
Revisiting reductants in the multi-adjoint logic
programming framework ?

P. Julián-Iranzo1, J. Medina2, and M. Ojeda-Aciego3

1 Universidad de Castilla-La Mancha. Dept. Information Technologies and Systems.
2 Universidad de Cádiz. Dept. de Matemáticas

3 Universidad de Málaga. Dept. de Matemática Aplicada

Abstract. Reductants are a special kind of fuzzy rules which consti-
tute an essential theoretical tool for proving correctness properties. A
multi-adjoint logic program, when interpreted on an arbitrary lattice,
has to include all its reductants in order to preserve the approximate
completeness property.
In this work, after revisiting the different notions of reductant arisen in
the framework of multi-adjoint logic programming and akin frameworks,
we introduce a new, more adequate, notion of reductant in the context
of multi-adjoint logic programs. We study some of its properties and give
an efficient algorithm for computing all the reductants associated with a
multi-adjoint logic program.

Keywords: Fuzzy Logic Programming, Multi-adjoint Logic Program-
ming, Reductants.

1 Introduction

Fuzzy extensions of the logic programming paradigm have been investigated
since the late eighties and the decade of the nineties [1, 4, 7, 11, 22]; later, some
general frameworks were introduced and their interrelationships were studied
[2, 5, 12, 14, 19, 21]; currently, one can still find papers on the subject of fuzzy
logic programming, some of them even from the perspective of category theory,
which address important issues in this topic [3, 13, 17]. This work focuses on
multi-adjoint logic programming [15] and, specifically, on the most adequate
notion of reductant for a logic program.

Multi-adjoint logic programming is a flexible framework combining fuzzy logic
and logic programming. Roughly speaking, a multi-adjoint logic program can be
seen as a set of implicational rules annotated by a truth degree (a value of a
complete lattice). One of the main features of the multi-adjoint framework is its
flexibility, in that rules need not be written with a common implications, and
the most suitable one can be used instead; another important feature is that
it works even when the conjunctors used in the body of the rules are neither
commutative or associative.
? Partially supported by the Spanish MICINN projects TIN2012-39353-C04-01, TIN2012-39353-

C04-04, TIN2011-25846 and the Spanish Ministry of Economy and Competition under grant
TIN2013-45732-C4-2-P.

Reductancts were first introduced in the context of generalized annotated
logic programming [11] in order to deal with problems related to incomplete-
ness. The multi-adjoint logic programming paradigm has to deal with a similar
problem of incompleteness that may arise when programs are interpreted in a
non-linear lattice. Specifically, it might be not possible to compute the greatest
correct answer (for a given goal and program) due to the existence of incom-
parable elements in (L,�), see [15]. As a result, multi-adjoint programs need
to incorporate a special kind of rules, called reductants, in order to preserve the
(approximate) completeness property, and this introduces severe penalties in the
implementation of efficient multi-adjoint logic programming systems, since not
only the size of programs increases but also their execution time. Moreover, the
original definitions of reductants often produce infinitely many reductants for
some programs. Therefore, if we want to develop complete and efficient imple-
mentation systems for the multi-adjoint logic framework, it is essential to define
more accurate notions of reductants and methods for optimizing their computa-
tion.

In this work, after revisiting different notions of reductant proposed for multi-
adjoint programs, we define a new, more adequate, notion of reductant. We study
some of its formal properties and give an efficient algorithm for computing all
the reductants associated with a multi-adjoint logic program.

2 Syntax and Semantics of Multi-adjoint Logic Programs

We will work with a first order language, L, containing variables, function sym-
bols, predicate symbols, constants, the classical quantifiers (∀ and ∃), and several
(arbitrary) connectives in order to increase language expressiveness.

In our fuzzy setting, we assume a number of implication connectives (←i) to-
gether with other connectives, so-called “aggregators” (usually denoted @j), used
to build the bodies of the rules. The general definition of aggregation operators
subsumes conjunctive operators (denoted by &k), disjunctive operators (∨l), and
average and hybrid operators. The truth function for an n-ary aggregation op-
erator1 @ : Ln → L is required to be monotone and fulfill @(>, . . . ,>) = >,
@(⊥, . . . ,⊥) = ⊥. The underlying set of truth-values is assumed to be a com-
plete lattice L together with a collection of adjoint pairs intended to produce
the evaluation of modus ponens [6].

A rule is a formula H ←i B, where H is an atomic formula (usually called the
head) and B (which is called the body) is a formula built from atomic formulas
B1, . . . , Bn, n ≥ 0, truth values of L and aggregation operators. Rules whose
body is > are called facts (usually, we will represent a fact as a rule with an
empty body). A goal is a body submitted as a query to the system. Variables in a
rule are assumed to be universally quantified. Roughly speaking, a multi-adjoint
logic program is a set of pairs 〈R;α〉, where R is a rule and α is a weight, usually
assigned by an expert.
1 Note that, as no confusion arises, we use the same notation for a formal function
symbol and its semantic meaning.

