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Abstract

Given a mapping f : A → B from a (pre-)ordered set A into an unstructured

set B, we study the problem of defining a suitable (pre-)ordering relation on B

such that there exists a mapping g : B → A such that the pair of mappings (f, g)

forms an adjunction between (pre-)ordered sets. The necessary and sufficient

conditions obtained are then expressed in terms of closure operators and closure

systems.

Key words: Adjunction, Isotone Galois connection, preorder relation, partial

order relation

1. Introduction

Adjunctions were introduced in 1958 by Kan [26]; although defined in a

categorical context, or perhaps precisely because of this, an impressive amount of

examples of adjunction can be found in a several research areas, ranging from the

most theoretical to the most applied. In the realm of ordered structures, Ore [39]

had introduced in 1944 the so-called Galois connections as a pair of antitone

mappings, generalizing Birkhoff’s theory of polarities to work with complete

lattices; it turns out that, when instantiating an adjunction to categories of

ordered sets, it can be seen that both constructions are fairly similar and, to

some extent, are interdefinable: an adjunction between A and B is a Galois

connection in which the order relation on B is reversed (this leads to the use of

the term isotone Galois connection to refer to an adjunction between ordered

structures).

The importance of Galois connections/adjunctions quickly increased to the

extent that, for instance, the interest of category theorists moved from universal
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mapping properties and natural transformations to adjointness.

In recent years there has been a notable increase in the number of publi-

cations concerning Galois connections, both isotone and antitone. On the one

hand, one can find lots of papers on theoretical developments or theoretical

applications [9, 11, 28] On the other hand, of course, there exist as well a lot

of applications to computer science, see [36] for a first survey on applications,

although more specific references on certain topics can be found, for instance,

to programming [38], data analysis [36], logic [14, 25]. One research topic which

has benefitted recently from the use of the theory of Galois connections is that

of approximate reasoning using rough sets [24, 40, 15].

Last but not least, it is worth noting that many of these works use Galois

connection for dealing with Formal Concept Analysis (FCA), either theoreti-

cally or applicatively, for instance Antoni et al. [1] develop a general framework

for fuzzy FCA, Butka et al. [6] prove the equivalence of two previously existing

frameworks, Dı́az and Medina [12] use Galois connections as building blocks

for solving the multi-adjoint relation equations, Medina [33] develops new gen-

eralized frameworks for FCA, Dubois and Prade [13] introduce a relationship

between FCA and possibility theory, Bělohlávek and Konečný [5] stress on the

“duality” between isotone and antitone Galois connections in showing a case

of mutual reducibility of the concept lattices generated by using each type of

connection, etcetera.

It is not surprising to see so many works dealing with both Galois connections

and FCA, since the derivation operators used to define the concepts form a

(antitone) Galois connection. Valverde and Peláez have studied the extension

of conceptualization modes in [42], and provided a general approach to the

discipline.

The ability to build or define a Galois connection between two ordered struc-

tures is a matter of major importance, and not only for FCA. For instance, [10]

establishes a Galois connection between valued constraint languages and sets of

weighted polymorphisms in order to develop an algebraic theory of complexity

for valued constraint languages.

A number of results can be found in the literature concerning sufficient or

necessary conditions for a Galois connection between ordered structures to exist.

The main results of this paper are related to the existence and construction of

the adjoint pair to a given mapping f , but in a more general framework.

Our initial setting is to consider a mapping f : A → B from a partially or-

dered (resp. preordered) set A into an unstructured set B, and then characterize

those situations in which the set B can be partially ordered (resp. preordered)

and an isotone mapping g : B → A can be built such that the pair (f, g) is an ad-

junction. (Please note that, for brevity’s sake, hereafter we will use exclusively

the term adjunction instead of isotone Galois connection).
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There is a tight relation between adjunctions and closure and kernel oper-

ators, in that every adjunction (f, g) leads to a closure operator g ◦ f and a

kernel operator f ◦ g. After obtaining the necessary and sufficient conditions to

define a preorder on B, it makes sense to express those conditions in terms of

the corresponding closure and/or kernel operators in a preordered setting.

Concerning potential applications of the present work, let us recall that the

Galois connections used in FCA are given between the Boole algebras of the

powersets of objects and the powerset of attributes. There exist several gener-

alizations in FCA which weaken the structure on which a Galois connection is

defined: for instance, in fuzzy FCA, the underlying structure used of the power-

set of fuzzy sets is that of a residuated lattice. In [21], a general approach called

pattern structures was proposed, which allows for extending FCA techniques

to arbitrary partially ordered data descriptions. Using pattern structures, one

can compute taxonomies, ontologies, implications, implication bases, associa-

tion rules, concept-based (or JSM-) hypotheses in the same way it is done with

standard concept lattices [30]. In this generalization, instead of associating each

object with the set of attributes it satisfies, a pattern is given, which can be

either a graph, or a sequence or an interval, and the semantics of these patterns

can be different in each case. For instance, [20] represents scenarios of conflict

between human agents, and [32] use gene expression data. These sets of pat-

terns are provided with a partial ordering relation such as “being a subgraph of ”

or “being a subchain of ”.

