

�

In the rest of this section, we study the formal relation between the critical
reductants and previous notions of reductant develop for MALP.

12

5.1. Critical reductants vs original reductants and PE-reductants
We begin this section by studying the relation between critical reductants

and the notion of reductant given in [18], which we call original reductants.
In order to establish this relation, our first step is a proposition which links
critical reductants with PE1-reductants, a particular case of PE-reductants
(see Definition 3.2) based on one-step unfolding trees. This way, the notion
of PE-reductant serves as an intermediary in that relation.

Proposition 5.4. Given a multi-adjoint program P, every PE1-reductant
is an instance of a critical reductant of P.

Proof. Let A be a ground atom and let

Red = 〈A←@sup(v1&1B1θ1, . . . , vn&1Bnθn);>〉

be the PE1-reductant for P and A, obtained from an unfolding tree of depth
one, where each substitution θi is a unifier of A and the head of a rule
Ri = 〈Hi←i Bi; vi〉 in P . Then it is possible to prove that the set of rules Ri

used in the construction of the PE1-reductant R is a set of critical rules.
First note that the rules Hi←i Bi whose head match with A, can be

considered to be standardized apart. Moreover, the atom A is ground by
Definition 3.2. Therefore, the substitutions θi, such that A = Hiθi, do not
share variables in common either in their domains or in their ranges. Hence,
θ = θ1θ2 · · · θn = θ1 ∪ θ2 ∪ · · · ∪ θn and Hiθ = Hiθi = A, for all i, 1 ≤ i ≤ n.
So, Hiθ = Hjθ, for each i and j. That is, Ω = {Hi | 1 ≤ i ≤ n} is a unifiable
set and, hence, the unification theorem guarantees the existence of a most
general unifier, say σ, of Ω. As a result, the set {Hi←i Bi | 1 ≤ i ≤ n} is a
set of critical rules.

Now, by Definition 4.2, it is possible to build the critical reductant
Red′ = 〈H1σ← @sup(v1&1B1, . . . , vn&nBn)σ;>〉 of P . Moreover, by defini-
tion of most general unifier, one has σ ≤ θ and, therefore, Red is an instance
of Red′. �

The proposition above states that every PE1-reductant Red obtained
using Definition 3.2 is covered by a critical reductant Red′, which is more
general than the first one. Therefore, every admissible step performed using
Red can be reproduced by applying the critical reductant Red′. The pre-
cise relation between these two kinds of steps is established in the following
lemma.

13

Lemma 5.5. Let P be a program, G be a goal and θ a substitution. If there
exists a PE1-reductant Red which performs the admissible step 〈G; id〉 Red

 AS

〈Qθ;σ〉, then there exists a critical reductant Red′ which performs the admis-
sible step 〈G; id〉 Red′

 AS 〈Q;σ′〉 where σ = σ′θ (that is, σ′ ≤ σ).

Proof. If Red is a PE1-reductant, by definition, we have

Red = 〈A←@sup(v1&1B1, . . . , vn&1Bn)δ;>〉

where A is a ground atom that matches with the heads of a set of rules in P ,
say Γ ≡ {Hi←i Bi | 1 ≤ i ≤ n}. This means that A = Hiδ for all i, 1 ≤ i ≤ n,
being δ a substitution that does not share variables with goal G. As shown
in the proof of Proposition 5.4, Γ is a set of critical rules with m.g.u. γ ≤ δ
(that is, δ = γλ, for some substitution λ). Therefore, there exists a critical
reductant Red′ ≡ 〈Hiγ←@sup(v1&1B1, . . . , vn&1Bn)γ;>〉 that covers Red.

Moreover, if it is possible to perform an admissible step for G and Red, it is
because there exists a selected atom of G, say A′, such that A′σ = Aσ, where
σ = mgu(A′, A). So, A′σ = Aσ = Hiδσ = Hiγλσ. Once again, note that γ
and λ do not share variables with G (or particularly A′), since the critical rules
in Γ are standardized apart. Therefore, the application of these substitutions
to either G or A′, does not change them. Hence A′λσ = A′σ = Hiγλσ and the
substitution λσ is a unifier of A′ and Hiγ. Now, by the unification theorem,
there exists a m.g.u. σ′ of A′ and Hiγ, such that σ′ ≤ λσ, which confirms
that it is possible to apply an admissible step with G and Red′.