2

Formulas are interpreted on a multi-adjoint lattice. In this framework, it is
sufficient to consider Herbrand interpretations, in order to define a declarative
semantics. See [15] for a formal characterization of a fuzzy interpretation, I, as
a mapping from the Herbrand base, BL, into the multi-adjoint lattice of truth
values L and a notion of evaluation and satisfiability of formulas.

The procedural semantics can be formalized as an operational phase followed
by an interpretive one. The operational phase uses a residuum-based general-
ization of modus ponens [6] that, given an atomic goal A and a program rule
〈H←iB; v〉, if there is a most general unifier substitution θ = mgu({A = H})
the atom A is substituted by the expression (v&iB)θ. In the following, we write
C[A] to denote a formula where A is a sub-expression (usually an atom) occuring
in the—possibly empty—context C[]. Moreover, C[A/H] means the replacement
of A by H in context C[]. Also we use Var(s) for referring to the set of variables
occurring in the syntactic object s, whereas θ[Var(s)] denotes the substitution
obtained from θ by restricting its domain, Dom(θ), to Var(s).

Definition 1 (Admissible Steps). Let Q be a goal and let σ be a substitution.
The pair 〈Q;σ〉 is a state and we denote by E the set of states. Given a pro-
gram P, an admissible computation is formalized as a state transition system,
whose transition relation AS ⊆ (E × E) is the smallest relation satisfying the
following admissible rules (where we consider that A is the selected atom in Q):

1) 〈Q[A];σ〉 AS〈(Q[A/v&iB])θ;σθ〉 if θ = mgu({H = A}), 〈H←iB; v〉 in P.
2) 〈Q[A];σ〉 AS〈(Q[A/⊥]);σ〉 if there is no rule in P whose head unifies A.

Formulas involved in admissible computation steps are renamed apart before
being used. The symbols +

AS and ∗AS denote, respectively, the transitive
closure and the reflexive, transitive closure of AS .

Definition 2. Let P be a program and let Q be a goal. An admissible derivation
is a sequence 〈Q; id〉 ∗AS 〈Q′; θ〉. When Q′ is a formula not containing atoms,
the pair 〈Q′;σ〉, where σ = θ[Var(Q)], is called an admissible computed answer
(a.c.a.) for that derivation.

If we exploit all atoms of a goal, by applying admissible steps as much as
needed during the operational phase, then it becomes a formula with no atoms
which can be then directly interpreted in the multi-adjoint lattice L.

Definition 3 (Interpretive Step). Let P be a program, Q a goal and σ a sub-
stitution. We formalize the notion of interpretive computation as a state transi-
tion system, whose transition relation IS⊆ (E ×E) is the smallest one satisfy-
ing: 〈Q[@(r1, . . . , rn)];σ〉 IS〈Q[@(r1, . . . , rn)/v];σ〉, where v is the truth value
obtained after evaluating @(r1, . . . , rn) in the lattice 〈L,�〉 associated with P.

Definition 4. Let P be a program and 〈Q;σ〉 an a.c.a., that is, Q is a goal not
containing atoms. An interpretive derivation is a sequence 〈Q;σ〉 ∗IS 〈Q′;σ〉.
When Q′ = r ∈ L, 〈L,�〉 being the lattice associated with P, the state 〈r;σ〉 is
called a fuzzy computed answer (f.c.a.) for that derivation.

3

We denote by +
IS and ∗IS the transitive closure and the reflexive, transitive

closure of IS , respectively. Also note that, sometimes, when it is not important
to pay attention on the substitution component of a f.c.a. 〈r; θ〉 (maybe, because
θ = id) we shall refer to the value component r as the “f.c.a.”.

3 Different notions of reductant

In this section we survey the different notions of reductants raised over the last
years in the field of fuzzy logic programming, describing some of their features
which are important for the present work.

The original notion of reductant appeared in the framework of generalized
annotated logic programming [11] was initially adapted to the multi-adjoint logic
programming framework in the following terms [15]:

Definition 5 (Reductant). Let P be a program, A a ground atom, and the
(non empty) set of rules {〈Ci←i Bi; vi〉 | 1 ≤ i ≤ n} in P whose head matches
with A (i.e., for each Ci there exists a θi such that A = Ciθi). A reductant for
A in P is a rule 〈A← @(B1, . . . ,Bn)θ;>〉 where θ = θ1 · · · θn, the connective
← is any implication with an adjoint conjunctor, and the truth function for the
intended aggregator @ is defined as @(b1, . . . , bn) = sup{v1&1b1, . . . , vn&nbn}.

This notion was introduced as a valuable theoretical tool for proving the (approx-
imate) completeness property of the multi-adjoint logic programming framework.
It is worth to note that, contrariwise to the original definition of a reductant
in [11], which is uniquely linked with a program, this one is linked to a ground
atom and a program.

In order to preserve the approximate completeness property, it is necessary to
construct the “completion” of a program, extending it with all their reductants.
So, if one has to compute all the reductants associated with a program, all the
atoms of the Herbrand base of that program, which might be infinite, should
be taken into account. Hence, although this notion of reductant is theoretically
valuable may easily turn impractical because of its potential non-termination.
Therefore, it was soon clear that if we wanted to implement complete systems
we needed a new notion of reductant leading to finite completions and producing
reductants able to be executed more efficiently.