The proposed formalism is not confined to applications in FCA. Rather, it

is potentially useful in any domain in which the theory of partial orders can be

applied, since the knowledge of the existence of a suitable ordering (whenever

it exists), enables the full machinery of Galois connections to be used within

the theory (whatever it might be). For instance, there are many works which

suggest the use of the theory of order in the field of chemistry; one can even

find special issues solely dedicated to the use of partial orders in this discipline.

Specifically, in relation to FCA, [2] applies FCA to the classification of ancient

objects (namely, ancient egyptian bronze artifacts); more recently, [27] advo-

cates the use of partial orderings and the theory of formal concept analysis in

environmental sciences, particularly, for studying a certain class of pesticides.

Another interesting application field is linguistics: in [37], the study of gram-

matical inference in Lambek languages (both simple and mixed) is done in terms

of Galois connections (the author used the term residuation); in [31], the author

argues the use of iterated Galois connections in relation with an algebraic ap-

proach to the structure of sentences in a natural language. A third application

field can be found in bioinformatics: [41] uses properties of Galois connections

in order to identify sets of genes from microarray data sets; [18] applies Logic

Information Systems (a framework based on logic-based FCA) to develop an
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application to help biologist extract information from raw genome data; [17]

apply the framework of abstract interpretation (heavily based on the notion of

Galois connection) to the formalization of further abstractions commonly used

in systems biology as type systems, the authors analyze several different seman-

tics, finding difficulties in one which they could not relate with a simple Galois

connection.

The structure of the paper is as follows: in Section 2, given f : A → B we

focus on the case in which domain A has a poset structure, after introducing the

preliminary definitions, the necessary and sufficient conditions for the existence

of a unique ordering on B and a mapping g such that (f, g) is an adjunction;

then, in Section 3 we reproduce the study done in the previous section, although

the main ideas underlying the results are the same, the absence of antisymmetry

makes the proof of the results much more involved. Later, in Section 5 we state

the necessary and sufficient conditions obtained in the previous section in terms

of closure operators and closure systems. Finally, in Section 6, we draw some

conclusions and discuss future work.

It is worth to remark that, although all the results will be stated in terms of

the existence and construction of adjunctions on the right, all of them can be

straightforwardly modified for the existence and construction of adjunctions on

the left.

2. Building adjunctions between partially ordered sets

2.1. Preliminaries

We assume basic knowledge of the properties and constructions related to

a partially ordered set. For the sake of self-completion, we include below the

formal definitions of the main concepts to be used in this section.

Definition 1. Given a partially ordered set 〈A,≤A〉, X ⊆ A, and a ∈ A.

• An element M is said to be the maximum of X, denoted maxX, if M ∈ X
and x ≤M for all x ∈ X.

• An element m is said to be the minimum of X, denoted minX, if m ∈ X
and m ≤ x for all x ∈ X.

• The downward closure a↓ of a is defined as a↓ = {x ∈ A | x ≤A a}.

• The upward closure a↑ of a is defined as a↑ = {x ∈ A | a ≤A x}.

In addition, given a poset 〈B,≤B〉, a mapping f : A→ B is said to be

• isotone if a1 ≤A a2 implies f(a1) ≤B f(a2), for all a1, a2 ∈ A.

• antitone if a1 ≤A a2 implies f(a2) ≤B f(a1), for all a1, a2 ∈ A.
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In the particular case in which A = B,

• f is inflationary (also called extensive) if a ≤A f(a) for all a ∈ A.

• f is deflationary (also called contractive) if f(a) ≤A a for all a ∈ A.

As we are including the necessary definitions for the development of the

construction of adjunctions between posets, we state below the definition of

adjunction we will be working with.

Definition 2. Let A = 〈A,≤A〉 and B = 〈B,≤B〉 be posets, f : A → B and
g : B → A be two mappings. The pair (f, g) is said to be an adjunction between
A and B, denoted by (f, g) : A� B, whenever for all a ∈ A and b ∈ B we have
that

f(a) ≤B b if and only if a ≤A g(b)

The mapping f is called left adjoint and g is called right adjoint.

The following theorem states equivalent definitions of adjunction between

posets that can be found in the literature [22].

Theorem 1. Let A = 〈A,≤A〉,B = 〈B,≤B〉 be two posets, f : A → B and
g : B → A be two mappings. The following statements are equivalent:

1. (f, g) : A� B.

2. f and g are isotone, g ◦ f is inflationary, and f ◦ g is deflationary.

3. f(a)↑ = g−1(a↑) for all a ∈ A.

4. g(b)↓ = f−1(b↓) for all b ∈ B.

5. f is isotone and g(b) = max f−1(b↓) for all b ∈ B.

6. g is isotone and f(a) = min g−1(a↑) for all a ∈ A.

We introduce the technical lemma below which shows that, in some cases, it

is possible to get rid of the downward closure (as used in item 5 of the previous

theorem).

Lemma 1. Let 〈A,≤A〉 and 〈B,≤B〉 be posets, f : A → B an isotone map-
ping and let b ∈ f(A). If max f−1(b↓) exists, then max f−1(b) exists and
max f−1(b↓) = max f−1(b).