More precisely, we have proved that if there exists an admisible step

〈G[A′]; id〉 Red
 AS 〈G[@sup(v1&1B1, . . . , vn&1Bn)δ]σ;σ〉,

performed by Red, then, there exists an admissible step

〈G[A′]; id〉 Red′
 AS 〈G[@sup(v1&1B1, . . . , vn&1Bn)γ]σ′;σ′〉,

performed by Red′.
DICE EL REVISOR QUE YA ESTARÍA PROBADO. REVISAR Y REE-

SCRIBIR.
I don’t understand the significance of the rest of the proof starting from

"Recalling ...". Isn’t the proof already completed before this line? Also, the
line "Recalling that..." is not a gramatically correct sentence.

14

Recalling that δ and γ do not share variables with G and defining Q by

Q ≡ G[@sup(v1&1B1, . . . , vn&1Bn)γ]σ′ = G[@sup(v1&1B1, . . . , vn&1Bn)]γσ′.

Now,

G[@sup(v1&1B1, . . . , vn&1Bn)δ]σ = G[@sup(v1&1B1, . . . , vn&1Bn)]δσ =
G[@sup(v1&1B1, . . . , vn&1Bn)]γλσ = G[@sup(v1&1B1, . . . , vn&1Bn)]γσ′θ = Qθ

since σ′ ≤ λσ and, therefore, there exists a substitution θ such that λσ = σ′θ.
�

The next result relates the derivations performed in the completion of
a program P by its PE1-reductants and the derivations performed in the
completion obtained by extending P with its set of critical reductants but,
firstly, we need the following intermediate result.

Lemma 5.6 (Lifting lemma). Let P be a program, G be a goal and θ be a
substitution. If there exists a derivation 〈Gθ; id〉 ∗ 〈v;σ〉 then there exists
a derivation 〈G; id〉 ∗ 〈v;σ′〉, of the same length, with σ′ ≤ θσ.

Proof. Similar to the classical lifting lemma in [17]. �

Proposition 5.7. Given a multi-adjoint program P, let ΠP be the comple-
tion of P with all the PE1-reductants obtained by using Definition 3.2, and
let ΘP be the completion of P with all the critical reductants of P. Let G be
a goal. If there exists a derivation 〈G; id〉 ∗ 〈v; θ〉 in P ∪ ΠP , then there
exists a derivation 〈G; id〉 ∗ 〈v;σ〉 in P ∪ΘP , with σ ≤ θ[Var(G)].

Proof. By induction on the number n of steps of the derivation D ≡
(〈G; id〉 ∗ 〈v; θ〉) in P ∪ ΠP .

• Base case (n = 1): In this case, the derivation D has the shape
〈G; id〉 AS〈v; θ〉 and G must be an atom. Excluding the trivial case
where the step is performed with a rule in P , assume that the step is
performed by using a PE1-reductant Red ≡ 〈A←v;>〉 where A is a
ground atom matching G, that is Gθ = A. The PE1-reductant Red
must have been constructed from only one rule R ≡ 〈H←; v〉 ∈ P ,
with A = Hδ. Recall that the rules are taken standardized apart,
the substitutions θ and δ do not share variables, and Dom(δ) does

15

not share variables with G. Hence θδ = θ ∪ δ is a unifier of G and
H (i.e., Gθδ = Hθδ) and there exist a m.g.u. of G and H. Consider
σ = mgu(G, H), then it is possible to apply the step 〈G; id〉 AS〈v;σ〉
in P ∪ΘP . Since σ ≤ θδ, we have that σ ≤ θ[Var(G)].

