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We propose an alternative to the standard structure of L-fuzzy Mathematical Morphol-

ogy (MM) by, on the one hand, considering L-fuzzy relations as structuring elements

and, on the other hand, by using adjoint triples to handle membership values. Those

modifications lead to a framework based on set-theoretical operations where we can

prove a representation theorem for algebraic morphological erosions and dilations. In

addition, we also present some new results concerning duality and transformation in-

variance. Concerning duality, we show that duality and adjointness can coexist in this

L-fuzzy relational MM. Concerning transformation invariance, we show sufficient con-

ditions to guarantee the invariance of morphological operators under arbitrary transfor-

mations.
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1. Introduction

Mathematical Morphology (MM) can be characterized as a mathematical theory for

the transformation of geometrical structures by the use of set-theoretical operations. In

the recent years, MM has evolved into a compendium of different but related theories

since the seminal works of G. Matheron and J. Serra [28, 35, 36]. These theories proved

to be useful in image processing for filtering, pattern recognition and edge detection,

among others [3, 27, 35, 45]. At the beginning, only binary images were in the focus

of MM but then, new tools allowed to generalize the framework to consider grayscale

and color images [14, 35], graphs [33, 44], hypergraphs [7] and relations [37].

Summarizing the theoretical development of MM, we can say that it consists of

(i) a space of objects closed under a certain set of transformations, and

(ii) a set of algebraically defined operators (morphisms) that preserve the structure

of the object space.

On the basis of this observation, we can say that MM tends to play a similar role as

the theory of categories. The pure algebraic approach of MM called Algebraic Mathe-

matical Morphology (AMM), supports our claim. It considers a complete lattice as the

object space, and dilations and erosions as transformations that commute, respectively,

with arbitrary joins and meets. In this case, dilations are precisely the sup-lattice homo-

morphisms, while adjoint erosions are their residua. The purpose of our contribution

is to bridge the gap between the use of set-theoretical operations and AMM. To reach

such a goal, we enrich the space of objects with the structure provided by an L-fuzzy

relation and the use of set-theoretical operations from the L-fuzzy set theory.

L-fuzzy set theory is a generalization of the set theory allowing degrees of member-

ships in a complete lattice L. The set-theoretical operations used in MM were extended

to the fuzzy setting by means of t-norms and implications, leading to the so called fuzzy

MM [5, 8, 12, 17, 32] and subsequently, to the L-fuzzy setting leading to the so-called

L-fuzzy MM [41]. In this respect, L-fuzzy MM keeps the original interpretation of ero-

sions and dilations by means of inclusions and intersections of translated structuring

elements. It is worth mentioning also the interest of some researchers about establish-
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ing links between L-fuzzy MM and other topics of the fuzzy paradigm as fuzzy concept

analysis [2], bipolar fuzzy sets [6] or F-transforms [39].

In our approach, we enrich the structure of the space of objects by including an

L-fuzzy relation, which can be interpreted, for instance, as the formal structure that

assigns to each element in the space either the translation of a fixed structuring element

(as in the original papers of MM) or a variant structuring element (as most recently

in [11]). Fuzzy relations were already used in [9, 10] but the resulting framework did

not provide a characterization of the class of algebraic erosions and dilations. In order

to obtain such a characterization, the key point is extending the definition of fuzzy rela-

tional erosions and dilations by considering adjoint triples [15] to handle membership

values. Adjoint triples were originally introduced to handle non-commutative L-fuzzy

conjunctions or conjunctions with arguments in different lattices, and its components

can be used to define L-fuzzy inclusions and L-fuzzy intersections; as a result, its use in

our framework keeps the same set-theoretical interpretations than in L-fuzzy MM [43].

In this paper, the definitions of L-fuzzy relational erosion and dilation based on ad-

joint triples enable to provide a three-fold contribution. The first one is related to the

invariance of the morphological operators under arbitrary transformations. The sec-

ond one shows that L-fuzzy relational erosions and dilations are dual operators despite

the core of those morphological operators is an adjunction (see [5] to be aware of the

complexity of preserving adjunction and duality in fuzzy MM). Finally, the third con-

tribution is a representation theorem which shows that the class of L-fuzzy relational

morphological operators coincides with the class of algebraic morphological operators.

The use of adjoint triples instead of complete residuated lattices turns out to be crucial

for the latter result.

The paper is structured as follows: in Section 2 we recall the basics of two theories

of mathematical morphology: AMM and L-fuzzy relational MM. Then, in Section 3

we introduce the notions of L-fuzzy relational erosion and L-fuzzy relational dilation

based on adjoint triples. Subsequently, Section 4 shows that basic properties of the

original mathematical morphology also hold in this approach. Specifically, this section

provides results about monotonicity, transformation invariance and duality. Section 5

shows the representation theorem for algebraic erosions and dilations. In Section 6 we
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compare our approach with others existing in the literature. Finally, in Section 7 we

present the conclusions and future works.

2. Fundamentals of mathematical morphology: erosion and dilation

In this section we recall the two basic theories of MM we will use in this paper:

the algebraic one [22] and the fuzzy relational one, based on [10] but provided by re-

formulating the more general approach of [39]. It is worth mentioning that there are

other theoretical approaches to MM, for instance, the binary [28], the umbra approach

[14, 35] or the fuzzy one [8, 17, 12, 20]. We focus only on erosions and dilations, but

MM is not just about these operators; many other notions and operations are used as

well, for instance openings, closings, thickenings, thinnings, and hit-or-miss transfor-

mations, among others, are also object of study in this theory. For a complete overview

of MM we refer to [34].

2.1. Algebraic mathematical morphology (AMM)

The core of mathematical morphology is based on two basic operators: erosions

and dilations. These operators were introduced originally on Euclidean spaces by

means of translations and unions of subsets [28, 35]. However, in subsequent ap-

proaches [22, 36], such definitions were extended to apply those operators to arbitrary

complete lattices. This later approach is called algebraic mathematical morphology.

The definition of erosions and dilations in this approach is given as follows:

Definition 1. Let (L1,≤1) and (L2,≤) be two complete lattices. A mapping ε : L1→ L2

is said to be an erosion if for all X ⊆ L1 we have:

ε(
∧

X) =
∧
x∈X

ε(x).

A mapping δ : L2→ L1 is said to be a dilation if for all Y ⊆ L2 we have:

δ (
∨

Y ) =
∨
y∈Y

δ (y).

So, roughly speaking, every erosion commutes with infima and every dilation with

suprema. Note that the definition above takes into account the case where X and Y
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are empty. That means that erosions assign the greatest element of L1 to the greatest

element of L2 and dilations assign the least element of L2 to the least element of L1.

Furthermore, it is straightforward to check that both erosions and dilations are mono-

tonic mappings.

Perhaps the most important relation between erosions and dilations is given in terms

of adjunctions, so let us begin by recalling this notion.