Proof. Let us write m = max f−1(b↓). We will prove that a ≤A m, for all

a ∈ f−1(b), and m ∈ f−1(b), so that we have m = max f−1(b).

Consider a ∈ f−1(b), then f(a) = b ∈ b↓ and a ∈ f−1(b↓), hence a ≤A m.

Now, isotonicity of f shows that f(a) = b ≤B f(m). For the other inequality,

simply consider that m = max f−1(b↓) implies m ∈ f−1(b↓), which means

f(m) ≤B b. Therefore, f(m) = b because of antisymmetry of ≤B . �
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2.2. The construction

In general, given a poset 〈A,≤A〉 together with an equivalence relation ∼
on A, it is customary to consider the set A∼ = A/∼, the quotient set of A wrt

∼, and the natural projection π : A → A∼. As usual, the equivalence class of

an element a ∈ A is denoted [a]∼ and, then, π(a) = [a]∼.

With the aim of finding conditions for building a right adjoint to a mapping f

from a poset (A,≤A) to an unstructured set B, we will naturally consider the

canonical decomposition of f : A → B through A≡f
, the quotient set of A wrt

the kernel relation ≡f defined as a ≡f b if and only if f(a) = f(b):

A B

A≡f
f(A)

f

π

ϕ

i

The following lemma provides sufficient conditions for the natural projection

being the left component of an adjunction.

Lemma 2. Let 〈A,≤A〉 be a poset and ∼ an equivalence relation on A. Suppose
that the following conditions hold

1. There exists max([a]∼), for all a ∈ A.

2. If a1 ≤A a2 then max([a1]∼) ≤A max([a2]∼), for all a1, a2 ∈ A.

Then, the relation ≤A∼ defined by [a1]∼ ≤A∼ [a2]∼ if and only if a1 ≤A
max([a2]∼) is an ordering in A∼ and, moreover, the pair (π,max) is an ad-
junction between 〈A,≤A〉 and 〈A∼,≤A∼〉.

Proof. To begin with, the relation ≤A∼ is well defined since, by the first hy-

pothesis, max([a]∼) exists for all a ∈ A.

Reflexivity Obvious, since [a]∼ ≤A∼ [a]∼ if and only if a ≤A max([a]∼), and

the latter holds for all a ∈ A.

Transitivity Assume [a1]∼ ≤A∼ [a2]∼ and [a2]∼ ≤A∼ [a3]∼.

From [a1]∼ ≤A∼ [a2]∼, by definition, we have a1 ≤A max([a2]∼). Now,

from [a2]∼ ≤A∼ [a3]∼ we obtain, by definition of the ordering and the

second hypothesis that max([a2]∼) ≤A max([a3]∼). As a result, we obtain

[a1] ≤A∼ max([a3]∼), that is, [a1]∼ ≤A∼ [a3]∼.

Antisymmetry Consider two elements a1, a2 ∈ A such that [a1]∼ ≤A∼ [a2]∼
and [a2]∼ ≤A∼ [a1]∼.

By hypothesis, we have that a1 ≤A max([a2]∼) then max([a1]∼) ≤A
max([a2]∼), and a2 ≤A max([a1]∼) then max([a2]∼) ≤A max([a1])∼.

Since ≤A is antisymmetric, then max([a1]∼) = max([a2]∼); now, we have
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that the intersection of the two classes [a1]∼ and [a2]∼ is non-empty, there-

fore [a1]∼ = [a2]∼.

Once again by the first hypothesis, max can be seen as a mapping A∼ → A.

Whence, the adjunction follows by the definition of π and the ordering:

π(a1) ≤A∼ [a2]∼ if and only if [a1]∼ ≤A∼ [a2]∼

if and only if a1 ≤A max([a2]∼)

�

The previous lemma gave sufficient conditions for π being a left adjoint;

the following result states that the conditions are also necessary, and that the

ordering relation and the right adjoint are uniquely defined.

Lemma 3. Let 〈A,≤A〉 be a poset and ∼ an equivalence relation on A. Let
A∼ = A/∼ be the quotient set of A wrt ∼, and π : A→ A∼ the natural projec-
tion. If there exists an ordering relation ≤A∼ in A∼ and g : A∼ → A such that
(π, g) : 〈A,≤A〉� 〈A∼,≤A∼〉 then,

1. g([a]∼) = max ([a]∼) for all a ∈ A.
2. [a1]∼ ≤A∼ [a2]∼ if and only if a1 ≤A max ([a2]∼) for all a1, a2 ∈ A.
3. If a1 ≤A a2 then max ([a1]∼) ≤A max ([a2]∼) for all a1, a2 ∈ A.

Proof.

1. By Theorem 1, we have g([a]∼) = maxπ−1([a]↓∼). Now, Lemma 1 leads

to maxπ−1([a]↓∼) = maxπ−1([a]∼) = max([a]∼).
Note that there is a slight abuse of notation, in that [a]∼ is sometimes

considered as a single element, i.e. one equivalence class of the quotient

set, and sometimes as the set of elements of the equivalence class. The

context helps to clarify which meaning is intended in each case.