An alternative version of reductant, named PE-reductant, has been pro-
posed in the literature [10] using partial evaluation techniques [8]. Despite PE-
reductants may improve the efficiency of multi-adjoint computations they do
not overcome the need to compute an infinite number of reductants, since they
continue linked to the Herbrand base of ground atoms.

As a step further in the path of trying to avoid the proliferation of an infinite
number of reductants, in [16, 17], a new notion named G-reductant was intro-
duced. The aim was that a single generalized reductant was required to cover
all the (possibly infinite) calls to atoms headed by a specific predicate symbol
defined in a program.

4

Definition 6 (G-Reductant). Given a program P and a definite predicate p
in P, a G-reductant for the predicate p in P is a rule

〈p(X1, . . . , Xm)← @(θ̂1&B1, . . . , θ̂n&Bn);>〉

where

– {〈Ci←i Bi; vi〉 | 1 ≤ i ≤ n} is the non-empty set of rules such that every Ci is
an instance of p(X1, . . . , Xm) via the substitution θi = {X1/ti1, . . . , Xm/tim}.

– θ̂i ≡ (X1 ≈ ti1& · · ·&Xm ≈ tim) with ≈ being a unification operator defined
by the rule R≈ ≡ 〈X ≈ X;>〉, which is considered to be included in every
multi-adjoint program.

– the connective ← is any implication with an adjoint conjunction &, and the
truth function for the intended aggregator @ is the same as in Definition 5.

Observe that, although only finitely many G-reductants are generated for a given
program (just one for each definite predicate in the program), due to the fact
that they are built in a non-evaluated form, computing with this kind of re-
ductants becomes inefficient. By this reason, in [18], unfolding-based techniques
were applied for simplifying general reductants: the idea was to perform compu-
tational steps on the body of G-reductants, at transformation time, in order to
improve their efficiency at execution time.

Despite the accomplishments obtained by these transformation techniques,
the overall process is little intuitive and, what is worst, it does not guarantee
the approximate completeness of a multi-adjoint logic programming framework.

4 A new notion of reductant: sets of critical rules

In this section we propose a new notion of reductant, once again in the line
of [11], aiming at solving the aforementioned problems inherent to the other
notions of reductant. We seek a new notion of reductant such that:

1. is not attached to a certain kind of goals for its computation,
2. can be computed efficiently, and
3. there is no need to consider infinitely many of them.

To begin with, we will informally discuss the underlying idea, and then pro-
ceed with the formal definition. Firstly, note that the need of using reductants
arises when for a program P and an atom A (with or without variables) launched
as a goal, there exist different derivations leading to fuzzy computed answers
with the same computed substitution but leading to incomparable truth-values:
〈v1; θ〉, . . . , 〈vn; θ〉. In this case, 〈sup{v1, . . . , vn}; θ〉 can be proven to be a fuzzy
correct answer which not computed by the operational mechanism.

To better understand this problem and to identify its source, we must investi-
gate whether there exists some relationship between the program rules that take
part in the derivations that cause the problem. To simplify the discussion, we an-
alyze just the plain situation of a program containing two fact rulesR1 ≡ 〈H1, a〉,

5

R2 ≡ 〈H2, b〉, where a and b are incomparable elements of a partially ordered
multi-adjoint lattice, and a non-ground atom A launched as a goal to be solved.
In order to reproduce the problem it should be possible to perform admissible
steps both with R1 and R2 computing the fuzzy computer answers 〈a; θ〉 and
〈b; θ〉 respectively. But this is only possible if the heads of R1 and R2 unify with
A with the same substitution θ, i.e. if Aθ = H1θ and Aθ = H2θ. Therefore, since
H1θ = H2θ, the heads of R1 and R2 unify. This is an interesting observation
that gives a criterion to decide when a set of rules may cause the problem. In
general the problem may occur when there exist sets of rules in a program whose
heads unify. We shall say that such sets are “sets of critical rules”.

Definition 7 (Critical Rules). Let P be a program, and R1 ≡ 〈H1←B1, v1〉,
and R2 ≡ 〈H2←B2, v1〉 two rules in P that are renamed apart. The rules R1 and
R2 are said to be critical iff H1 and H2 unify, that is, there exists a substitution
θ = mgu{H1, H2} 6≡ fail.

A set of rules in P, is a set of critical rules iff the set of their heads unify.

Note that a set of critical rules is composed by a subset of rules defining a certain
predicate p in P.

Example 1. Let P = {R1 : 〈p(a, g(Z))←1; v1〉,R2 : 〈p(Y, g(Y))←2; v2〉} be a pro-
gram. The rulesR1 andR2 are critical rules, sincemgu{p(a, g(Z)), p(Y, g(Y))} =
{Y/a, Z/a} 6≡ fail. ut

Now we can introduce the new notion of reductant.

