
Generating isotone Galois connections

on an unstructured codomain
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Abstract. Given a mapping f : A → B from a partially ordered set A

into an unstructured set B, we study the problem of defining a suitable

partial ordering relation on B such that there exists a mapping g : B → A

such that the pair of mappings (f, g) forms an isotone Galois connection

between partially ordered sets.

1 Introduction

Galois connections were introduced by Ore [25] as a pair of antitone mappings

satisfying certain conditions which generalize Birkhoff’s theory of polarities to

apply to complete lattices. Later, Kan [19] introduced the notion of adjunction

in a categorical context which, after instantiating to partially ordered sets turned

out to be the isotone version of the notion of Galois connection.

In the recent years there has been a notable increase in the number of pub-

lications concerning Galois connections, both isotone and antitone. On the one

hand, one can find lots of papers on theoretical developments or theoretical ap-

plications [7, 9, 20]; on the other hand, of course, there exist as well a lot of

applications to computer science, see [23] for a first survey on applications, al-

though more specific references on certain topics can be found, for instance, to

programming [24], data analysis [23], logic [12,18], etc.

Two research topics that have benefitted recently from the use of the theory

of Galois connections is that of approximate reasoning using rough sets [13,

17, 26], and Formal Concept Analysis (FCA), either theoretically [1, 3, 6, 22] or

applicatively [10,11]. It is not surprising to see so many works dealing with both

Galois connections and FCA, since the derivation operators used to define the

concepts form a (antitone) Galois connection.

A number of results can be found in the literature concerning sufficient or

necessary conditions for a Galois connection between ordered structures to exist.
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The main result of this paper is related to the existence and construction of the

adjoint pair to a given mapping f , but in a more general framework.

Our initial setting is to consider a mapping f : A → B from a partially

ordered set A into an unstructured set B, and then characterize those situations

in which the set B can be partially ordered and an isotone mapping g : B → A

can be built such that the pair (f, g) is an isotone Galois connection.

The structure of the paper is as follows: in Section 2 we introduce the pre-

liminary definitions and results; then, in Section 3, given f : A → B we focus

on the case in which the domain A has a poset structure, the necessary and

sufficient conditions for the existence of a unique ordering on B and a mapping

g such that (f, g) is an adjunction are given; Finally, in Section 4, we draw some

conclusions and discuss future work.

2 Preliminaries

We assume basic knowledge of the properties and constructions related to a

partially ordered set. For the sake of self-completion, we include below the formal

definitions of the main concepts to be used in this section.

Definition 1. Given a partially ordered set A = (A,≤A), X ⊆ A, and a ∈ A.

– Element a is said to be the maximum of X, denoted maxX, if a ∈ X and

x ≤ a for all x ∈ X.

– The downset a↓ of a is defined as a↓ = {x ∈ A | x ≤A a}.
– The upset a↑ of a is defined as a↑ = {x ∈ A | x ≥A a}.

A mapping f : (A,≤A)→ (B,≤B) between partially ordered sets is said to be

– isotone if a1 ≤A a2 implies f(a1) ≤B f(a2), for all a1, a2 ∈ A.

– antitone if a1 ≤A a2 implies f(a2) ≤B f(a1), for all a1, a2 ∈ A.

As usual, f−1 is the inverse image of f , that is, f−1(b) = {a ∈ A | f(a) = b}.
In the particular case in which A = B,

– f is inflationary (also called extensive) if a ≤A f(a) for all a ∈ A.

– f is deflationary if f(a) ≤A a for all a ∈ A.

As we are including the necessary definitions for the development of the

construction of isotone Galois connections (hereafter, for brevity, termed ad-

junctions) between posets, we state below the definition of adjunction we will

be working with.



Definition 2. Let A = (A,≤A) and B = (B,≤B) be posets, f : A → B and

g : B → A be two mappings. The pair (f, g) is said to be an adjunction be-

tween A and B, denoted by (f, g) : A � B, whenever for all a ∈ A and b ∈ B
we have that

f(a) ≤B b if and only if a ≤A g(b)

The mapping f is called left adjoint and g is called right adjoint.