• Inductive case (n > 1): In this case the derivation D has the form

D ≡ (〈G; id〉 Red
 AS 〈G1θ;σ1〉 ∗ 〈v;σ1σ〉) in P ∪ ΠP

As in the base case, we can assume that the first step is performed
by a PE1-reductant Red, since this is the non-trivial instance. Now,
applying the lifting lemma, it is possible to construct the derivation

D′′ ≡ (〈G1; id〉 ∗ 〈v;σ′′〉) in P ∪ ΠP

with σ′′ ≤ θσ and the same number of steps (n−1). Moreover, applying
the induction hypothesis, since D′′ has n− 1 steps, there must exist a
derivation

D′′′ ≡ (〈G1; id〉 ∗ 〈v;σ′〉) in P ∪ΘP

with σ′ ≤ σ′′[Var(G1)]. Moreover, by Proposition 5.4 and Lemma 5.5,
there exists a critical reductant, Red′ that covers Red and it is possible
to perform the admissible step 〈G; id〉 Red′

 AS 〈G1;σ
′
1〉 with σ′1 ≤ σ1 (more

precisely, σ1 = σ′1θ). Therefore, it is possible to merge the last step
with derivation D′′′ in order to build the following derivation

D′ ≡ (〈G; id〉 Red′
 AS 〈G1;σ

′
1〉 ∗ 〈v;σ′1σ

′〉) in P ∪ΘP

where σ′1σ′ ≤ σ1σ
′′ ≤ σ1θσ = σ1σ[Var(G)], since θ is a ground substitu-

tion and Dom(θ) does not share variables with G or σ1. This concludes
the proof.

�

The main properties of PE-reductants were established in [12], where it
was proved that the original notions of reductant (Definition 3.1) and PE-
reductant (Definition 3.2) are both semantically and operationally equivalent
(although the refined notion of PE-reductant is able to increase the effi-
ciency of multi-adjoint logic programs). In particular, a strong equivalence
was established with regard to PE1-reductants, which is summarized in the
following theorems:

16

Theorem 5.8 (See [12], Thm. 13). Let P be a program, A a ground atom
and R ≡ 〈A← @(B1, . . . , Bn)θ;>〉 the reductant for A in P, where θ =
θ1 · · · θn and each substitution θi is a unifier of A and the head of a rule
〈Ci←i Bi; vi〉. The PE1-reductant R′ ≡ 〈A←@sup(v1&1B1θ1, . . . , vn&nBnθn);
>〉, obtained from an unfolding tree of depth one for P and A, is semantically
equivalent to the reductant R, that is, I(@(B1, . . . ,Bn)θ) = I(@sup(v1&1B1θ1,
. . . , vn&nBnθn)) for each interpretation I.

Theorem 5.9 (See [12], Thm. 18). Let P be a program, A a ground atom
and R ≡ 〈A← @(B1, . . . ,Bn)θ;>〉 the reductant for A in P, where θ =
θ1 · · · θn and each substitution θi is a unifier of A and the head of a rule
〈Ci←i Bi; vi〉. The PE1-reductant R′ ≡ 〈A←@sup(v1&1B1θ1, . . . , vn&nBnθn);
>〉, obtained from an unfolding tree of depth one for P and A, is pro-
cedurally equivalent to the reductant R, that is, FCA(@(B1, . . . ,Bn)θ) =
FCA(@sup(v1&1B1θ1, . . . , vn&nBnθn)).

In the last theorem FCA(E) denotes the set of f.c.a.’s provided by a program
P and an expression (goal) E (that is, FCA(E) = {r ∈ L | 〈E; id〉 ∗AS/IS

〈r;σ〉}).
Hence, as a corollary of these results is almost straightforward to adapt

the proof of the (approximate) completeness theorem for the multi-adjoint
logic programming framework, presented in [18], using critical reductants.

5.2. Critical reductants and G-reductants
Now we turn our attention to the G-reductants studied in [19, 20]. The

following proposition relates the notions of critical reductant andG-reductant.
We claim the equivalence between maximal critical reductants of a multi-
adjoint program P and the G-reductants of P , after a sequence of unfolding
steps.

In the context of logic programs, “unfolding” means to transform a pro-
gram rule by replacing it by the set of rules obtained after application of a
computation step (in all its possible forms) on the body of the selected rule
[23]. Unfolding was defined for the multi-adjoint framework in [11].

Let P be a program and R = 〈A← B; v〉 ∈ P a program rule. Then, the
fuzzy unfolding of program P with respect to ruleR is the new program P ′ =
(P r {R}) ∪ U in which U = {〈Aσ ← B′; v〉 | 〈B; id〉 AS〈B′;σ〉}. Note that
the set U may be a singleton when the unfolding step is performed on an atom
of the body with a predicate at the root which is defined deterministically

17

by just one rule. Unfolding is a program transformation technique which
preserves semantics.