Definition 8 (Critical Reductant). Let P be a program and {〈Hi←i Bi; vi〉 |
1 ≤ i ≤ n} a set of critical rules in P with θ = mgu{H1, . . . ,Hn}. Then, the
rule 〈H1θ← @sup(v1&1B1, . . . , vn&nBn)θ;>〉 is a critical reductant of P, where
the connective ← is any implication with an adjoint conjunctor, and the truth
function for the aggregator @sup is the supremum operator.

It is worth to recall that we are assuming an extended language where truth
degrees and adjoint conjunctions are allowed in the body of program rules.

Observe that for programs with finitely many rules there always exist finitely
many critical reductants. If Pp is the set of rules defining a predicate p, the
elements in the powerset of Pp (excluding the empty set and the singletons) are
the candidates to generate critical reductants, but only those which form sets of
critical rules truly generate them. The sets of critical rules ordered by inclusion
form a partially ordered set. The critical reductants obtained from the maximal
elements of that set of sets will be called maximal reductants.

Example 2. For the program P of Example 1 there exists just one reductant,
which is obtained from the maximal set of critical rules {R1,R2}:

〈p(a, g(a))← sup{v1, v2};>〉.

Therefore, this is a maximal reductant.

6

5 Formal properties of critical reductants

In this section we establish some important properties of critical reductants
which are substantive for the correctness of the multi-adjoint logic programming
framework. The first result is a technical lemma, which will be used later.

Lemma 1. Let A be a formula, I an interpretation and θ a substitution. Then
I(A) ≤ I(Aθ).

Proof. Immediate, since I(A) = inf{I(Aξ) | Aξ is a ground instantiation of A},
by definition of interpretation (see [15]), and

{I(Aθξ′) | Aθξ′ is a ground instantiation of A} ⊆
⊆ {I(Aξ) | Aξ is a ground instantiation of A} ut

Proposition 1. If R is a critical reductant of a multi-adjoint program P, then
every interpretation I which is a model of P is also a model of the critical
reductant R, that is, P |= R.

Proof. Firstly note that, by definition of critical reductant (Defn. 8) there must
exist a set S = {〈Hi←i Bi; vi〉 | 1 ≤ i ≤ n} of critical rules in P, whose heads
unify and θ = mgu{H1, . . . ,Hn}, such that

R ≡ 〈H1θ← @sup(v1&1B1, . . . , vn&nBn)θ;>〉.

On the other hand, if an interpretation I is a model of P, it is a model of all
rules in P, and specifically of the critical rules in S. Therefore, by definition of
model (see [15]), we have I(Hi←i Bi) ≥ vi and, by Lemma 1, I(Hiθ←i Biθ) ≥ vi.
Now, applying adjointness, it follows that I(vi&i Biθ) ≤ I(Hiθ) = I(H1θ).

Finally, note that, by the previous lemma, I(H1θ) is a upper bound of the
set {v1&1I(B1θ), . . . , vn&nI(Bnθ)} so

@sup(v1&1I(B1θ), . . . , vn&nI(Bnθ)) ≤ I(H1θ).

therefore, as we are working with residuated implications

I(H1θ← @sup(v1&1B1, . . . , vn&nBn)θ) = >

and we can affirm that I is a model of the reductant R. ut

The converse result is not true in general; in fact, the natural requirement
for it to be true is very restrictive, as we will show later.

Given a program P, the set of the critical reductants of P will be denoted
as PR, and the following result shows a procedure in order to obtain a model
from a reductant program PR.

Proposition 2. Given a multi-adjoint program P and a model I of PR, if
I(A) = inf{I(Aθ) | 〈Aθ← @sup(v1&1B1, . . . , vn&nBn)θ;>〉 is a critical reductant}
then I is a model of P.

7

Proof. Given a rule 〈A←i B; v〉 in P and a model I of PR, we need to prove that
v&iI(B) ≤ I(A). If no critical reductant with head Aθ exist for a substitution θ,
then, by hypothesis, I(A) = > and the inequality is trivially satisfied.

Otherwise, since I is a model of PR, for all critical reductant

〈Aθ← @sup(v1&1B1, . . . , vn&nBn)θ;>〉

the inequality I(@sup(v1&1B1, . . . , vn&nBn)θ) ≤ I(Aθ) holds and so, by Lemma 1,
we have:

v&iI(B) ≤ I(@sup(v1&1B1, . . . , vn&nBn))
≤ I(@sup(v1&1B1, . . . , vn&nBn)θ)
≤ I(Aθ)

for each critical reductant. Consequently, by hypothesis, the result is obtained.

v&iI(B) ≤ inf{I(Aθ) |
〈Aθ← @sup(v1&1B1, . . . , vn&nBn)θ;>〉 is a critical reductant}
= I(A)

ut

The following proposition relates the notion of critical reductant and the
G-reductant developed in [16, 17]. We claim the equivalence between maximal
critical reductants of a multi-adjoint program P and the G-reductants of P, after
a sequence of unfolding steps.