The following theorem states equivalent definitions of adjunction between

posets that can be found in the literature, see for instance [5, 16].

Theorem 1. Let A = (A,≤A),B = (B,≤B) be two posets, f : A → B and

g : B→ A be two mappings. The following statements are equivalent:

1. (f, g) : A � B.

2. f and g are isotone, g ◦ f is inflationary, and f ◦ g is deflationary.

3. f(a)↑ = g−1(a↑) for all a ∈ A.

4. g(b)↓ = f−1(b↓) for all b ∈ B.

5. f is isotone and g(b) = max f−1(b↓) for all b ∈ B.

6. g is isotone and f(a) = min g−1(a↑) for each a ∈ A.

We introduce the technical lemma below which shows that, in some case, it

is possible to get rid of the downsets (as used in item 5 of the previous theorem).

Lemma 1. Let (A,≤A) and (B,≤B) be posets and f : A→ B an isotone map-

ping. If max f−1(b↓) exists for some b ∈ f(A), then max f−1(b) exists and

max f−1(b↓) = max f−1(b).

Proof. Let us denote m = max f−1(b↓) and we will prove that a ≤A m, for all

a ∈ f−1(b), and m ∈ f−1(b), in order to have m = max f−1(b).

Consider a ∈ f−1(b), then f(a) = b ∈ b↓ and a ∈ f−1(b↓), hence a ≤A m.

Now, isotonicity of f shows that f(a) = b ≤B f(m). For the other inequal-

ity, simply consider that m = max f−1(b↓) implies m ∈ f−1(b↓), which means

f(m) ≤B b. Therefore, f(m) = b because of antisymmetry of ≤B . �

3 Building adjunctions between partially ordered sets

With the general aim of finding conditions for a mapping from a poset (A,≤A)

to an unstructured set B, in order to construct an adjunction we will naturally

consider the canonical decomposition of f : A→ B through Af , the quotient set

of A wrt the kernel relation ≡f , defined as a ≡f b if and only if f(a) = f(b):

A B

Af f(A)

f

π

ϕ

i



In general, given a poset (A ≤A) together with an equivalence relation ∼
on A, it is customary to consider the set A∼ = A/∼, the quotient set of A wrt

∼, and the natural projection π : A→ A∼. As usual, the equivalence class of an

element a ∈ A is denoted [a] and, then, π(a) = [a].

The following lemma provides sufficient conditions for π being the left com-

ponent of an adjunction.

Lemma 2. Let (A,≤A) be a poset and ∼ an equivalence relation on A. Suppose

that the following conditions hold

1. There exists max([a]), for all a ∈ A.

2. If a1 ≤A a2 then max([a1]) ≤A max([a2]), for all a1, a2 ∈ A.

Then, the relation ≤A∼ defined by [a1] ≤A∼ [a2] if only if a1 ≤A max([a2]) is an

ordering in A∼ and, moreover, the pair (π,max) is an adjunction.

Proof. To begin with, the relation ≤A∼ is well defined since, by the first hypoth-

esis, max([a]) exists for all a ∈ A.

Reflexivity Obvious, since [a] ≤A∼ [a] if and only if a ≤A max([a]), and the

latter holds for all a ∈ A.

Transitivity Assume [a1] ≤A∼ [a2] and [a2] ≤A∼ [a3].

From [a1] ≤A∼ [a2], by definition, we have a1 ≤A max([a2]). Now, from

[a2] ≤A∼ [a3] we obtain, by definition of the ordering and the second hypoth-

esis that max([a2]) ≤A max([a3]). As a result, we obtain [a1] ≤A∼ max([a3]),

that is, [a1] ≤A∼ [a3].

Antisymmetry Assume a1, a2 ∈ A such that [a1] ≤A∼ [a2] and [a2] ≤A∼ [a1].

By hypothesis, we have that a1 ≤A max([a2]) then max([a1]) ≤A max([a2]),

and a2 ≤A max([a1]) then max([a2]) ≤A max([a1]). Since ≤A is antisym-

metric, then max([a1]) = max([a2]); now, we have that the intersection of

the two classes [a1] and [a2] is non-empty, therefore [a1] = [a2].