Proposition 5.10. Any G-reductant of a multi-adjoint program P can be
transformed into a maximal critical reductant of P after a sequence of un-
folding steps.

Proof.
Without loss of generality, we first analyze the case of a program P with

a pair of rules defining a predicate p, say

{〈p(t11, . . . , t1m)←1 B1; v1〉, 〈p(t21, . . . , t2m)←2 B2; v2〉}.

By Definition 3.3, the program P is extended with the fact R≈ = 〈X ≈
X;>〉, and the following G-reductant is constructed

R0 = 〈p(X1, . . . , Xm)← @(θ̂1&B1, θ̂2&B2);>〉,

where θ̂i = (X1 ≈ ti1& . . .&Xm ≈ tim) for i ∈ {1, 2}, and @ is given as in
Definitions 3.1 and 3.3.

Recall that, when a program P is extended with the unification operator
≈ (defined by the fact R≈ ≡ 〈X ≈ X;>〉), any unification process can be
simulated by a derivation where all admisible steps are performed using the
rule R≈.

Now, starting from R0, acting as the unfolded rule, we can build the
following unfolding transformation step with respect to R≈, the unfolding
rule, and the subgoal X1 ≈ t11. In this case 〈X1 ≈ t11, id〉 AS〈>, {X1/t11}〉
and we obtain:

R1 = 〈p(t11, . . . , Xm)← @((>&X2 ≈ t11& . . .&Xm ≈ t1m)&B1,
(t11 ≈ t21& . . .&Xm ≈ t2m)&B2);>〉

Hence, repeating a sequence of unfolding steps on Ri−1 with respect to R≈
and the subgoal Xi ≈ ti1, for i ∈ {2, . . . ,m}, since

〈X1 ≈ t1i, id〉 AS〈>, {Xi/t1i}〉,

we obtain:

Rm = 〈p(t11, . . . , t1m)← @((>& . . .&>)&B1,
(t11 ≈ t21& . . .&t1m ≈ t2m)&B2);>〉,

18

Doing some simplifications by applying interpretive steps:

Rm+1 = 〈p(t11, . . . , t1m)← @(B1, (t11 ≈ t21& . . .&t1m ≈ t2m)&B2);>〉,

At this point, we consider two cases:

• The rules in P are critical rules:
In this case, by definition, the atoms at the head of the rules are unifi-
able, that is, θ = mgu{p(t11,. . .,t1m), p(t21,. . .,t2m)} 6= fail. Hence, the
following unfolding sequence of the subgoal (t11 ≈ t21& . . .&t1m ≈ t2m)
in the body of Rm+1 is possible:

〈t11 ≈ t21& . . .&t1m ≈ t2m, id〉 ? 〈>, θ〉.

Then, we can perform the following unfolding transformation of Rm+1:

Rm+2 = 〈p(t11, . . . , t1m)θ← @(B1,>&B2)θ;>〉
= 〈p(t11, . . . , t1m)θ← @(B1,B2)θ;>〉
= 〈p(t11, . . . , t1m)θ← @sup(v1&1B1θ, v2&2B2θ;>〉

On the other hand, since the rules form a critical set of rules, it is
possible to build the maximal critical reductant:

R ≡ 〈p(t11, . . . , t1m)θ← @sup(v1&1B1, v2&2B2)θ;>〉.

which is clearly equivalent to Rm+2.

• The rules in P are not critical rules:
In this case, the terms of some subgoal t1i ≈ t2i, with i ∈ {1, . . . ,m},
cannot be unified and so, 〈t1i ≈ t2i, id〉 AS 〈⊥, id}〉. Therefore:

Rm+2 = 〈p(t11,. . ., t1m)←@(B1,t11≈ t21& . . .&⊥&. . .&t1m≈ t2m&B2);>〉
= 〈p(t11, . . . , t1m)← @(B1,⊥&B2);>〉,
= 〈p(t11, . . . , t1m)← v1&1B1;>〉 ≡ R1

But note that each rule in P is by itself a maximal critical reductant.