Definition 2. An adjunction (ε,δ ) between complete lattices (L1,≤1) and (L2,≤) is

pair of mappings ε : L1→ L2 and δ : L2→ L1 such that for every x ∈ L1 and y ∈ L2 we

have

y≤ ε(x) if and only if δ (y)≤ x.

The naming ε and δ chosen in the previous definitions is not casual, since the op-

erators introduced in Definition 1 can be related in terms of adjointness. The following

two results are proven in [22], somehow rediscovering well-known facts in category

theory.

Theorem 1. If (ε,δ ) is an adjunction, then ε is an erosion and δ is a dilation. On

the other hand, let ε : L1 → L2 be an erosion. Then, there exists exactly one dilation

δε : L2→ L1 such that (ε,δε) forms an adjunction. Specifically, such a dilation can be

determined, for every y ∈ L2, by the expression

δε(y) =
∧
{x ∈ L1 | y≤ ε(x)}.

Similarly, for every dilation δ : L2→ L1 there is exactly one erosion εδ : L1→ L2

such that (εδ ,δ ) forms an adjunction. Moreover, such an erosion is determined, for

every X ∈ L1, by the expression

εδ (x) =
∨
{y ∈ L2 | δ (y)≤ x}.

2.2. Fuzzy relational mathematical morphology

Note that the algebraic approach of mathematical morphology does not provide

any means for a constructive representation of erosions and/or dilations. One alterna-

tive approach is that of L-fuzzy mathematical morphology, where dilations and ero-

sions can be efficiently represented with the help of fuzzy conjunctions (as t-norms)
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and fuzzy implications. In this way, L-fuzzy mathematical morphology is closer to

the original approach thanks to the consideration of structuring elements and the L-

fuzzy set-theoretical operations. Recall that in the original approach of mathematical

morphology, erosions and dilations were defined by means of translation, inclusion

and intersection of certain sets, called structuring elements. Our approach in this sec-

tion can be explained in terms of the very general L-fuzzy approach of [39], defined

by considering L-fuzzy structuring functions, instead of using the standard approaches

of [17, 8].

Let (L,≤) be a complete lattice, with 1 being the top and 0 being the bottom ele-

ments. Let us recall that an L-fuzzy conjunction C is a mapping C : L×L→ L such

that is order-preserving on both arguments and satisfies the following boundary con-

ditions C(1,0) = C(0,1) = C(0,0) = 0 and C(1,1) = 1; an L-fuzzy implication I is

a mapping I : L× L → L such that is order-reversing on the first argument, order-

preserving on the second argument and satisfies the following boundary conditions

I(1,1) = I(0,1) = I(0,0) = 1 and I(1,0) = 0. An L-fuzzy set on a set A (called uni-

verse) is a mapping µ : A→ L (called membership function). Fuzzy sets arise as the

special case where L = [0,1]. The set of L-fuzzy sets on A is denoted by LA; note that

LA inherits the lattice structure of L. An L-fuzzy relation between two sets A and B is

a L-fuzzy set on A×B, i.e., a mapping R : A×B→ L. The value assigned to R(a,b)

represents in which degree “a is related to b (by R)”. When A = B we say that R is an

L-fuzzy relation in A. The reader is referred to [47] for a deeper description of these

notions.

The approach of [39] is based on the notion of L-fuzzy structuring function: given

two sets A and B, an L-fuzzy structuring function u is a mapping u : A→ BL. For

the sake of presentation, fixed an L-fuzzy structuring function u, a ∈ A and b ∈ B we

write ua instead of u(a) and ub(a) instead of ua(b). Given X ∈ LA,Y ∈ LB and an L-

fuzzy structuring function u, the L-fuzzy erosion of X and the L-fuzzy dilation of Y are

defined by:

εu(X)(y) =
∧
a∈A

I(uy(a),X(a))
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for all y ∈ B and

δu(Y )(x) =
∨
b∈B

C(ux(b),Y (b))

for all x ∈ A, respectively.

The L-fuzzy erosion εu and the L-fuzzy dilation δu form an adjunction if and only

if the L-fuzzy implication and the L-fuzzy conjunction form an adjoint pair [39, Propo-

sition 3]. Therefore, in the context of algebraic mathematical morphology, we can

reformulate the definition above in terms of L-fuzzy relations and complete residuated

lattices, thus extending the approach of [10].

Recall that a complete residuated lattice is a 6-tuple (L,≤,∗,→,0,1) such that:

• (L,≤) is a complete lattice, with 1 being the top and 0 being the bottom element.

• (L,∗,1) is a commutative monoid with unit element 1.

• (→,∗) forms an adjoint pair, i.e.

z≤ (y→ x) if and only if y∗z≤ x

Definition 3. Let A and B be two sets, let (L,≤,∗,→,0,1) be a complete residuated

lattice and let R : A×B→ L be an L-fuzzy relation between A and B. The L-fuzzy

relational erosion of X ∈ LA and the L-fuzzy relational dilation of Y ∈ LB by the L-

fuzzy relation R are defined by:

εR(X)(y) =
∧
a∈A

R(a,y)→ X(a) (1)

for all y ∈ B and

δR(Y )(x) =
∨
b∈B

R(x,b)∗Y (b) (2)

for all x ∈ A, respectively.

3. Relational L-fuzzy mathematical morphology based on adjoint triples

Inspired by the definition of L-fuzzy relational dilations and erosions (Definition 3),

we provide a modification intended to increase their expressive power. Our approach

is based on adjoint triples, which are a generalization of the pairs of adjoint operators

in complete residuated lattices.
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Definition 4 ([30]). Let (P1,≤1), (P2,≤2), (P3,≤3) be three posets. We say that the

mappings &: P1×P2→ P3,↘ : P2×P3→ P1, and↗ : P1×P3→ P2 form an adjoint

triple among P1,P2 and P3 whenever:

x≤1 y↘ z if and only if x&y≤3 z if and only if y≤2 x↗ z (3)

for all x ∈ P1, y ∈ P2 and z ∈ P3.

Before showing some examples, it is worth noticing that mappings in adjoint triples

have a similar interpretation to those in residuated lattices. Hence, the mappings ↗

(resp. ↘) and & can be used to define inclusions and intersections between fuzzy sets,

respectively (see [13, 17, 25, 46, 47]). The main differences between the mappings

in residuated lattices and those in adjoint triples is that, firstly, the conjunction & in

adjoint triples may be non-commutative and, secondly, mappings↗,↘ and & in ad-

joint triples allow to define intersections and conjunctions between L-fuzzy sets with

different underlying sets of truth-values.

Example 1. The operators &: [0,1]× [0,1]→ [0,1], ↘ : [0,1]× [0,1]→ [0,1] and

↗ : [0,1]× [0,1]→ [0,1] given by

x&y = x2 · y

x↘ y =

 1 if x = 0

min
{√

y
x ,1
}

otherwise.

x↗ y =

 1 if x = 0

min
{

y
x2 ,1

}
otherwise.

for all x,y ∈ [0,1], form an adjoint triple between [0,1], [0,1] and [0,1]. It is worth

noticing that the operator & can be viewed as a non-commutative fuzzy conjunction.