2. By the adjointness of (π, g), definition of π, and the previous item we have

the following chain of equivalences

[a1]∼ ≤A∼ [a2]∼ if and only if π(a1) ≤A∼ [a2]∼

if and only if a1 ≤A g([a2]∼)

if and only if a1 ≤A max([a2]∼)

3. Finally, since π and g are isotone maps, a1 ≤A a2 implies [a1]∼ ≤A∼ [a2]∼,

and g([a1]∼) ≤A g([a2]∼), therefore max ([a1]∼) ≤A max ([a2]∼) by the

first item above. �

Continuing with the analysis of the decomposition, we naturally arrive to

the following result.

Lemma 4. Consider a poset 〈A,≤A〉 and a bijective mapping ϕ : A→ B, then
there exists a unique ordering relation in B, which is defined as b1 ≤B b2 if and
only if ϕ−1(b1) ≤A ϕ−1(b2), such that (ϕ,ϕ−1) : 〈A,≤A〉� 〈B,≤B〉.
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Proof. Straightforward. �

As a consequence of the previous results, we have established necessary and

sufficient conditions ensuring the existence and uniqueness of right adjoint for

any surjective mapping f from a poset A to an unstructured set B.

Theorem 2. Given a poset 〈A,≤A〉 and a surjective mapping f : A→ B, let ≡f
be the kernel relation. Then, there exists an ordering ≤B in B and a mapping
g : B → A such that (f, g) : 〈A,≤A〉� 〈B,≤B〉 if and only if

1. There exists max([a]≡f
) for all a ∈ A.

2. For all a1, a2 ∈ A, a1 ≤A a2 implies max([a1]≡f
) ≤A max([a2]≡f

).

Proof. Assume that there exists an adjunction (f, g) : A � B and let us prove

items 1 and 2.

Given a ∈ A, item 1 holds because of the following chain of equalities, where

the first equality follows from Theorem 1, the second one follows from Lemma 1,

and the third because of the definition of [a]≡f
:

g(f(a)) = max f−1(f(a)↓) = max f−1(f(a)) = max([a]≡f
) (1)

Now, item 2 is straightforward, because if a1 ≤A a2 then, by isotonicity,

f(a1) ≤B f(a2) and g(f(a1)) ≤A g(f(a2)). Therefore, by Equation (1) above,

max([a1]≡f
) ≤A max([a2]≡f

).

Conversely, given 〈A,≤A〉 and f : A → B and items 1 and 2, let us prove

that f is the left adjoint of a mapping g : B → A. To begin with, consider the

canonical decomposition of f through the quotient setAf ofA wrt≡f , see below,

where π : A→ Af is the natural projection, π(a) = [a]≡f
, and ϕ([a]≡f

) = f(a).

A B

A≡f

f

π

g=max◦ϕ−1

ϕ−1

max ϕ

Firstly, by Lemma 2, using conditions 1 and 2, and the fact that [a]≡f
= π(a),

we obtain that (π,max): 〈A,≤A〉� 〈A≡f
,≤≡f

〉.
Moreover, since the mapping ϕ : A≡f

→ B is bijective, we can apply Lemma 4

in order to induce an ordering ≤B on B such that we have another adjunction,

the pair (ϕ,ϕ−1) : 〈A≡f
,≤≡f

〉� 〈B,≤B〉.
Finally, the composition g = max ◦ ϕ−1 : B → A is such that (f, g) is an

adjunction. �

The third part of this section is devoted to considering the case in which f

is not surjective. In this case, in general, there are several possible orderings
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on B which allows us to define the right adjoint. The crux of the construction is

related to the definition of an order-embedding of the image into the codomain

set.

More generally, the idea is to extend an ordering defined just on a subset of

a set to the whole set.

Proposition 1. Given a subset X ⊆ B, and a fixed element m ∈ X, any
preordering ≤X in X can be extended to a preordering ≤m on B, defined as the
reflexive and transitive closure of the relation ≤X ∪{(m, y) | y /∈ X}.

Note that the relation above can be described, for all x, y ∈ B, as x ≤m y if and

only if some of the following holds:

(a) x, y ∈ X and x ≤X y

(b) x ∈ X, y /∈ X and x ≤X m

(c) x, y /∈ X and x = y

It is not difficult to check that if the initial relation≤X is an ordering relation,

then ≤m is an ordering as well. Formally, we have

Lemma 5. Given a subset X ⊆ B, and a fixed element m ∈ X, then ≤X is an
ordering in X if and only if ≤m is an ordering on B.

Proof. Just some routine computations are needed to check that ≤m is anti-

symmetric using the properties of ≤X .

Conversely, if ≤m is an ordering, then ≤X is an ordering as well, since it is

a restriction of ≤m. �

Lemma 6. Let X be a subset of B, consider a fixed element m ∈ X, and an
ordering ≤X in X. Define the mapping jm : 〈B,≤m〉 → 〈X,≤X〉 as

jm(x) =

{
x if x ∈ X
m if x /∈ X

Then, (i, jm) : 〈X,≤X〉� 〈B,≤m〉 where i denotes the inclusion X ↪→ B.