In the context of logic programs, “unfolding” means [20] to transform a pro-
gram rule by replacing it by the set of rules obtained after application of a
computation step (in all its possible forms) on the body of the selected rule.
Unfolding was defined for the multi-adjoint framework in [9].

Let P be a program and R ≡ 〈A ← B; v〉 ∈ P a program rule. Then,
the fuzzy unfolding of program P with respect to rule R is the new program
P ′ = (P r {R}) ∪ U such that: U = {〈Aσ ← B′; v〉 | 〈B; id〉 AS〈B′;σ〉}. Note
that the set U may be a singleton when the unfolding step is performed on an
atom of the body with a predicate at the root which is defined deterministically
by just one rule. Unfolding is a program transformation technique which preserve
semantics.

Proposition 3. Let P be a multi-adjoint program. Any G-reductant of P can be
transformed into a maximal critical reductant of P after a sequence of unfolding
steps.

Proof. Without loss of generality, we first analyze the case of a program P with
a pair of rules, {〈p(t11, . . . , t1m)←1 B1; v1〉, 〈p(t21, . . . , t2m)←2 B2; v2〉} which are
the rules defining a predicate p.

By Definition 6 the program P is extended with a rule R≈ ≡ 〈X ≈ X;>〉
defining the unification operator, ≈, and it is possible to build the G-reductant

R0 ≡ 〈p(X1, . . . , Xm)← @(θ̂1&B1, θ̂2&B2);>〉,

8

where θ̂i ≡ (X1 ≈ ti1& . . .&Xm ≈ tim), i ∈ {1, 2} and @ is given as in Defini-
tion 6.

Note that, when a program P is extended with a rule R≈ ≡ 〈X ≈ X;>〉
defining the unification operator, ≈, a unification process can be simulated by
a derivation where all admisible steps are performed using the rule R≈. Now,
starting fromR0, acting as the unfolded rule, we can built the following unfolding
transformation step with respect to R≈, the unfolding rule, and the subgoal
X1 ≈ t11. In this case 〈X1 ≈ t11, id〉 AS〈>, {X1/t11}〉 and we obtain:

R1 ≡ 〈p(t11, . . . , Xm)← @((>&X2 ≈ t11& . . .&Xm ≈ t1m)&B1,
(t11 ≈ t21& . . .&Xm ≈ t2m)&B2);>〉

Hence, repeating a sequence of unfolding steps on Ri−1 with respect to R≈ and
the subgoal Xi ≈ ti1, for i ∈ {2, . . . ,m}, since 〈X1 ≈ t1i, id〉 AS〈>, {Xi/t1i}〉,
we obtain:

Rm ≡ 〈p(t11, . . . , t1m)← @((>& . . .&>)&B1,
(t11 ≈ t21& . . .&t1m ≈ t2m)&B2);>〉,

Doing some simplifications by applying interpretative steps:

Rm+1 ≡ 〈p(t11, . . . , t1m)← @(B1, (t11 ≈ t21& . . .&t1m ≈ t2m)&B2);>〉,

At this point, we consider two cases:

– The rules in P are critical rules: In this case, by definition, the atoms at the
head of the rules are unifiable, that is, θ = mgu{p(t11,. . .,t1m), p(t21,. . .,t2m)}
6≡ fail. Therefore, is possible the following unfolding sequence of the subgoal
t11 ≈ t21& . . .&t1m ≈ t2m of the body:

〈t11 ≈ t21& . . .&t1m ≈ t2m, id〉 ? 〈>, θ〉.

Then, we can perform the following unfolding transformation of Rm+1:

Rm+2 ≡ 〈p(t11, . . . , t1m)θ← @(B1,>&B2)θ;>〉,
= 〈p(t11, . . . , t1m)θ← @(B1,B2)θ;>〉
= 〈p(t11, . . . , t1m)θ← @sup(v1&1B1, v2&2B2;>〉

On the other hand, because the rules form a critical set of rules, it is possible
to build the maximal critical reductant:

R ≡ 〈p(t11, . . . , t1m)θ← @sup(v1&1B1, v2&2B2)θ;>〉.

which clearly is equivalent to Rm+2.
– The rules in P are not critical rules: In this case, the terms of some subgoal
t1i ≈ t2i, with i ∈ {1, . . . ,m}, cannot be unified and so, 〈t1i ≈ t2i, id〉 AS

〈⊥, id}〉. Therefore:

Rm+2 ≡ 〈p(t11, . . . , t1m)← @(B1, t11≈ t21& . . .&⊥& . . .&t1m≈ t2m&B2);>〉,
= 〈p(t11, . . . , t1m)← @(B1,⊥&B2);>〉,
= 〈p(t11, . . . , t1m)← v1&1B1;>〉 ≡ R1

In this case the rules in P are both maximal critical reductant themself.

9

Therefore, in both cases the G-reductant of P is a maximal critical reductant
of P, after a sequence of unfolding steps. This result can be easily extended, by
recurrence, to programs with a finite arbitrary number of rules.

An important question, given a multi-adjoint program, is to know how many
reductants are necessary to take into account in order to preserve the approxi-
mate completeness of the framework. We focus now on this question, and drive
the discussion by means of one small but significative example.