Therefore, in both cases the G-reductant of P is a maximal critical re-
ductant of P , after a sequence of unfolding steps. This result can be easily
extended, by recurrence, to programs with finitely many rules. �

The proposition above admits two different readings:

19

1. Improved G-reductants (that is, G-reductants improved by means of
unfolding transformations) are a subset of critical reductants; they are
equivalent to maximal critical reductants;

2. G-reductants, per se, are less efficient than the corresponding maximal
critical reductants and they need to be improved before they are used.

MEJOR COMO SUBSECCIÓN DE LA ANTERIOR

5.3. Problems related to the computation of reductants
In this section, we will firstly focus on the problem of estimating how

many reductants one has to take into account in a multi-adjoint program
in order to preserve the approximate completeness of the framework. The
discussion will be driven by means of a small but significant example.

Example 3. Given the program

P = {R1 : 〈p(a, Y, Z)←; v1〉,R2 : 〈p(X, b, Z)←; v2〉,R3 : 〈p(X, Y, c)←; v3〉}

one can compute the following reductants, according to the corresponding sets
of critical rules:

• Set of critical rules {R1,R2}: Red1 ≡ 〈p(a, b, Z)← sup{v1, v2};>〉,

• Set of critical rules {R1,R3}: Red2 ≡ 〈p(a, Y, c)← sup{v1, v3};>〉,

• Set of critical rules {R2,R3}: Red3 ≡ 〈p(X, b, c)← sup{v2, v3};>〉,

• Set of critical rules {R1,R2,R3}: Red4 ≡ 〈p(a, b, c)← sup{v1,v2,v3};>〉.
Note that this is a maximal reductant.

Some derivations that can be performed with the original program P and
the goal p(a, b, Z) are:

• 〈p(a, b, Z); id〉 R1 AS 〈v1; {Y1/b, Z/Z1}〉 with f.c.a., fca1, 〈v1; {Z/Z1}〉,

• 〈p(a, b, Z); id〉 R2 AS 〈v2; {X1/a, Z/Z1}〉 with f.c.a., fca2, 〈v2; {Z/Z1}〉,

• 〈p(a, b, Z); id〉 R3 AS 〈v3; {X1/a, Y1/b, Z/c}〉 with f.c.a., fca3, 〈v3; {Z/c}〉.

20

It is worth to state that the fuzzy computed answers fca1 and fca2 are
problematic, because they compute the same answer substitution but with dif-
ferent truth degrees. From this, by soundness theorem, it can be inferred that
〈v1; {Z/Z1}〉 and 〈v2; {Z/Z1}〉 are both correct answers and, therefore, the
correct answer 〈sup{v1, v2}; {Z/Z1}〉, which is better than the preceding cor-
rect answers, cannot be computed by the operational mechanism. In order
to solve this problem it is necessary to complete P with the reductant Red1.
Now the following derivation computes the missing fuzzy computed answer

〈p(a, b, Z); id〉Red1 AS 〈sup{v1, v2}; {Z/Z1}〉.

On the other hand, note that just including the unique maximal reductant
Red4 (disregarding the other reductants of P) does not solve the problem. The
only leading derivation in this case is: 〈p(a, b, Z); id〉Red4 AS 〈sup{v1, v2, v3}; {Z/c}〉,
computing the fuzzy computed answer 〈sup{v1, v2, v3}; {Z/c}〉 but not the cor-
rect answer 〈sup{v1, v2}; {Z/Z1}〉.

It is easy to give similar arguments justifying the need of reductants Red2
and Red3, by studying admissible computations for the program P and the
goals p(a, Y, c)) and p(X, b, c), respectively.

Finally, if we consider the goal p(a, b, c) and the program P, it is possible
to obtain the following one step derivations:

• 〈p(a, b, c); id〉 R1 AS 〈v1; {Y1/b, Z1/c}〉 with f.c.a., fca4, 〈v1; id〉,

• 〈p(a, b, c); id〉 R2 AS 〈v2; {X1/a, Z1/c}〉 with f.c.a., fca5, 〈v2; id〉,

• 〈p(a, b, c); id〉 R3 AS 〈v3; {X1/a, Y1/b}〉 with f.c.a., fca6, 〈v3; id〉.