The following example shows a direct relationship between MM and adjoint triples.

Example 2. Let (A,+) be a group and let L be a complete lattice. Given a crisp subset

B ∈ 2A and an L-fuzzy subset F ∈ LA we can define dilations and erosions (based on

flat structuring elements) in LA as follows

δB(F)(x) =
∨
b∈B

F(x−b) εB(F)(x) =
∧
b∈B

F(x+b)
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Furthermore, let us consider the operators &: 2A×LA→ LA,↗ : 2A×LA→ LA and

↘ : LA×LA→ 2A given by

B&F = δB(F)

B↗ F = εB(F)

F ↘ G = {z ∈ A | F(y)≤ G(y+ z) for all y ∈ A}

then (&,↗,↘) forms an adjoint triple between 2A,LA and LA.

Note also that every adjoint pair in a complete residuated lattice is an adjoint triple

in which the operator & is commutative (i.e., & = ∗) and, hence, both implications

coincide; that is, in such a case↗=↘=→. Therefore the well-known Gödel, product

and Łukasiewicz t-norms,

x&Gy = min{x,y} x&Py = x · y x&Ły = max{x+ y−1,0}

together with their residual implications,

x→G y =

 1 if x≤ y

y otherwise.
x→P y =

 1 if x≤ y
y
x otherwise.

x→Ł y =

 1 if x≤ y

min{1− x+ y,1} otherwise.

can be seen as examples of adjoint triples. On the other hand, adjoint triples allow to

consider different lattices for operating with the relevant arguments involved, as the

following example shows.

Example 3. Let [0,1]m be a uniform discretization of [0,1] into m pieces, for example

[0,1]2 = {0,0.5,1} divides the unit interval into two pieces. Consider the discretiza-

tion of the Gödel t-norm represented by the operator &∗G : [0,1]20× [0,1]8→ [0,1]100

defined, for each x ∈ [0,1]20 and y ∈ [0,1]8, as:

x&∗G y =
d100 ·min{x,y}e

100

where d e is the ceiling function. For this operator, the corresponding residuated impli-

cation operators↘∗G : [0,1]8× [0,1]100→ [0,1]20 and↗∗G : [0,1]20× [0,1]100→ [0,1]8
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are defined as:

a↘∗G b =
b20 · (a↘G b)c

20

c↗∗G b =
b8 · (c↗G b)c

8

where b c is the floor function. The tuple (&∗G,↘∗G,↗∗G) is an adjoint triple where the

operator &∗G is neither commutative nor associative. �

The lemma below is essential for our definition of L-fuzzy dilations and erosions.

Lemma 1 ([16]). If (&,↘,↗) is an adjoint triple w.r.t. (P1,≤1),(P2,≤2),(P3,≤3),

then

1. If P2 and P3 are complete lattices then,
(
x↗ (·), x&(·)

)
is an adjunction for all

x ∈ P1.

2. & is order-preserving on both arguments, i.e. for all x1,x2,x ∈ P1, y1,y2,y ∈ P2

(a) If x1 ≤1 x2, then (x1 &y)≤3 (x2 &y).

(b) if y1 ≤2 y2, then (x&y1)≤3 (x&y2).

3. ↘ , ↗ are order-reversing on the first argument and order-preserving on the

second argument.

The new morphological operators of dilation and erosion based on P-fuzzy rela-

tions and adjoint triples are defined as follows. Let us recall that a P-fuzzy relation

between two sets A and B is a mapping R : A×B→ P.

Definition 5. Let P be a poset, let A and B be two arbitrary sets, let L1 and L2 be

two complete lattices, let (&,↘,↗) be an adjoint triple among P, L2 and L1, and let

R be a P-fuzzy relation on A×B. The L-fuzzy relational erosion with respect to R,

εR : LA
1 → LB

2 is defined, for all X ∈ L1
A and b ∈ B, as

εR(X)(b) =
∧
a∈A

R(a,b)↗ X(a)

and the L-fuzzy relational dilation with respect to R, δR : LB
2 → LA

1 , for all Y ∈ L2
B and

a ∈ A, is defined as

δR(Y )(a) =
∨
b∈B

R(a,b)&Y (b).
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We remark that similar operators can be used in the framework of formal concept

analysis, in particular, as the concept-forming operators when considering its (rough)

object-oriented extension [1, 29]. By considering the implication↘ we obtain another

approach which is elaborated in the following paragraphs.

An alternative definition of Definition 5 arises when the pair (&,↘) is considered.

This new definition is related to the so-called property-oriented extension in formal

concept analysis. Hence, the L-fuzzy relational property-oriented erosion with respect

to R, εR : LB
2 → LA

1 , is defined as:

εRp(Y )(a) =
∧
b∈B

R(a,b)↘ Y (b)

for all Y ∈ L2
B and a ∈ A, and the L-fuzzy relational property-oriented dilation with

respect to R, δR : LB
2 → LA

1 , is defined for all X ∈ L1
A and b ∈ B as

δRp(X)(b) =
∨
a∈A

X(a)&R(a,b)

A third possibility could be to consider the pair of operators (↗,↘), but from them

we can obtain not an adjunction, but an antitone Galois connection and, thus this pair

cannot be used to define an erosion and a dilation in a natural way.

As a result, by using an adjoint triple, the erosion and dilation operators defined in

Equation (1) and (2) can be generalized in two ways either as (εR,δR) or as (εRp ,δRp)

on the same context. Hence, depending on the set in which the erosion and the dilation

need to be applied we can use either one or the other. This fact considerably increases

the flexibility of the proposed methodology.

From now on, we will just study the pair (εR,δR), since similar results can be

obtained for the other one by applying the general properties of these operators [15, 16].

Thus, hereafter, all L-fuzzy relational erosions and dilations will be considered to be

defined by using adjoint triples as in Definition 5.

Since L-fuzzy relational erosions and dilations can be defined between two families

of fuzzy sets on different universes and with different sets of truth-values, an interesting

consequence of adding adjoint triples in the definition of L-fuzzy relational erosions is

that thresholding can be considered as a specific case of the newly introduced L-fuzzy
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relational morphology. Note that although thresholding is clearly an algebraic erosion,

it is not an erosion in most of the constructive approaches of mathematical morphology

based on set-theoretical operations.

Example 4. Let L be a complete lattice and let us define the operator

↗ : L×L→{0,1}

(α,β ) 7→ α ↗ β =

 1 if α ≤ β

0 otherwise
.

Note that {0,1}with the order given by 0≤ 1 has structure of a complete lattice. In fact,

the operator↗ is part of an adjoint triple where &: L×{0,1} → L and↘ : {0,1}×

L→ L are defined by

α &β =

 α if β = 1

0 if β = 0
α ↘ β =

 β if α = 1

1 if α = 0
.