Example 3. Given the program

P = {R1 : 〈p(a, Y, Z)←; v1〉,R2 : 〈p(X, b, Z)←; v2〉,R3 : 〈p(X,Y, c)←; v3〉}

one can compute the following reductants, according to the corresponding sets
of critical rules:

– Set of critical rules {R1,R2}: Red1 ≡ 〈p(a, b, Z)←sup{v1, v2};>〉, since
mgu{p(a, Y, Z), p(X, b, Z)} = {X/a, Y/b}.

– Set of critical rules {R1,R3}: Red2 ≡ 〈p(a, Y, c)←sup{v1, v3};>〉, since
mgu{p(a, Y, Z), p(X,Y, c)} = {X/a,Z/c}.

– Set of critical rules {R2,R3}: Red3 ≡ 〈p(X, b, c)←sup{v2, v3};>〉, since
mgu{p(X, b, Z), p(X,Y, c)} = {Y/b, Z/c}.

– Set of critical rules {R1,R2,R3}: Red4 ≡ 〈p(a, b, c)←sup{v1, v2, v3};>〉,
since mgu{p(a, Y, Z), p(X, b, Z), p(X,Y, c)} = {X/a, Y/b, Z/c}. Note that
this is a maximal reductant.

Some derivations that can be performed with the original program P and
the goal p(a, b, Z) are:

– 〈p(a, b, Z); id〉 R1 AS 〈v1; {Y1/b, Z/Z1}〉 with fuzzy computed answer, fca1,
〈v1; {Z/Z1}〉.

– 〈p(a, b, Z); id〉 R2 AS 〈v2; {X1/a, Z/Z1}〉 with fuzzy computed answer, fca2,
〈v2; {Z/Z1}〉.

– 〈p(a, b, Z); id〉 R3 AS 〈v3; {X1/a, Y1/b, Z/c}〉 with fuzzy computed answer, fca3,
〈v3; {Z/c}〉.

It is worth to state that the fuzzy computed answers fca1 and fca2 are
problematic, because they compute the same answer substitution but differ-
ent truth degrees. From this, by soundness, it can be inferred that 〈v1; {Z/Z1}〉
and 〈v2; {Z/Z1}〉 are correct answers and, therefore, the existence of a correct
answer 〈sup{v1, v2}; {Z/Z1}〉 with is better than the preceding correct answers,
but not computed by the operational mechanism. In order to solve this problem
it is necessary to complete P with the reductant Red1. Now it is possible the
following derivation: 〈p(a, b, Z); id〉 Red1 AS 〈sup{v1, v2}; {Z/Z1}〉, that computes
the missing fuzzy computed answer.

On the other hand, note that just including the unique maximal reductant
Red4 (disregarding the other reductants of P) does not solve the problem. The

10

only leading derivation in this case is: 〈p(a, b, Z); id〉Red4 AS 〈sup{v1, v2, v3}; {Z/c}〉,
computing the fuzzy computed answer 〈sup{v1, v2, v3}; {Z/c}〉 but not the cor-
rect answer 〈sup{v1, v2}; {Z/Z1}〉.

Finally, if we consider the goal p(a, b, c) and the program P, it is possible to
obtain the following one step derivations:

– 〈p(a, b, c); id〉 R1 AS 〈v1; {Y1/b, Z1/c}〉 with fuzzy computed answer, fca4,
〈v1; id〉.

– 〈p(a, b, c); id〉 R2 AS 〈v2; {X1/a, Z1/c}〉 with fuzzy computed answer, fca5,
〈v2; id〉.

– 〈p(a, b, c); id〉 R3 AS 〈v3; {X1/a, Y1/b}〉 with fuzzy computed answer, fca6,
〈v3; id〉.

The fuzzy computed answers fca4, fca5 and fca6 are correct answers as well, and
this leads, by definition, to the existence of the correct answer 〈sup{v1, v2, v3}; id〉.
This makes necessary the extension of P with the reductant Red4 in order to
compute it: 〈p(a, b, c); id〉Red4 AS 〈sup{v1, v2, v3}; id〉, ut

The previous example shows that all reductants of a program (associated with
the different sets of critical rules) are necessary for preserving the (approximate)
completeness of the multi-adjoint logic programming framework. Also, it can be
seen as a counter-example to the statement claiming that, “it is only necessary
to extend a multi-adjoint program with a significative subset of its reductants
to preserve completeness”.

6 Computing Reductants

In the last section we justified that a multi-adjoint program has to include all
its reductants in order to preserve the approximate completeness property. Here,
we describe an efficient algorithm for computing all the reductants associated
with a multi-adjoint program.

Our algorithm takes a program P and, by computing what we call a set of
unifiable configurations, it delivers the set of associated reductants. A unifiable
configuration is a pair made up of a set of critical rules (that is, rules with
unifiable head atoms), jointly with the m.g.u. of their heads.