The fuzzy computed answers fca4, fca5 and fca6 are correct answers as well
and, by definition, this leads to the existence of the correct answer 〈sup{v1, v2,
v3}; id〉. As a result, it is necessary to extend P with the reductant Red4, in
order to compute it: 〈p(a, b, c); id〉Red4 AS 〈sup{v1, v2, v3}; id〉. �

The previous example shows that all the reductants of a program (associated
with the different sets of critical rules) are necessary for preserving the (ap-
proximate) completeness of the multi-adjoint logic programming framework.
Moreover, it can be seen as a counter-example to the statement claiming
that, “it is only necessary to extend a multi-adjoint program with a signi-
ficative subset of its reductants to preserve completeness”. Hence, we have

21

to compute all the (critical) reductants associated with a program and not
only the maximal critical reductants (that is, the improved G-reductants) if
we want to maintain the (approximate) completeness. Therefore, as we are
arguing, it is not an option to use just G-reductants, if we only compute the
G-reductants, in general, the completeness result is lost.

6. Computing Reductants

We have just seen that a multi-adjoint program should contain all its
reductants in order to preserve the approximate completeness property. Here,
we describe an efficient algorithm for computing all the reductants associated
with a multi-adjoint program.

Our algorithm takes a program P and, by computing what we call a set of
unifiable configurations, outputs the set of associated reductants. A unifiable
configuration is a pair made up of a set of critical rules (that is, rules with
unifiable head atoms), jointly with the m.g.u. of their heads.

Definition 6.1. Let P be a multi-adjoint program and let C = {〈H1←Q1;α1〉,
. . . , 〈Hn←Qn;α1〉} be a set of critical rules of P with θ = mgu{H1, . . . , Hn}.
Then, the pair 〈C, θ〉 is a unifiable configuration. We say that a configuration
is initial if C = {R}, with R ∈ P, and θ = id. If C = ∅ and θ = id we say
that the configuration is null.

Example 4. Given the program of Example 3,

〈{〈p(a, Y, Z)←; v1〉, 〈p(X, b, Z)←; v2〉}, {X/a, Y/b}〉

is a unifiable configuration, where the substitution {X/a, Y/b} is the m.g.u.
of p(a, Y, Z) and p(X, b, Z). On the other hand, 〈{〈p(a, Y, Z)←; v1〉}, id〉 is
an initial configuration. �

Note that, for a program P , the sets of critical rules belong to the pow-
erset of P . Therefore, the sets of unifiable configurations can be ordered by
inclusion and depicted using a Hasse diagram. Also, starting from the null
configuration, we can organize the configurations by levels in such a way that
if 〈C, θ〉 is a configuration in level N , then the cardinality |C| = N . It is
worth to remark that the configurations in level N can be obtained by joining
all pairs of configurations in level N − 1.

22

Our algorithm takes the set of initial configurations as the starting point
to generate the final set of configurations. It repeatedly generates the config-
uration subsets in the level N (subsets of cardinality N) from the unifiable
configuration subsets in the level N − 1 (subsets of cardinality N − 1). Sub-
sequently, the subsets of the new level are tested for unifiability. If they are
unifiable the configuration is stored; otherwise, it is discarded. The process
continues until either there are not unifiable configuration subsets in the new
level N or it is a singleton.

Algorithm 1.
Input: A Program P = {R1, . . . ,Rn}.
Output: A set UnifConfs of unifiable configurations of P.
Initialization: UnifConfs := ∅;

CurrentLevel := {〈{Ri}, id〉 | 1 ≤ i ≤ n};
Repeat

NextLevel := ∅;

%% built next level

Let CurrentLevel = {〈Ci, θi〉 | 1 ≤ i ≤ k},

For each Ci and Cj, in CurrentLevel, do

1. built the new configuration NewConf := 〈Ci ∪ Cj , θij〉
if θij = mgu(Ci ∪ Cj) 6= fail;

2. if NewConf 6⊆ NextLevel then NextLevel := NextLevel ∪ {NewConf};

endFor

UnifConfs := UnifConfs ∪ NextLevel;

CurrentLevel := NextLevel;

until CurrentLevel := ∅ or CurrentLevel is a singleton
Return UnifConfs

Once the set of unifiable configurations has been generated, the reduc-
tants of P are built by taking each configuration in UnifConfs and applying
Definition 4.2.