Let us consider a set A, a value τ ∈ L and the L-fuzzy relation R defined by R(a,a) = τ ,

for all a ∈ A, and 0 otherwise. Then, given X ∈ LA, we have that

εR(X)(b) =
∧
a∈A

R(a,b)↗ X(a)

= R(b,b)↗ X(b) =

 1 if τ ≤ X(b)

0 otherwise
.

In other words, the associated L-fuzzy relational erosion εR coincides with a thresh-

olding (with threshold τ).

Another advantage of using the L-fuzzy relational structure of Definition 5 is that

it simplifies the definition of morphological operators on abstract algebraic structures.

Example 5. Let us consider the complete residuated lattice ([0,1],≤,&G,→G,0,1)

with the Gödel connectives, and the set A = {0,1,2,3,4,5,6,7}. On such a set we
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define the following [0,1]-fuzzy relation:

a�b 0 1 2 3 4 5 6 7

0 1 0.5 0 0 0 0 0 0.5

1 1 1 1 0.5 0 0 0 0.5

2 0 0.5 1 0.5 0 0 0 0

3 0 0.5 1 1 1 0.5 0 0

4 0 0 0 0.5 1 0.5 0 0

5 0 0 0 0.5 1 1 1 0.5

6 0 0 0 0 0 0.5 1 0.5

7 1 0.5 0 0 0 0.5 1 1

Note that, fixed a ∈ A, R(a,b) can be considered like a structuring element centred in

a (in the sense of [17]). Specifically, if a is odd, then R(a,b) is the fuzzy set given by

R(a,b)(x) =


1 if x = a or x = a−1 or x = a+1

0.5 if x = a−2 or x = a+2

0 otherwise.

Whereas, if a is even, then R(a,b) is the fuzzy set given by

R(a,b)(x) =


1 if x = a

0.5 if x = a−1 or x = a+1

0 otherwise.

So the relational table above somehow represents the consideration of two different

kinds of structuring elements, one for odd numbers and another for even numbers. Let

us consider now the fuzzy set on A given by X = {0/0.5,1/0.8,2/0.4,3/0.8,7/0.8}. Then,

the respective erosion and dilation applied to X are:

εR(X) ={0/0.5,1/0.4,2/0.4} and

δR(X) ={0/0.5,1/0.8,2/0.5,3/0.8,4/0.5,5/0.5,6/0.5,7/0.8}.

4. Properties of L-fuzzy relational mathematical morphology

This section aims at showing that the basic properties of the standard mathematical

morphology also hold in the framework of L-fuzzy relational mathematical morphol-
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ogy based on adjoint triples. Firstly, we show that L-fuzzy relational erosions and dila-

tions are algebraic erosions and dilations as well; then, we present a result concerning

transformation invariance (which extends the well known translation invariance of the

standard MM and fuzzy MM); and finally, a result concerning the duality between L-

fuzzy relational fuzzy erosions and dilations. For the sake of presentation, hereinafter

we will assume the following terminology related to the underlying structure given by

Definition 5:

• A and B denote two arbitrary sets,

• L1 and L2 denote two complete lattices,

• P denotes an arbitrary poset,

• R denotes a P-fuzzy relation on A×B and,

• (&,↘,↗) denotes an adjoint triple among P,L2 and L1.

4.1. Basic properties

The theorem given below shows that every pair of L-fuzzy relational erosion and

dilation, with respect to the same relation, forms an adjunction.

Theorem 2. The pair (εR,δR), as per Definition 5, forms an adjunction.

Proof. Let us show that for all X ∈ LA
1 and Y ∈ LB

2 we have Y ≤ εR(X) if and only if

δR(Y )≤ X . So let X ∈ LA
1 and Y ∈ LB

2 such that Y ≤ εR(X). Then,

Y ≤ εR(X) ⇐⇒ Y (b)≤ εR(X)(b) for all b ∈ B

⇐⇒ Y (b)≤
∧
a∈A

R(a,b)↗ X(a) for all b ∈ B

⇐⇒ Y (b)≤ R(a,b)↗ X(a) for all b ∈ B and a ∈ A

⇐⇒ R(a,b)&Y (b)≤ X(a) for all b ∈ B and a ∈ A

⇐⇒
∨
b∈B

R(a,b)&Y (b)≤ X(a) for all a ∈ A

⇐⇒ δR(Y )(a)≤ X(a) for all a ∈ A

⇐⇒ δR(Y )≤ X .
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As a consequence of the previous theorem, we have that L-fuzzy relational erosions

and dilations commute with infimum and supremum, respectively. In other words, εR

and δR are algebraic erosions and dilations, respectively.

Corollary 1. L-fuzzy relational dilations and L-fuzzy relational erosions are algebraic

dilations and algebraic erosions, respectively.

Proof. Direct consequence of Theorem 2.

As a consequence of the previous result, we can conclude that L-fuzzy relational

erosion and dilation operators are monotonic.

Corollary 2. Let X1,X2 ∈ LA
1 and Y1,Y2 ∈ LB

2 such that X1 ⊆ X2 and Y1 ⊆ Y2. Then,

εR(X1)⊆ εR(X2) and δR(Y1)⊆ δR(Y2).

Note that the L-fuzzy relation R used to define dilations and erosions in the L-fuzzy

relational MM (Definition 5) can be considered as a parameter. So we can speak about

monotonicity-antitonicity of εR and δR with respect to this parameter. Specifically we

have the following result.

Proposition 1. Let R1 and R2 be two P-fuzzy relations on A×B such that R1 ≤ R2.

Then, for all X ∈ LA
1 and Y ∈ LB

2 :

εR1(X)⊇ εR2(X) and δR1(Y )⊆ δR2(Y ).

Proof. Straightforward from the monotonicity of↗ and & (Lemma 1).

Note that Proposition 1 is similar to the one obtained in L-fuzzy mathematical mor-

phology (based on fuzzy sets as structuring elements) about monotonicity with respect

to structuring elements.

The following result concerns the composition between two erosions and two di-

lations. Note that to perform such a composition, the sets A and B, and the lattices L1

and L2 considered in Definition 5 must coincide. The following result relates the com-

position of erosions (resp. dilations) with the composition between L-fuzzy relations.
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Proposition 2. Let R1 and R2 be two L-fuzzy relations on A×A and let (&,↘,↗) be

an adjoint triple between the same complete lattice L such that & is associative, then

εR1(εR2(X)) = εR2◦R1(X)) and δR1(δR2(Y )) = δR1◦R2(Y ))

where R1 ◦R2 is the L-fuzzy relation on A×A given by

R1 ◦R2(a,b) =
∨
c∈A

R1(a,c)&R2(c,b)

for all (a,b) ∈ A×A.