Once again by the first hypothesis, max can be seen as a mapping A∼ → A.

Now, the adjunction follows by the definition of π and the ordering:

π(a1) ≤A∼ [a2] if and only if [a1] ≤A∼ [a2]

if and only if a1 ≤A max([a2])

�

The previous lemma gave sufficient conditions for π being a left adjoint;

the following result states that the conditions are also necessary, and that the

ordering relation and the right adjoint are uniquely defined.



Lemma 3. Let (A ≤A) be a poset and ∼ an equivalence relation on A. Let

A∼ = A/∼ be the quotient set of A wrt ∼, and π : A → A∼ the natural projec-

tion. If there exists an ordering relation ≤A∼ in A∼ and g : A∼ → A such that

(π, g) : A� A∼ then,

1. g([a]) = max ([a]) for all a ∈ A.

2. [a1] ≤A∼ [a2] if and only if a1 ≤A max ([a2]) for all a1, a2 ∈ A.

3. If a1 ≤A a2 then max ([a1]) ≤A max ([a2]) for all a1, a2 ∈ A.

Proof.

1. By Theorem 1, we have g([a]) = maxπ−1([a]↓). Now, Lemma 1 leads to

maxπ−1([a]↓) = maxπ−1([a]) = max([a]).

There is a slight abuse of notation in that [a] is sometimes considered as a

single element, i.e. one equivalence class of the quotient set, and sometimes

as the set of elements of the equivalence class. The context helps to clarify

which meaning is intended in each case.

2. By the adjointness of (π, g), definition of π, and the previous item we have

the following chain of equivalences

[a1] ≤A∼ [a2] if and only if π(a1) ≤Af
[a2]

if and only if a1 ≤A g([a2])

if and only if a1 ≤A max([a2])

3. Finally, since π and g are isotone maps, a1 ≤A a2 implies [a1] ≤Af
[a2], and

g([a1]) ≤A g([a2]), therefore max ([a1]) ≤A max ([a2]) by item 1 above. �

Continuing with the analysis of the decomposition, we naturally arrive to the

following result.

Lemma 4. Consider a poset (A,≤A) and a bijective mapping ϕ : A→ B, then

there exists a unique ordering relation in B, which is defined as b ≤B b′ if and

only if ϕ−1(b) ≤A ϕ−1(b′), such that (ϕ,ϕ−1) : A� B.

Proof. Straightforward. �

As a consequence of the previous results, we have established necessary and

sufficient conditions ensuring the existence and uniqueness of right adjoint for

any surjective mapping f from a poset A to an unstructured set B.

The third part of this section is devoted to considering the case in which f is

not surjective. In this case, in general, there are several possible orderings on B

which allow to define the right adjoint. The crux of the construction is related

to the definition of an order-embedding of the image into the codomain set.

More generally, the idea is to extend an ordering defined just on a subset of

a set to the whole set.



Definition 3. Given a subset X ⊆ B, and a fixed element m ∈ X, any pre-

ordering ≤X in X can be extended to a preordering ≤m on B, defined as the

reflexive and transitive closure of the relation ≤X ∪{(m, y) | y /∈ X}.

Note that the relation above can be described as, for all x, y ∈ B, x ≤m y if and

only if some of the following holds:

(a) x, y ∈ X and x ≤X y

(b) x ∈ X, y /∈ X and x ≤X m

(c) x, y /∈ X and x = y

It is not difficult to check that if the initial relation ≤X is an ordering relation,

then ≤m is an ordering as well. Formally, we have

Lemma 5. Given a subset X ⊆ B, and a fixed element m ∈ X, then ≤X is an

ordering in X if and only if ≤m is an ordering on B.

Proof. Just some routine computations are needed to check that ≤m is antisym-

metric using the properties of ≤X .

Conversely, if ≤m is an ordering, then ≤X is an ordering as well, since it is

a restriction of ≤m. �

Lemma 6. Let X be a subset of B, consider a fixed element m ∈ X, and an

ordering ≤X in X. Define the mapping jm : (B,≤m)→ (X,≤X) as

jm(x) =

{
x if x ∈ X
m if x /∈ X

Then, (i, jm) : (X,≤X) � (B,≤m) where i denotes the inclusion X ↪→ B.