Proof. It follows easily by routine computation. 2

Theorem 3. Given a poset 〈A,≤A〉 and a mapping f : A → B, let ≡f be the
kernel relation. Then, there exists an ordering ≤B in B and a mapping g : B →
A such that (f, g) : 〈A,≤A〉� 〈B,≤B〉 if and only if

1. There exists max([a]≡f
) for all a ∈ A.

2. a1 ≤A a2 implies max([a1]≡f
) ≤A max([a2]≡f

), for all a1, a2 ∈ A.

9



Proof. Assume that there exists an adjunction (f, g) : 〈A,≤A〉� 〈B,≤B〉. The

proof of items 1 and 2 is exactly the same of that in Theorem 2, in which

assumption of f being surjective was not used.

Conversely, given 〈A,≤A〉 and f : A → B satisfying items 1 and 2, let us

prove that f is the left adjoint of a mapping g : B → A. By Theorem 2, there

exists an ordering ≤f(A) on f(A) and a mapping g′ : f(A) → B such that

(f, g′) : 〈A,≤A〉� 〈f(A),≤f(A)〉.
Now, considering an arbitrary element m ∈ f(A), the ordering ≤f(A) induces

an ordering ≤m on B, as stated in Lemma 5, and a mapping jm : B → f(A)

such that (i, jm) : 〈f(A),≤f(A)〉� 〈B,≤B〉.
The composition g = g′ ◦ jm : B → A is such that (f, g) is an adjunction. �

Pictorially, we have the following commutative diagram of adjoint pairs, in

which the mapping g′ above is the composition max ◦ ϕ−1

A B

A≡f
f(A)

f

π

g=max◦ϕ−1◦jm

jmmax

ϕ

ϕ−1

i

We finish this section with two counterexamples showing that the conditions

in the theorem cannot be removed.

Example 1. Let A = {a, b, c} and B = {d, e} be two sets and f : A→ B defined
as f(a) = d and f(b) = f(c) = e.

Condition 1 cannot be removed: Consider the situation depicted below, in
which we have a poset 〈A,≤〉 with a ≤ b, a ≤ c and b, c are not related,
together with a mapping f to an unstructured set B. Then [b]≡f

= {b, c}
and there does not exist max([b]≡f

).

a

b

c

d e

〈A,≤〉

B

The right adjoint cannot exist because max f−1(e↓) does not exist for any
ordering in B.

Condition 2 cannot be removed: Consider 〈A,≤〉, where b ≤ a ≤ c.
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b

a

c

d e〈A,≤〉 B

In this case, Condition 1 holds, since there exist both max[a]≡f
= a and

max[b]≡f
= c, but Condition 2 clearly does not. Again, the right adjoint

does not exist because f will never be isotone in any possible ordering
defined in B.

3. Building adjunctions between preordered sets

In this section we extend the previous results to the framework of preordered

sets. The idea underlying the construction is similar to that above, but the

absence of antisymmetry makes the low level computations much more involved

than in the partially ordered case.

3.1. Preliminaries

The definitions of downward (resp. upward) closure of an element in a pre-

ordered set, and those of isotone, antitone, inflationary and deflationary map-

ping between preordered sets are exactly the same as those given for posets.

The notion of maximum or minimum element of a subset of a preordered

set is defined as usual. Note, however, that due to the absence of antisymme-

try, these elements need not be unique. This is an important difference which

justifies the introduction of special terminology in this context.

Definition 3. Given a preordered set 〈A,.A〉 and a subset X ⊆ A, an element
a ∈ A is said to be a p-maximum (resp., p-minimum) of X if a ∈ X and x .A a
(resp., a .A x) for all x ∈ X. The set of p-maxima (resp., p-minima) of X will
be denoted as p-max(X) (resp., p-min(X)).

Notice that p-max(X) (resp., p-min(X)) need not be a singleton. In the

event that, say a, b ∈ p-max(X), then the two relations a .A b and b .A a

hold. As this situation will repeat several times, we introduce the equivalence

relation ≈A in any preordered set 〈A,.A〉, defined as follows for a1, a2 ∈ A:

a1 ≈A a2 if and only if a1 .A a2 and a2 .A a1 (2)

In this section we will assume a mapping f : A → B such that the original

set is preordered. In order to study the existence of adjoints in this framework,

we will need to use the previously defined relation ≈A and we will keep using

the kernel relation ≡f .

The two relations above are used together in the definition of the p-kernel

relation defined below:
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Definition 4. Let 〈A,.A〉 be a preordered set, and f : A→ B a mapping. The
p-kernel relation ∼=A on A is the equivalence relation obtained as the transitive
closure of the union of the relations ≈A and ≡f .

It is well-known that the transitive closure in the definition above can be

described as follows: given a1, a2 ∈ A, we have that a1 ∼=A a2 if and only if

there exists a finite chain {xi}i∈{1,...,n} ⊆ A such that x1 = a1, xn = a2 and,

for all i ∈ {1, . . . , n− 1}, either xi ≡f xi+1 or xi ≈A xi+1.