Definition 9. Let P be a multi-adjoint program and let C = {〈H1←Q1;α1〉,
. . . , 〈Hn←Qn;α1〉} be a set of critical rules of P with θ = mgu{H1, . . . ,Hn}.
Then, the pair 〈C, θ〉 is a unifiable configuration. We say that a configuration is
initial if C = {R}, with R ∈ P, and θ = id. If C = ∅ and θ = id we say that
the configuration is null.

Example 4. Given the program of Example 3,

〈{〈p(a, Y, Z)←; v1〉, 〈p(X, b, Z)←; v2〉}, {X/a, Y/b}〉

11

is a unifiable configuration, where the substitution {X/a, Y/b} is the m.g.u. of
p(a, Y, Z) and p(X, b, Z). On the other hand, 〈{〈p(a, Y, Z)←; v1〉}, id〉 is an initial
configuration. ut

Note that, for a program P the sets of critical rules belong to the powerset of P.
Therefore, the sets of unifiable configurations can be ordered by inclusion and
organized in a Hasse diagram. Also, starting from the null configuration we can
organize the configurations by levels. If 〈C, θ〉 is a configuration in level N , then
|C| = N . It is noteworthy that the configurations in the level N can be obtained
by joining all pairs of configurations in the level N − 1.

Our algorithm takes the set of initial configurations as a basis to generate
the final set of configurations. It repeatedly generates the configuration subsets
in the level N (subsets of cardinality N) from the unifiable configuration subsets
in the level N − 1 (subsets of cardinality N − 1). Concurrently, the subsets of
the new level are tested to be unifiable. If they are unifiable the configuration
is stored; otherwise, it is discarded. The process continues until either there are
not unifiable configuration subsets in the new level N or it is a singleton.

Algorithm 1
Input: A Program P = {R1, . . . ,Rn}.
Output: A set UnifConfs of unifiable configuration of P.
Initialization: UnifConfs := ∅;

CurrentLevel := {〈{Ri}, id〉 | 1 ≤ i ≤ n};
Repeat

NextLevel := ∅;
%% built next level
Let CurrentLevel := {〈Ci, θi〉 | 1 ≤ i ≤ k},
For each Ci and Cj, in CurrentLevel, do
1. built the new configuration NewConf := 〈Ci ∪ Cj , θij〉

if θij = mgu(Ci ∪ Cj) 6≡ fail;
2. if NewConf 6⊆ NextLevel then NextLevel := NextLevel ∪ {NewConf};

endFor
UnifConfs := UnifConfs ∪ NextLevel;
CurrentLevel := NextLevel;

until CurrentLevel := ∅ or CurrentLevel is a singleton
Return UnifConfs

Once the set of unifiable configurations has been generated, the reductants of
P are built by taken each configuration in UnifConfs and applying Definition 8.

In the rest of the section, we give some notes on the complexity and feasibility
of this algorithm.

Assume a program with d definite predicates and an average of n rules defin-
ing one of those predicates. Then, for each definite predicate we have a set S
formed by n rules and, in the worst case, we have to inspect all the elements
(configurations) of the powerset of S, except the bottom element and the sin-
gleton elements (initial configurations). If we use a Hasse diagram to order the
elements of S by inclusion, a level l of the diagram contains all the subsets of S

12

formed by the combinations of size l taken from S. Therefore, under the previous
assumptions, the number of unification problems to be solved is:

d×
n∑

l=2

n!

(n− l)! l!

Computing all the reductants associated with a multi-adjoint program is some-
thing feasible due to the programming style in the context of a logic programming
language. In this domain area programs a composed by definite predicates whose
definitions consist of a reduced number of rules (usually, not more than four or
five rules), hence the number of configurations to be inspected is very limited
for each definite predicate. Moreover, using a minimally sophisticated algorithm
like ours, it is possible to avoid the inspection (and the generation) of a great
number of those configurations which are not really unifiable.

On the other hand, an additional thing to be taken into account is that, in the
field of logic programming is common to use a pattern matching programming
technique, what usually leads to rules whose heads do not unify.

7 Conclusions

We have revisited the concept of a reductant in the framework of multi-adjoint
logic programming. After presenting a summary of the different notions of reduc-
tant appeared in this field, we have defined the concept of a set of critical rules
and a new notion of reductant. Significantly, the new notion of reductant allows
for recovering approximate completeness by including just finitely many criti-
cal reductants; contrariwise to that happens with the previous notions proposed
in the literature, which generate infinitely many of them. We have studied the
formal properties of the new notion of reductant and some of its relationships
with other notions of reductant. Specifically, we have proved that, as expected,
any model of P is also a model of their critical reductants; however, the con-
verse is not always the case, which only holds under very restrictive conditions,
finally, we have proved that any G-reductant can be transformed into a critical
reductant by using unfolding transformations.

In the final section, we have shown, by means of small but significative ex-
amples, that it is necessary to compute all the reductants associated with a
multi-adjoint logic program (and not only its maximal reductants). These re-
ductants must be attached to the program in order to preserve the approximate
completeness property of the multi-adjoint logic programming framework. Also
we have proposed an efficient algorithm to compute all the reductants of a multi-
adjoint logic program.