In the rest of the section, we give some notes on the complexity and
feasibility of this algorithm.

23

Assume a program with d definite predicates and an average of n rules
defining one of those predicates. Then, for each definite predicate we have
a set S formed by n rules and, in the worst case, we have to inspect all the
elements (configurations) of the powerset of S, except the bottom and the
singleton elements (initial configurations). If we order the elements of S by
inclusion, any level l of the corresponding Hasse diagram contains all the
subsets of S formed by the combinations of size l taken from S. Therefore,
under the previous assumptions, the number of unification problems to be
solved is

d×
n∑

l=2

n!

(n− l)! l!

ARREGLAR ESTE PÁRRAFO (DEMASIADO INFORMAL) Comput-
ing all the reductants associated with a multi-adjoint program is something
feasible due to the programming style in the context of a logic programming
language. In this domain area, programs are composed by definite predicates
whose definitions consist of a reduced number of rules (usually, not more than
four or five rules), hence the number of configurations to be inspected is very
limited for each definite predicate. Moreover, using a minimally sophisticated
algorithm like ours, it is possible to avoid the inspection (and the generation)
of a great number of those configurations which are not really unifiable.

On the other hand, an additional thing to be taken into account is that,
in the field of logic programming it is common to use a pattern matching
programming technique, what usually leads to rules whose heads do not unify.
To the best of our knowledge, no algorithm has been previously developed
to compute (all) the reductants of a program and, hence, it is not possible
to make a thorough comparison between any other algorithm for computing
reductants and the one introduced in this paper.

Summarizing, we have defined an algorithm for computing reductants
that, from the very beginning, detects and discards configurations which are
not unifiable. This way, the algorithm limits the number of unification steps
which are needed to build reductants, gaining efficiency as much as possible.

7. Conclusions

We have revisited the notion of reductant in the framework of multi-
adjoint logic programming. After surveying the different notions of reductant

24

appeared in this field, we have defined the concept of a set of critical rules
and a new notion of reductant.

Significantly, the new notion of reductant allows for recovering approxi-
mate completeness by including just finitely many critical reductants; con-
trariwise to that happens with the previous notions proposed in the literature,
which generate infinitely many of them. We have studied some of the formal
properties of the new notion of reductant and its relationships with other
notions of reductant. Specifically, we have proved that, as expected, any
model of P is also a model of their critical reductants. However, the con-
verse property does not hold in general, but under very restrictive conditions.
We have proved that any G-reductant can be transformed into a maximal
critical reductant by using unfolding transformations. We have also shown,
by means of a small but significative example, that it is necessary to com-
pute all the reductants associated with a multi-adjoint logic program (and
not only a significative subset of them: e.g., its maximal critical reductants).
These reductants must be attached to the program in order to preserve the
approximate completeness property of the multi-adjoint logic programming
framework. Furthermore, we have proposed an efficient algorithm to compute
all the reductants of a multi-adjoint logic program.

As future work, more properties of critical reductants have to be studied
together with the computation of the minimal model of a program from
critical reductants. In addition, the influence of the use of critical reductants
in the tabling procedure of [3] will also be studied.

Acknowledgements
The authors have been partially supported, respectively, by the Spanish MICINN

projects TIN2013-45732-C4-2-P, TIN2012-39353-C04-01, and TIN2012-39353-C04-04.

References

[1] J. F. Baldwin, T. P. Martin, and B. W. Pilsworth. Fril-Fuzzy and Evi-
dential Reasoning in Artificial Intelligence. John Wiley & Sons, 1995.

[2] T. H. Cao and N. V. Noi. A framework for linguistic logic programming.
Intl Journal of Intelligent Systems 25(6):559–580, 2010.

[3] C. V. Damásio, J. Medina, and M. Ojeda-Aciego. A tabulation proof
procedure for first-order residuated logic programs: Soundness, com-

25

pleteness and optimizations. In Proc. of the Intl Conf on Fuzzy Systems,
FUZZ-IEEE, pages 2004–2011, 2006.