The following theorem states different equivalent characterizations of the

notion of adjunction between preordered sets that will be used in the main

construction of the right adjoint. As expected, the general structure of the

definitions is preserved, but those concerning the actual definition of the adjoints

have to be modified by using the notions of p-maximum and p-minimum.

Theorem 4 ([22]). Let A = 〈A,.A〉,B = 〈B,.B〉 be two preordered sets, and
f : A → B and g : B → A be two mappings. The following statements are
equivalent:

1. (f, g) : A� B.

2. f and g are isotone, and g ◦ f is inflationary, f ◦ g is deflationary.

3. f(a)↑ = g−1(a↑) for all a ∈ A.

4. g(b)↓ = f−1(b↓) for all b ∈ B.

5. f is isotone and g(b) ∈ p-max f−1(b↓) for all b ∈ B.

6. g is isotone and f(a) ∈ p-min g−1(a↑) for all a ∈ A.

Once again, the absence of antisymmetry leads to slight modifications of

some well-known properties of adjunctions, as stated in the result below and its

corollary.

Theorem 5. Let A = 〈A,.A〉,B = 〈B,.B〉 be two preordered sets, and f : A→
B and g : B → A be two mappings. If (f, g) : A� B then, (f ◦g◦f)(a) ≈B f(a)
for all a ∈ A, and (g ◦ f ◦ g)(b) ≈A g(b) for all b ∈ B.

Corollary 1. Let A = 〈A,.A〉,B = 〈B,.B〉 be two preordered sets, and f : A→
B and g : B → A be two mappings. If (f, g) : A� B then, (g ◦ f ◦ g ◦ f)(a) ≈A
(g ◦ f)(a) for all a ∈ A, and (f ◦ g ◦ f ◦ g)(b) ≈B (f ◦ g)(b) for all b ∈ B.

The following definition recalls the notion of Hoare ordering between sub-

sets of a preordered set, and then introduces an alternative statement in the

subsequent lemma.

Definition 5. Let 〈A,.A〉 be a preordered set, and consider X,Y ⊆ A.

• We will denote by vH the Hoare relation, X vH Y if and only if, for all
x ∈ X, there exists y ∈ Y such that x .A y.
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• We define X v Y if and only if there exist x ∈ X and y ∈ Y such as
x .A y.

Lemma 7. Let 〈A,.A〉 be a preordered set, and consider X,Y ⊆ A such that
p-min(X) 6= ∅ and p-min(Y ) 6= ∅. The following statements are equivalent:

1. p-min(X) vH p-min(Y ).

2. p-min(X) v p-min(Y ).

3. For all x ∈ p-min(X) and for all y ∈ p-min(Y ), x .A y.

Proof. The implications 1 ⇒ 2 and 3 ⇒ 1 are straightforward. Let us prove,

2 ⇒ 3. For this, consider any x ∈ p-min(X) and y ∈ p-min(Y ). Using the

hypothesis and x ∈ p-min(X), we have that, there exists y1 ∈ p-min(Y ) such

that x .A y1. Since y1 ∈ p-min(Y ), we have that y1 .A y for all y ∈ Y .

Therefore, x .A y for all x ∈ p-min(X) and y ∈ p-min(Y ). �

We finish this section of preliminaries introducing the notation UB(X) to

mean the set of upper bounds of the subset X of a preordered set, together with

the operator ϕ which will be frequently used in the construction of the right

adjoint g.

Definition 6. Let 〈A,.A〉 be a preordered set and let X,S be subsets of A. The
set of upper bounds of X is defined as follows

UB(X) = {b ∈ A | x ≤ b for all x ∈ X}

The mapping ϕ
S

: A→ 2A is defined as

ϕ
S
(a) = p-min(UB([a]∼=A

) ∩ S)

where [a]∼=A
denotes the equivalence class of a wrt the p-kernel relation ∼=A.

3.2. The construction

Given a mapping f : A → B from a preordered set A = 〈A,.A〉 to an

unstructured set B, our first goal is to find sufficient conditions to define a suit-

able preordering on B such that a right adjoint exists, in the style of Lemma 2.

Notice that there is much more than a mere adaptation of the result for posets.

Lemma 8. Let A = 〈A,.A〉 be a preordered set and f : A → B a surjective
mapping. Consider S ⊆

⋃
a∈A p-max[a]∼=A

such that the following conditions
hold:

• ϕ
S
(a) 6= ∅, for all a ∈ A.

• If a1 .A a2, then ϕ
S
(a1) v ϕ

S
(a2).

Then, there exists a preorder .B in B and a map g such that (f, g) : A� B.

13



Proof. The definition of the preorder .B in B, given b1, b2 ∈ B, is as follows:

b1 .B b2 if and only if (3)

there is a1 ∈ f−1(b1) and a2 ∈ f−1(b2) with ϕ
S
(a1) v ϕ

S
(a2)

Let us prove that it is a preordering:

Reflexivity: By the first hypothesis, we have that ϕ
S
(a) 6= ∅. Now, trivially,

ϕ
S
(a) v ϕ

S
(a) holds for any a ∈ f−1(b). Therefore, b .B b for any b ∈ B.

Transitivity: Assume b1 .B b2 and b2 .B b3.