As future work, more properties of critical reductants have to be studied
together with the computation of the minimal model of a program from critical
reductants. In addition, the influence of the use of critical reductants in the
tabling procedure will also be studied.

13

References

1. J. F. Baldwin, T. P. Martin, and B. W. Pilsworth. Fril- Fuzzy and Evidential
Reasoning in Artificial Intelligence. John Wiley &; Sons, Inc., 1995.

2. T. H. Cao and N. V. Noi. A framework for linguistic logic programming. Interna-
tional Journal of Intelligent Systems, 25(6):559–580, 2010.

3. P. Eklund, M. Galán, R. Helgesson, J. Kortelainen, G. Moreno, and C. Vázquez.
Towards categorical fuzzy logic programming. In F. Masulli, G. Pasi, and R. Yager,
editors, Fuzzy Logic and Applications, volume 8256 of Lecture Notes in Computer
Science, pages 109–121. Springer International Publishing, 2013.

4. P. Eklund and F. Klawonn. Neural fuzzy logic programming. Neural Networks,
IEEE Transactions on, 3(5):815–818, 1992.

5. S. Guadarrama, S. Muñoz, and C. Vaucheret. Fuzzy prolog: A new approach using
soft constraints propagation. Fuzzy Sets and Systems, 144(1):127–150, 2004.

6. P. Hájek. Metamathematics of fuzzy logic, volume 4. Springer, 1998.
7. M. Ishizuka and N. Kanai. Prolog-ELF Incorporating Fuzzy Logic. In A. K. Joshi,

editor, Proc. of the 9th International Joint Conference on Artificial Intelligence
(IJCAI’85). Los Angeles, CA, USA, pages 701–703. Morgan Kaufmann, 1985.

8. N. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program
Generation. Prentice-Hall, Englewood Cliffs, NJ, 1993.

9. P. Julián, G. Moreno, and J. Penabad. On Fuzzy Unfolding. A Multi-adjoint
Approach. Fuzzy Sets and Systems, Elsevier, 154:16–33, 2005.

10. P. Julián, G. Moreno, and J. Penabad. An Improved Reductant Calculus using
Fuzzy Partial Evaluation Techniques. Fuzzy Sets and Systems, 160:162–181, 2009.

11. M. Kifer and V. Subrahmanian. Theory of generalized annotated logic program-
ming and its applications. Journal of Logic Programming, 12:335–367, 1992.

12. S. Krajči, R. Lencses, and P. Vojtáš. A comparison of fuzzy and annotated logic
programming. Fuzzy Sets and Systems, 144(1):173–192, 2004.

13. T. Kuhr and V. Vychodil. Fuzzy logic programming reduced to reasoning with
attribute implications. Fuzzy Sets and Systems, 2014. In press.

14. V. H. Le, F. Liu, and D. K. Tran. Fuzzy linguistic logic programming and its
applications. Theory and Practice of Logic Programming, 9:309–341, 2009.

15. J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Similarity-based unification: a multi-
adjoint approach. Fuzzy Sets and Systems, 146(1):43–62, 2004.

16. P. Morcillo and G. Moreno. A practical approach for ensuring completeness
of multi-adjoint logic computations via general reductants. In G. M. P. Lucio
and R. Peña, editors, Proc. of IX Jornadas sobre Programación y Lenguajes,
PROLE’09, San Sebastián, Spain, September 8-11, pages 355–363. Universidad
del País Vasco, 2009. (ISBN 978-84-692-4600-9).

17. P. Morcillo and G. Moreno. Improving completeness in multi-adjoint logic compu-
tations via general reductants. In Proc. of 2011 IEEE Symposium on Foundations
of Computational Intelligence, April 11-15, Paris, France, pages 138–145. IEEE,
2011.

18. P. Morcillo and G. Moreno. Simplifying general reductants with unfolding-based
techniques. In P. Arenas, V. Gulías, and P. Nogueira, editors, Proc. of XI Jornadas
sobre Programación y Lenguajes, PROLE’11, A Coruña, Spain, September 5-7,
pages 154–168 (sección de trabajos en progreso). Universidade da Coruña (ISBN
978-84-9749-487-8), 2011.

19. G. Moreno and V. Pascual. A hybrid programming scheme combining fuzzy-logic
and functional-logic resources. Fuzzy Sets and Systems, 160(10):1402 – 1419, 2009.
Special Issue: Fuzzy Sets in Interdisciplinary Perception and Intelligence.

14

20. A. Pettorossi and M. Proietti. Rules and Strategies for Transforming Functional
and Logic Programs. ACM Computing Surveys, 28(2):360–414, 1996.

21. P. Vojtáš. Fuzzy Logic Programming. Fuzzy Sets and Systems, 124(1):361–370,
2001.

22. H. Yasui, Y. Hamada, and M. Mukaidono. Fuzzy prolog based on Lukasiewicz
implication and bounded product. In Proc. of IEEE Symp on Fuzzy Systems FUZZ-
IEEE, pages 949–954, 1995.

15