Proof. Let us firstly prove the equality for the composition of dilations. Let a∈ A, then

δR1(δR2(Y ))(a) =
∨
b∈A

R1(a,b)&(δR2(Y )(b)) =
∨
b∈A

R1(a,b)&
(∨

c∈A

R2(b,c)&Y (c)
)

=
∨
b∈A

(
∨
c∈A

(
R1(a,b)&

(
R2(b,c)&Y (c)

))
=
∨
c∈A

(
∨
b∈A

(
R1(a,b)&R2(b,c)

)
&Y (c)

=
∨
c∈A

R1 ◦R2(a,c)&Y (c) = δR1◦R2(Y )(a).

The result for erosions arises from Theorem 2 and the fact that if (ε1,δ1) and (ε2,δ2) are

adjunctions, then (ε2 ◦ε1,δ1 ◦δ2) is an adjunction as well (see [22, Theorem 2.7]).

Note that the previous result is related to one in the original mathematical morphol-

ogy [35] based on translations of sets (as structuring elements). Such a result states

that the composition of erosions (resp. dilations) coincides with the erosion associated

to the dilation of structuring elements. In our approach, the composition of L-fuzzy

relations can be considered as a dilation of “structuring elements” by considering an

L-fuzzy relation R as an L-fuzzy set Rb for each b ∈ A given by Rb(a) = R(a,b). Then,

R1 ◦R2(a,b) = δR1(R
b
2)(a)

and, by a slightly abuse of notation by identifying δR1(R
b
2) with δR1(R2), Proposition 2

can be reformulated as

εR1(εR2(X)) = εδR2 (R1)(X) and δR1(δR2(Y )) = δδR1 (R2)(Y )

for all L-fuzzy sets X ,Y ∈ LA and all L-fuzzy relations R1 and R2, which clearly re-

sembles the classical result of mathematical morphology. As a consequence of Propo-

sition 2 we can obtain a result about commutativity of erosions and dilations.
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Corollary 3. Let R1 and R2 be two L-fuzzy relations on A×A and let (&,↘,↗) be

an adjoint triple between the same complete lattice L and such that & is associative. If

R1 ◦R2(a,b) = R2 ◦R1(a,b) for all (a,b) ∈ A×A then, εR1(εR2(X)) = εR2(εR1(X)) and

δR1(δR2(X)) = δR2(δR1(X)) for all X ∈ LA.

4.2. Generalized transformation invariance

Translation invariance is an important property of the standard morphological op-

erators in which erosions and dilations commute with translations. As we are con-

sidering L-fuzzy relations and, in general we do not require extra structure in A and

B, translations are not directly applicable. Instead, we can consider interchangeability

with more general transformations between universes A and B. From a mathematical

point of view, transformations are usually referred to mappings of an affine space into

itself, such as translations, reflections, rotations, etc. We keep the terminology, but due

to the generality of our approach, in our context transformations are simply mappings

with the same domain and codomain.

Given two surjective transformations TA : A→ A and TB : B→ B, Zadeh’s extension

principle allows us to extend them to the L-fuzzy powersets of A and B, respectively.

Specifically, TA : A→ A can be extended to every X ∈ LA as the L-fuzzy set given by

the following membership function

TA(X) : A −→ L

a 7→
∨

x∈T−1
A (a)

X(x)

where T−1
A (a) = {x ∈ A | TA(x) = a}. Note that when TA is bijective, its extension on

X ∈ LA given by Zadeh’s extension principle has the following easy form: TA(X)(a) =

X(T−1
A (a)).

Zadeh’s extension principle is the most common way to extend transformations of

a set into its L-fuzzy powerset [47]. Specifically, given an affine space A, the translation

T~v(x) = x+~v by a vector ~v in A is extended to any L-fuzzy set X ∈ LA, by means of

Zadeh’s extension principle, by

(X +~v)(a) = T~v(X)(a) =
∨

x∈T−1
~v (a)

X(x) =
∨

x=a−~v
X(x) = X(a−~v).
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The above extension is the one used by all the approaches in fuzzy mathematical mor-

phology based on translations of structuring elements [5, 8, 12, 17, 20, 21].

The next definition introduces the notion of a pair of transformations that are, in

some sense, ‘compatible’ with an L-fuzzy relation R.

Definition 6. Let R : A×B→ L be an L-fuzzy relation. Two transformations TA : A→A

and TB : B→ B are said to be R-compatible if R(a,b) = R(TA(a),TB(b)), for all a ∈ A

and b ∈ B.

The following proposition shows that R-compatibility for two bijective transforma-

tions is a sufficient condition for invariance.

Proposition 3. Let εR : LA
1 → LB

2 be an L-fuzzy relational erosion and δR : LB
2 → LA

1 be

an L-fuzzy relational dilation. If both transformations TA : A→ A and TB : B→ B are

R-compatible and bijective, then

εR ◦TA = TB ◦ εR and TA ◦δR = δR ◦TB.

Proof. For any X ∈ LA
1 and b ∈ B, we have:

TB(εR(X))(b) = εR(X)(T−1
B (b))

=
∧
a∈A

R(a,T−1
B (b))↗ X(a)

(?)
=
∧
a∈A

R(T−1
A (a),T−1

B (b))↗ X(T−1
A (a))

(M)
=
∧
a∈A

R(a,b)↗ X(T−1
A (a))

= εR(TA(X))(b)

where (?) follows by bijectivity of TA, and (M) follows by the equality given by R-

compatibility.

The equality TA ◦δR = δR ◦TB can be proved similarly.

The next example shows that bijectivity of TA cannot be omitted in order to obtain

the invariance of erosions.
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Example 6. Assume P = L1 = L2 = {0,1}, and the crisp connectives of classical logic

for conjunction and implication & and↗. Let us consider two sets, A = {a1,a2} and

B = {b}, the transformations TA : A→ A and TB : B→ B defined by TA(a1) = TA(a2) =

a1 and TB(b) = b and, the relation R : A×B→{0,1} defined by R(a1,b) =R(a2,b) = 1

(i.e., the constant relation 1).

Consider X = A, and let us check that we do not have the invariance of εR with

respect to TA and TB. On the one hand, we have for each b ∈ B that

TB(εR(X))(b) = εR(X)(T−1
B (b)) = εR(X)(b)

=
∧
a∈A

R(a,b)↗ X(a)

=
(
R(a1,b)↗ X(a1)

)
∧
(
R(a2,b)↗ X(a2)

)
= (1↗ 1)∧ (1↗ 1) = 1.

On the other hand, taking into account that a2 is not in the image of TA, we have that

TA(X)(a2) = 0, since T−1
A (a2) =∅. Hence,

εR(TA(X))(b) =
∧
a∈A

R(a,b)↗ TA(X)(a)

= R(a1,b)↗ TA(X)(a1)∧R(a2,b)↗ TA(X)(a2)

= (1↗ 1)∧ (1↗ 0) = 0

for all b ∈ B. Therefore the equality in Proposition 3 does not hold.