From b1 .B b2, there exist ai ∈ f−1(bi), and ci ∈ ϕS
(ai) for i ∈ {1, 2}

such that c1 .A c2.

From b2 .B b3, there exist a′j ∈ f−1(bj), and c′j ∈ ϕS
(a′j) for j ∈ {2, 3}

such that c′2 .A c
′
3.

As a2, a
′
2 ∈ f−1(b2), we have that [a2]∼=A

= [a′2]∼=A
, which implies that

c2 ≈A c′2. Therefore, c1 .A c2 ≈A c′2 .A c′3 and, as a result, b1 .B b3.

In order to define g : B → A, notice that using the axiom of choice, as f

is onto, for all b ∈ B we can choose xb ∈ A with f(xb) = b. By hypothesis,

ϕ
S
(xb) 6= ∅ for all b ∈ B and, therefore, there exists a choice function. Any of

these functions can be used to define g, in such a manner that g(b) ∈ ϕ
S
(xb).

To finish the proof, we have just to check that (f, g) : 〈A,.A〉� 〈B,.B〉.
Assume f(a) .B b, then there exist a1 ∈ f−1(f(a)), a2 ∈ f−1(b), c1 ∈

ϕ
S
(a1) and c2 ∈ ϕS

(a2) with c1 .A c2; as [a1]∼=A
= [a]∼=A

, and c1 ∈ UB[a1]∼=A
,

we also have a .A c1. Let x ∈ f−1(b) such that g(b) ∈ ϕ
S
(x). Then [a2]∼=A

=

[x]∼=A
, and ϕ

S
(a2) = ϕ

S
(x). Thus, c2 ≈A g(b) and, as a .A c1 .A c2, then

a .A g(b).

Assuming now that a .A g(b), let us prove f(a) .B b. Let xb be the element

in f−1(b) used in the definition of g(b), that is, g(b) ∈ ϕ
S
(xb). We will prove

the inequality in three steps:

• Firstly, we prove that g(b) ∈ ϕS(g(b)): From g(b) ∈ ϕS(xb), particularly

g(b) ∈ S, and using the hypothesis on S, we have that there exists c ∈ A
such that g(b) ∈ p-max[c]∼=A

and g(b) ∈ [c]∼=A
= [g(b)]∼=A

. Thus, g(b) ∈
p-max[g(b)]∼=A

⊆ UB[g(b)]∼=A
. Therefore, g(b) ∈ UB[g(b)]∼=A

∩S and, from

the definition of upper bound, we have g(b) ∈ p-min(UB[g(b)]∼=A
∩ S) =

ϕS(g(b)).

• Now, we prove ϕ
S
(a) v ϕ

S
(xb). From a .A g(b) and the second hypothe-

sis we have ϕ
S
(a) v ϕ

S
(g(b)). By Lemma 7 and g(b) ∈ ϕS(g(b)), we have

that z .A g(b) for all z ∈ ϕ
S
(a). Since g(b) ∈ ϕS(xb), by the definition of

g(b), we obtain ϕ
S
(a) v ϕ

S
(xb).
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• Finally, since ϕ
S
(a) v ϕ

S
(xb) for a ∈ f−1(f(a)) and xb ∈ f−1(b), by the

definition of the preorder given in (3), we have that f(a) .B b. �

The following lemma will be used in the proof of the main theorem in this

section, namely Theorem 6. It corresponds to the adaptation to preorders of

Lemma 5 and the final part of the proof of Theorem 3.

Lemma 9. Consider 〈A,.A〉 a preordered set, B a set, and f : A→ B. Then,
there exist both a preorder .B and an adjunction (f, g) : 〈A,.A〉 � 〈B,.B〉 if
and only if there exist a preorder .f(A) and an adjunction (f, g′) : 〈A,.A〉 �
〈f(A),.f(A)〉.

Proof. The direct implication is trivial, by considering .f(A) and g′ as the

restrictions to f(A) of .B and g, respectively.

Conversely, consider the adjunction (f, g′) : 〈A,.A〉 � 〈f(A),.f(A)〉, fix

m ∈ f(A), and choose .B to be its associated preorder, as introduced in Propo-

sition 1. It is just a matter of straightforward computation to check that we

have an adjunction (f, g) : 〈A,.A〉 � 〈B,.B〉 where g is the extension of g′

defined as follows:

g(x) =

{
g′(x) if x ∈ f(A)

g′(m) if x /∈ f(A)

�

The corresponding version of Theorem 3 is a twofold extension of the state-

ment of Lemma 8 in that, firstly, the mapping f need not be onto and, secondly,

it gives a necessary and sufficient condition for the existence of adjunction.

Theorem 6. Given any preordered set A = 〈A,.A〉 and a mapping f : A → B,
there exists a preorder B = 〈B,.B〉 and g : B → A such that (f, g) : A � B if
and only if there exists a subset S of A such that the following conditions hold:

1. S ⊆
⋃
a∈A

p-max[a]∼=A

2. ϕ
S
(a) 6= ∅, for all a ∈ A.

3. If a1 .A a2, then ϕ
S
(a1) v ϕ

S
(a2), for a1, a2 ∈ A.