[4] P. Eklund, M. Galán, R. Helgesson, J. Kortelainen, G. Moreno, and
C. Vázquez. Towards categorical fuzzy logic programming. Lect Notes
in Computer Science 8256:109–121, 2013.

[5] P. Eklund and F. Klawonn. Neural fuzzy logic programming. IEEE
Transactions on Neural Networks, 3(5):815–818, 1992.

[6] S. Guadarrama, S. Muñoz, and C. Vaucheret. Fuzzy prolog: A new
approach using soft constraints propagation. Fuzzy Sets and Systems,
144(1):127–150, 2004.

[7] P. Hájek. Metamathematics of fuzzy logic. Springer, 1998.

[8] M. Ishizuka and N. Kanai. Prolog-ELF Incorporating Fuzzy Logic. Proc.
of the 9th Intl Joint Conf on Artificial Intelligence (IJCAI’85), pages
701–703. Morgan Kaufmann, 1985.

[9] N. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice-Hall, 1993.

[10] P. Julián-Iranzo, J. Medina, and M. Ojeda-Aciego. Revisiting reductants
in the multi-adjoint logic programming framework. Lecture Notes in
Artificial Intelligence 8761:694–702, 2014.

[11] P. Julián, G. Moreno, and J. Penabad. On Fuzzy Unfolding. A Multi-
adjoint Approach. Fuzzy Sets and Systems 154:16–33, 2005.

[12] P. Julián, G. Moreno, and J. Penabad. An Improved Reductant Calculus
using Fuzzy Partial Evaluation Techniques. Fuzzy Sets and Systems
160:162–181, 2009.

[13] M. Kifer and V. Subrahmanian. Theory of generalized annotated
logic programming and its applications. Journal of Logic Programming
12:335–367, 1992.

[14] S. Krajči, R. Lencses, and P. Vojtáš. A comparison of fuzzy and an-
notated logic programming. Fuzzy Sets and Systems 144(1):173–192,
2004.

26

[15] T. Kuhr and V. Vychodil. Fuzzy logic programming reduced to reasoning
with attribute implications. Fuzzy Sets and Systems 262:1–20, 2015.

[16] V. H. Le, F. Liu, and D. K. Tran. Fuzzy linguistic logic programming
and its applications. Theory and Practice of Logic Programming 9:309–
341, 2009.

[17] J. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.
Second edition.

[18] J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Similarity-based unification:
a multi-adjoint approach. Fuzzy Sets and Systems 146(1):43–62, 2004.

[19] P. Morcillo and G. Moreno. A practical approach for ensuring com-
pleteness of multi-adjoint logic computations via general reductants. In
Proc. of IX Jornadas sobre Programación y Lenguajes, PROLE’09, San
Sebastián, Spain, pages 355–363. 2009. (ISBN 978-84-692-4600-9).

[20] P. Morcillo and G. Moreno. Improving completeness in multi-adjoint
logic computations via general reductants. In Proc. of 2011 IEEE Sym-
posium on Foundations of Computational Intelligence, Paris, France,
pages 138–145. IEEE, 2011.

[21] P. Morcillo and G. Moreno. Simplifying general reductants with
unfolding-based techniques. In Proc. of XI Jornadas sobre Programación
y Lenguajes, PROLE’11, A Coruña, Spain, pages 154–168, 2011. (ISBN
978-84-9749-487-8)

[22] G. Moreno and V. Pascual. A hybrid programming scheme combin-
ing fuzzy-logic and functional-logic resources. Fuzzy Sets and Systems
160(10):1402 – 1419, 2009.

[23] A. Pettorossi and M. Proietti. Rules and Strategies for Transforming
Functional and Logic Programs. ACM Computing Surveys 28(2):360–
414, 1996.

[24] P. Vojtáš. Fuzzy Logic Programming. Fuzzy Sets and Systems
124(1):361–370, 2001.

[25] H. Yasui, Y. Hamada, and M. Mukaidono. Fuzzy prolog based on
Lukasiewicz implication and bounded product. In Proc. of Intl Conf
on Fuzzy Systems FUZZ-IEEE, pages 949–954, 1995.

27