Example 7. Let us consider again the erosion and dilation of Example 5. It is clear that

we can introduce a group structure in A by considering the sum modulo 8, (formally,

consider A to be the group (Z8,+8)). Moreover, is it not difficult to check that R(x,y) =

R(x+8 2,y+8 2). Then, if we consider the transformation on A given by T (x) = x+8 2,

we have that T ◦εR = εR ◦T and T ◦δR = δR ◦T , since T is bijective and R-compatible.

Remark 1. In Example 4 we showed that thresholding is a special case of L-fuzzy

relational erosion. Moreover, recall that the L-fuzzy relation used was defined by

R(a,a) = 1, for all a ∈ A, and 0, otherwise. Hence, if we consider any bijective trans-

formation T : A→ A, we have that R(a,b) = R(T (a),T (b)) straightforwardly. In other

words, every bijective transformation in A commutes with any thresholding.
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Remark 2. Let us assume that the universes A and B coincide and have the structure

of an Abelian group and that the fuzzy relation R used to define εR and δR holds that

R(a+ c,b+ c) = R(a,b) for c ∈ A. Then, by Proposition 3, εR and δR are translation

invariant by c; in other words εR(X +c) = εR(X)+c and δR(Y +c) = δR(Y )+c for all

X ∈ LA
1 and Y ∈ LB

2 .

4.3. Duality

Another important property of erosions and dilations is related to duality, for which

we need to assume that P, L1, and L2 coincide, i.e., P = L1 = L2, therefore we will be

working with just one complete lattice L. Moreover, we have to assume the existence

of an involutive negation in L, i.e., an antitonic operator n : L→ L such that n(0) = 1,

n(1) = 0 and n(n(x)) = x for all x ∈ L. In this section, we assume such requirements

together with the following construction associated with a given adjoint triple.

Definition 7. Let (&,↘,↗) be an adjoint triple defined in a lattice L with an involutive

negation n. The n-adjoint triple (&n,↘n,↗n) of (&,↘,↗) is given by the following

operators:

• x↗n y = n(x&n(y)) for all x,y ∈ L

• x&n y = n(x↗ n(y)) for all x,y ∈ L

• x↘n y = n(y)↘ n(x) for all x,y ∈ L .

The following result justifies the use of the term ‘adjoint triple’ in the previous

definition.

Lemma 2. Let (&,↘,↗) be an adjoint triple defined in a lattice L, then (&n,↘n,↗n)

is an adjoint triple as well.

Proof. We need to show that (&n,↘n,↗n) satisfies the chain of equivalences in Equa-
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tion (3). Given x,y,z ∈ L, we have

x≤ y↘n z ⇐⇒ x≤ n(z)↘ n(y)

⇐⇒ x&n(z)≤ n(y) (4)

(∗)⇐⇒ y≤ n(x&n(z))

⇐⇒ y≤ x↗n z

where step (∗) holds because n is both antitone and involutive (this is also used in the

derivation below).

Now, using (4), we prove the equivalence with respect to the conjunction. That is,

for all x,y,z ∈ L we have

x≤ y↘n z
(4)⇐⇒ x&n(z)≤ n(y)

⇐⇒ n(z)≤ x↗ n(y)

(∗)⇐⇒ n(x↗ n(y))≤ z

⇐⇒ x&n y≤ z.

Given an involutive negation n, one can consider the corresponding n-complement

of an L-fuzzy set X as Xc(x) = n(X(x)). Let us show how erosion and dilation of a

complement can be expressed with the help of operations from the n-adjoint triple.

Given an adjoint triple (&,↘,↗) defined in L, an involutive negation n on L, and

an L-fuzzy relation R, let us write εR and δR to denote the L-fuzzy relational dilation

and erosion given by Definition 5. In addition, let us write εR
d and δR

d to refer to

the erosion and dilation, again defined as in Definition 5 by using the n-adjoint triple

(&n,↘n,↗n) of (&,↘,↗) and w.r.t. the converse of R, defined by R(x,y) = R(y,x).

Proposition 4. Given the pairs (εR,δR) and (εR
d ,δR

d) introduced above, the following

equalities hold for all X ∈ LA

(εR(Xc))c = δR
d(X) (δR(Xc))c = εR

d(X).
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Proof. We prove here just the first equality since the second one is obtained similarly.

Given X ∈ LA and b ∈ B

(ε(Xc
R))

c(b) = n
(∧

a∈A

R(a,b)↗ n(X(a))
)

=
∨
a∈A

n
(
R(a,b)↗ n(X(a))

)
=
∨
a∈A

R(a,b)&n X(a)

=
∨
a∈A

R(b,a)&n X(a) = δR
d(X)(b).

It is not true in general that δR and εR are dual with respect to each other; i.e. by

using the same L-fuzzy relation. Note that the proposition above proves that the dual

of an L-fuzzy relational dilation is an L-fuzzy relational erosion and vice versa, but by

considering the versions based on the converse relation R.

Remark 3. The result in Proposition 4 can be seen as a general version of the well-

known result about duality of fuzzy MM on additive abelian groups. Such an approach

is a subclass of the L-fuzzy relational MM where fuzzy relations RS are defined from

fuzzy sets S (called structuring elements) as RS(a,b) = S(a−b). It is not hard to prove

that in such a context, the converse relation of RS can be identified with the symmetric

of S with respect to the origin.

Example 8. Let us continue with Example 5, consider the negation n(x) = 1− x and

the n-adjoint triple of (&G,→G), that is the operators given by the expressions:

x↗n
G y = 1−min(x,1− y) = max(1− x,y)

x&n
G y =

 y if x > 1− y

0 otherwise

x↘n
G y =

 1 if y > x

1− x otherwise
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Given X = {0/0.5,1/0.8,2/0.4,3/0.8,7/0.8}, let us consider the complement of X with

respect to n:

Y = Xc = {0/0.5,1/0.2,2/0.6,3/0.2,4/1,5/1,6/1,7/0.2}

and the relation R defined by R(x,y) = R(y,x). Then, the dilation of Y with respect

to the n-adjoint operators above and R coincides with the complementary of εR(X)

computed in Example 5 above. That is:

δR
d(Y ) = εR(X)c = {0/0.5,1/0.8,2/0.4}c

= {0/0.5,1/0.2,2/0.6,3/1,4/1,5/1,6/1,7/1}.

5. Representation Theorems

The goal of this section is to prove that the operators of algebraic morphology can

be represented in terms of the L-fuzzy relational ones. Specifically, our aim is to prove

the theorem that every algebraic erosion (resp. dilation) is an L-fuzzy relational erosion

(resp. dilation). Obviously, the crux of the proof is the definition of the L-fuzzy relation

which leads to the relational construction.