Proof. It follows easily by routine computation. 2

Theorem 2. Given a poset (A,≤A) and a map f : A→ B, let ≡f be the kernel

relation. Then, there exists an ordering ≤B in B and a map g : B → A such that

(f, g) : A� B if and only if

1. There exists max([a]) for all a ∈ A.

2. For all a1, a2 ∈ A, a1 ≤A a2 implies max([a1]) ≤A max([a2]).

Proof. Assume that there exists an adjunction (f, g) : A � B and let us prove

items 1 and 2.

Given a ∈ A, item 1 holds because of the following chain of equalities, where

the first equality follows from Theorem 1, the second one follows from Lemma 1,

and the third because of the definition of [a]:

g(f(a)) = max f−1(f(a)↓) = max f−1(f(a)) = max([a]) (1)



Now, item 2 is straightforward, because if a1 ≤A a2 then, by isotonicity,

f(a1) ≤B f(a2) and g(f(a1)) ≤A g(f(a2)). Therefore, by Equation (1) above,

max([a1]) ≤A max([a2]).

Conversely, given (A,≤A) and f : A → B and items 1 and 2, let us prove

that f is the left adjoint of a mapping g : B → A. To begin with, consider the

canonical decomposition of f through the quotient set Af of A wrt ≡f , see

below, where π : A → Af is the natural projection, π(a) = [a], ϕ([a]) = f(a),

and i(b) = b is the inclusion mapping.

A B

Af f(A)

f

π

g=max◦ϕ−1◦jm

jmmax

ϕ

ϕ−1

i

Firstly, by Lemma 2, using conditions 1 and 2, and the fact that [a] = π(a), we

obtain that (π,max): A� Af .

Moreover, since the mapping ϕ : Af → f(A) is bijective, we can apply

Lemma 4 in order to induce an ordering ≤f(A) on f(A) such that we have

another adjunction, the pair (ϕ,ϕ−1) : Af � f(A).

Then, considering an arbitrary element m ∈ f(A), the ordering ≤f(A) also

induces an ordering ≤m on B, as stated in Lemma 5, and a map jm : B → f(A)

such that (i, jm) : f(A) � B.

Finally, the composition g = max ◦ϕ−1 ◦ jm : B → A is such that (f, g) is an

adjunction. �

We end this section with two counterexamples showing that the conditions

in the theorem cannot be removed.

Let A = {a, b, c} and B = {d, e} be two sets and f : A → B defined as

f(a) = d and f(b) = f(c) = e.

Condition 1 cannot be removed: Consider (A,≤) where a ≤ b, a ≤ c and

b, c not related. Then [b] = {b, c} and there does not exist max([b]).

a

b

c

d e

(A,≤)

B

The right adjoint does not exist because max f−1(e↓) would not be defined

for any ordering in B.



Condition 2 cannot be removed: Consider (A,≤), where b ≤ a ≤ c.

b

a

c

d e(A,≤) B

In this case, Condition 1 holds, since there exist both max[a] = a and

max[b] = c, but Condition 2 clearly does not. Again, the right adjoint does

not exist because f will never be isotone in any possible ordering defined

in B.

4 Conclusions

Given a mapping f : A→ B from a partially ordered set A into an unstructured

set B, we have obtained necessary and sufficient conditions which allow us for

defining a suitable partial ordering relation on B such that there exists a mapping

g : B → A such that the pair of mappings (f, g) forms an adjunction between

partially ordered sets. The results obtained in Theorem 2, regardless of the fact

that the proof is not exactly straightforward, are in consonance with the intuition

and the well-known facts about Galois connections.

A first source of future work is to consider A to be a preordered set, and try

to find an isotone Galois connection between preorders. In this context, there

are no clear candidate conditions for the existence of the preorder relation in B,

since the notion of maximum is not unique in a preordered setting due to the

absence of antisymmetry.

Another topic for future work is related to obtaining a fuzzy version of the

obtained result, in the sense of considering either fuzzy Galois connections [2,4,

15,21] or considering the framework of fuzzy posets and fuzzy preorders.
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