Let us consider the set E of algebraic erosions from L1 to L2. The set E can be

viewed as a complete lattice when considering the following ordering:

ε1 ≤ ε2 if and only if ε2(x)≤ ε1(x) for all x ∈ L1. (5)
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Now we define the following operators:

&: E ×L2 → L1

(ε,y) 7→
∧
{x ∈ L1 | y≤ ε(x)}

↗ : E ×L1 → L2

(ε,x) 7→ ε(x)

↘ : L2×L1 → E

(y,x) 7→ (y↘ x)(z) =


1 if z = 1

y if 1 >z≥ x

0 otherwise.

(6)

Note that, given an erosion ε : L1→ L2 and y ∈ L2, the conjunction ε &y coincides

with δε(y), where δε is the residuated dilation associated with ε in the corresponding

adjunction (see Theorem 1); the implication ↗ is just the application of an erosion

to an argument; and, finally, ↘ is a parameterized cut of level x with value y which

behaves like an erosion, as shown in the following result.

Lemma 3. For all x ∈ L1 and y∈ L2, the mapping εy,x : L1→ L2, determined by y↘ x,

is an erosion.

Proof. Let us show that y↘ x commutes with infimum. Consider a set Z ⊆ L1. Then:

(y↘ x)(
∧

Z) =


1 if

∧
Z = 1

y if 1 >
∧

Z ≥ x

0 otherwise

.

Reasoning by cases, if
∧

Z = 1 then, the result holds straightforwardly. If 1 >
∧

Z ≥ x,

then we have that z ≥ x for all z ∈ Z and, in particular, (y↘ x)(z) ≥ y for all z ∈ Z.

Moreover, since
∧

Z 6= 1, there exists z0 ∈ Z such that (y↘ x)(z) = y. Hence

(y↘ x)(
∧

Z) = y =
∧
z∈Z

(y↘ x)(z).

Finally, if it is not the case that
∧

Z = 1 or 1 >
∧

Z ≥ x, then there exists z0 ∈ Z such
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that z0 ≥ x does not hold and, as a result, (y↘ x)(z0) = 0. Therefore,

(y↘ x)(
∧

Z) = 0 =
∧
z∈Z

(y↘ x)(z).

Now, we will prove that the three operators constructed in (6) actually determine

an adjoint triple.

Lemma 4. (&,↘,↗) is an adjoint triple on E ,L2,L1.

Proof. The chain of equivalences in Equation (3) holds by recalling that, given an

erosion ε , the operator δε(y) =
∧
{x ∈ L1 | y ≤ ε(x)} is the only dilation such that

(ε,δε) forms an adjunction. Thus, for every x ∈ L1,y ∈ L2 and ε ∈ E , we have

ε &y≤ x ⇐⇒ δε(y)≤ x

⇐⇒ y≤ ε(x)

⇐⇒ y≤ ε ↗ x.

It is only left to prove ε ≤ y↘ x if and only if y ≤ ε ↗ x. Assume ε ≤ y↘ x, then

by the ordering between erosions given in (5) we have (y↘ x)(z)≤ ε(z) for all z. For

x = 1 we have (y↘ x)(x) = 1 = ε(x). For z = x 6= 1 we get y = (y↘ x)(x) ≤ ε(x).

From both cases we obtain that y≤ ε ↗ x.

Conversely, assuming y ≤ ε ↗ x, i.e. y ≤ ε(x), by (5) it is sufficient to prove that

(y↘ x)(z) ≤ ε(z) for all z ∈ L1. Note that it is enough to consider 1 >z ≥ x, since

otherwise the inequality is trivial; by definition of ↘, the hypothesis y ≤ ε(x), and

monotonicity of ε we have that

(y↘ x)(z) = y≤ ε(x)≤ ε(z).

Now, we introduce a family of φ -mappings which will be used in the proof of the

main representation result. They are defined as follows: given a set A, a lattice L, and
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elements a0 ∈ A and x ∈ L, the mapping φa0,x : A→ L is defined by

φa0,x(a) =

x if a = a0

1 otherwise
. (7)

Note that the mappings in (7) represent somehow complements of singletons in A.

It is remarkable that the previous definition can be seen as an instantiation of a more

general mapping φ : A×L→ LA by considering φ(ao,x) = φa0,x. It is straightforward

to check the following result.

Lemma 5. Let us consider the lattice (LA,≤) where ≤ is the ordering induced by L.

Then, the operator φ is an erosion with respect to the second component.

We have now all the tools needed to state and prove the representation theorem by

following a similar strategy than in [22, Proposition 2.10].

Theorem 3. Let L1 and L2 be complete lattices, let E be the set of algebraic erosions

from L1 to L2 and let A and B be ordinary sets. Then, every algebraic erosion ε : LA
1 →

LB
2 , can be represented in the form of an L-fuzzy relational erosion εR under the adjoint

triple (&,↘,↗) defined in (6) and the E -fuzzy relation R

R(a,b)(x) = ε(φa,x)(b) for all x ∈ L1,

where φa,x denotes a φ -mapping given in Equation (7) from A to L1.

Proof. Let us begin by proving that the E -fuzzy relation R provided in the statement

is well defined. It is not difficult to check that R(a,b)(x) ∈ L2. In order to verify that

R(a,b) is indeed an erosion from L1 to L2, we prove that R(a,b) preserves infima.

Firstly, we apply (7) and use Lemma 5 so that φa,
∧

i∈I xi =
∧

i∈I φa,xi . Then, we easily

obtain ε(φa,
∧

i∈I xi)(b) = ε(
∧

i∈I φa,xi)(b) =
∧

i∈I ε(φa,xi)(b).

Let us prove that εR = ε . Firstly, we verify the equality εR = ε for φ -mappings.

That is, let us consider arbitrary elements a0 ∈ A and x ∈ L1, and let us prove that
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εR(φa0,x)(b) = ε(φa0,x)(b) for all b ∈ B. Indeed

εR(φa0,x)(b) =
∧
a∈A

R(a,b)↗ φa0,x(a) =

(?)
=
∧
a∈A

ε(φa,φa0 ,x(a)
)(b) =

= ε(φa0,x)(b)∧
∧

a∈A,a6=a0

ε(φa,φa0 ,x(a)
)(b) =

= ε(φa0,x)(b)∧
∧

a∈A,a6=a0

ε(φa,1)(b) =

(•)
= ε(φa0,x)(b).

where (?) follows from the definition of φ -mapping, and (•) from monotonicity of ε .

Secondly, we prove the desired equality εR = ε for a general element of X ∈ LA
1 .

It is easy to see that X ∈ LA
1 can be represented as a meet of φ -mappings so that X =∧

a∈A φa,X(a). Thus, we have, for all b ∈ B

εR(X)(b) = εR

(∧
a∈A

φa,X(a)

)
(b)

=
∧
a∈A

εR(φa,X(a))(b)

=
∧
a∈A

ε(φa,X(a))(b)

= ε

(∧
a∈A

φa,X(a)

)
(b)

= ε(X)(b).

As a consequence of Theorems 2 and 3, we obtain the following result.

Corollary 4. Let L1 and L2 be complete lattices, A and B ordinary sets. Let ε : LA
1 → LB

2

and δ : LB
2 → LA

1 be an algebraic erosion and an algebraic dilation, respectively, such

that (ε,δ ) forms an adjunction. Let moreover (&,↘,↗) be the adjoint triple defined

in (6). Then, there exists an E -fuzzy relation R such that εR = ε and δR = δ .

Proof. From Theorem 3 there exists an E -fuzzy relation R such that εR = ε . From

Theorem 2 and the unicity given in Theorem 1 we have finally that δR = δ .
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6. Related work and discussion

This section emphasizes similarities and differences of this contribution with re-

spect to some related approaches concerning fuzzy MM [5, 8, 17], fuzzy relational

MM [9, 10, 37] and representation theorems in the context of algebraic MM [22, 26].

The standard approaches of fuzzy MM are based on the translation of structuring

fuzzy sets by either focusing on duality [8] or adjointness [17]. Firstly, our approach

considers fuzzy relations instead of translations of fuzzy sets, which increase the ex-

pressiveness of fuzzy MM and eliminate the restriction of assuming an affine space

as universe for fuzzy erosions and dilations. Moreover, [5] shows that in fuzzy MM

(based on residuated pairs) duality is incompatible with adjointness (i.e., isotone Ga-

lois connections) in most cases. In this paper, thanks to the use of adjoint triples, we

show that adjointness and duality can coexist in our fuzzy relational framework.

There are three main approaches concerning morphological operators defined by

means of relations. In [9] Bloch et al. provide an interesting overview of MM and in-

troduce several definitions of dilations and erosions in different contexts, one of them

given in terms of relations in the crisp framework (originally given in [4]). This def-

inition turned out to be useful to determine conditions to ensure that a dilation (resp.

erosion) coincides with a closing (resp. opening) and to establish relationships between

mathematical morphology and other fields. Another definition of erosions and dilations

based on crisp relations is given in [37]. Such operators are applied satisfactorily in

graph theory and are used to establish bridges between rough sets and mathematical

morphology.

Another interesting approach, apart from ours, that also includes L-fuzzy relations

into the definition of fuzzy erosions and dilations is [10]. However, in contrast to our

approach, [10] does not study properties of such morphological transformations but,

instead, focuses on filters constructed from them, namely the openings and closings.

Moreover, the consideration of adjoint triples in our definition instead of t-norms makes

our approach more general; note that this consideration is crucial for the representation

theorem obtained.

Finally, concerning representation theorems of algebraic MM, we point out [22]

28



and [26]. The representation theorem of [22] allows to represent every L-fuzzy erosion

(resp. L-fuzzy dilation) as an infimum (resp. supremum) of algebraic erosions (resp. di-

lations) in the underlying lattice L, whereas the one in [26] is based on clodums and

impulse response functions. There are two main differences between Theorem 3 and

those representations theorems. The first is that Theorem 3 includes the case where

erosions (resp. dilations) are defined between different complete lattices, whereas [22,

Proposition 2.10] and [26, Theorem 1] consider only erosions (resp. dilations) between

the same complete lattice. The second difference concerns a set-theoretical interpreta-

tion, since Theorem 3 relates algebraic MM with L-fuzzy relational MM, which has a

similar interpretation as fuzzy MM in terms of (fuzzy) set-theoretical operations. Note

that [22, Proposition 2.10] is given entirely in the context of algebraic MM.

7. Conclusions and future work

Although this is neither the first approach to study morphological operators in terms

of fuzzy relations [9, 10] nor the first one providing a representation theorem for alge-

braic erosions and dilations [22, 26], to the best of our knowledge, it is the first that

provides a representation theorem for algebraic erosions and dilations in terms of L-

fuzzy relational MM. In order to obtain such a theorem, we have included a novelty

with respect to [9, 10] in the definition of L-fuzzy relational erosions and dilations: the

inclusion of adjoint triples [15]. Adjoint triples play a crucial role in this approach,

since from residuated pairs (as in Definition 3) it is not possible to prove Theorem 3;

algebraic erosions and dilations can be defined between different complete lattices but

residuated pairs used in [9, 10] require the same lattice as set of truth values. As a side

effect, the use of adjoint triples provides two different extensions depending on the set

in which we want to apply the erosion and the dilation. In addition, adjoint triples pre-

serve the set-theoretical motivations of residuated pairs and other common operators

used in fuzzy set theory [16].

Apart from the two possible definitions of L-fuzzy relational erosion and dilation

based on adjoint triples and the representation theorem, we have provided other two

noteworthy results. The first is related to the invariance of the morphological operators
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under arbitrary transformations. This result is motivated by the translation invariance of

the original family of crisp morphological operators [28] and the L-fuzzy MM [9, 17].

However, the use of L-fuzzy relations allows the study of transformation invariance in

a much general way than translation invariance; as already studied in [22] for alge-

braic MM.

The second significant contribution is related to duality of erosions and dilations.

As in the case of translation invariance, although it has been studied deeply in the fuzzy

framework [5], so far it has not been the case in the L-fuzzy relational framework. In

the proof of this result, adjoint triples also play a crucial role, and as in the case of

Theorem 3, it cannot be achieved in fuzzy MM with only the use of residuated pairs;

Proposition 4 requires the use of an ad-hoc adjoint triple even in those cases where the

given erosions and dilations are defined from residuated pairs.

This work provides the basis of a promising future research. In a series of exam-

ples, we have shown that classical thresholding is a particular case of L-fuzzy relational

erosion; thus, other kinds of thresholding (for instance by taking into account values in

the neighbourhood of the element) can be defined by using fuzzy relational morpholog-

ical operators. This is potentially applicable to image processing, where thresholding

is used to transforms grayscale images into black and white images, or 24 bits colour

images into 8 bits colour images. On the other hand, algebraic erosions and dilations

generalize many different operators (e.g. lattice F-transforms [39], concept-forming

operators in formal concept analysis [19], etc) applicable in other areas far from image

processing. In this way, the L-fuzzy relational structure provided for algebraic erosions

and dilations can pave the way for new field of application of mathematical morphol-

ogy beyond image processing; e.g. in data analysis for classification [40] or to deal

with bipolar information [6].

Another interesting topic for further research is the classification (following [43])

of algebraic mathematical morphology operators according to the kind of properties

of the L-fuzzy relation and adjoint triples that define them, for instance, mathematical

morphology based on uninorms [18, 21] or translation invariant morphology opera-

tors [22]. Last but not least, it is also interesting to relate our approach to other fields

different from mathematical morphology, like lattice F-transforms [39], fuzzy concept
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lattices [1] or graph theory [38].

Acknowledgements

This work has been partially supported by the NPUII project IT4I XS with the

number LQ1602 and by the Spanish Ministry of Science by the projects TIN15-70266-

C2-P-1 and TIN2016-76653-P.

References

[1] C. Alcalde, A. Burusco, J.C. Dı́az, R. Fuentes-González, and J. Medina. Fuzzy
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