Proof. Assume the existence of the preordering in B and the mapping g such

that (f, g) : A� B, and let us prove the three properties in the statement.

For property 1, define S = g(f(A)), consider g(f(a)) ∈ S, and let us show

that g(f(a)) ∈ p-max[g(f(a))]∼=A
. Consider x ∈ [g(f(a))]∼=A

, by a straightfor-

ward induction argument we obtain f(x) ≈B f(g(f(a))); now, using f(g(f(a))) ≈B
f(a) we have f(x) ≈B f(a). Since f(x) .B f(a), by using the adjunction, we

obtain x .A g(f(a)), hence g(f(a)) ∈ p-max[g(f(a))]∼=A
.

For property 2, we will check that g(f(a)) ∈ ϕ
S
(a). To begin with, by

definition g(f(a)) ∈ S; then, we will prove that g(f(a)) ∈ UB[a]∼=A
. That
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is, x .A g(f(a)) for all x ∈ [a]∼=A
. Specifically, we are going to prove, by

induction on the length n of any chain {ai}i∈{0,...,n} ⊆ A such that ai ≈A ai+1

or f(ai) = f(ai+1) for all i ∈ {0, . . . , n − 1}, that condition an .A g(f(a0))

holds:

• For n = 0, we have a0 .A g(f(a0)) by properties of adjunction.

• As induction hypothesis, assume the result is true for any chain of length k.

Let {ai}i∈{0,...,k+1} ⊆ A be a chain such that, for all 0 ≤ i . k, either

ai ≈A ai+1 or f(ai) = f(ai+1). By induction hypothesis, ak .A g(f(a0))

holds. There are two possibilities:

– If ak ≈A ak+1, trivially ak+1 .A g(f(a0)).

– If f(ak) = f(ak+1), using the hypothesis of induction and the prop-

erties of adjunction twice we firstly obtain f(ak+1) = f(ak) .A
f(g(f(a0))) and, then, ak+1 .A g(f(g(f(a0)))) ≈A g(f(a0)).

We have just proved that g(f(a)) ∈ UB[a]∼=A
∩S, the remaining part is to prove

that it is a p-minimum element. Consider x ∈ UB[a]∼=A
∩S; then z .A x for all

z ∈ [a]∼=A
and, by definition of S, x = g(f(a1)). Particularly, for z = a we have

that, a .A g(f(a1)), by properties of adjunction, g(f(a)) .A g(f(g(f(a1)))) ≈A
g(f(a1)) = x, i.e. g(f(a)) .A x.

For Property 3, assume a1 .A a2, by adjunction, f and g are isotone maps,

then g(f(a1)) .A g(f(a2)). From this, we directly obtain ϕ
S
(a1) v ϕ

S
(a2) since

we have just proved above that g(f(a)) ∈ ϕ
S
(a), for all a ∈ A.

Conversely, if we suppose the conditions 1, 2, and 3, then by Lemma 8 and

Lemma 9, there exists a preorder B = 〈B,.B〉 and a mapping g such that

(f, g) : A� B. �

4. On the uniqueness of right adjoints and the induced ordered struc-

ture in the codomains

The unicity of the right adjoint between posets is well-known. Specifically,

given two posets A = 〈A,≤A〉 and B = 〈B,≤B〉 and a mapping f : A → B,

if there exists g : B → A such that the pair (f, g) is an adjunction, then it is

unique.

This behavior was analyzed in Section 2, where the uniqueness property

was extended, in the case of surjective mappings, not only to the right adjoint,

but also to the ordering relation in the codomain: namely, there exists just

one partial ordering on the codomain B such that a right adjoint exists. That

is, given a surjective mapping f from a poset A to an unstructured set B,

we introduced necessary and sufficient conditions to ensure the existence of an
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ordering ≤B in B and a mapping g : B → A such that (f, g) is an adjunction.

Moreover, both ≤B and g are uniquely determined by ≤A and f .

Contrariwise to the partially ordered case, given two preordered sets A =

〈A,.A〉 and B = 〈B,.B〉 and a mapping f : A→ B, the unicity of the mapping

g : B → A satisfying (f, g) : A � B, when it exists, cannot be guaranteed.

However, it is well known that if g1 and g2 are right adjoints, then g1(b) ≈A g2(b)

for all b ∈ B, and one usually says that the right adjoint is essentially unique.

This scenario is much more similar to what occurs in category theory: if one

functor F has two right adjoints G1 and G2, then G1 and G2 are naturally

isomorphic.

However, and this is the interesting part, the unicity of the ordering cannot

be extended in general in the preordered case when the codomain is unstruc-

tured. Hereafter we introduce a couple examples supporting this statement, all

of them based on the same mapping f : A→ B.

Example 2. Let A = {a, b, c, d}, B = {o, p, q} be two sets and f : A → B
defined as f(a) = f(c) = p, f(b) = o and f(d) = q. Consider 〈A,≤A〉 ordered
by a ≤A b ≤A c ≤A d. We have [a]∼=A

= [c]∼=A
= {a, c}, [b]∼=A

= {b} and
[d]∼=A

= {d} and
⋃
x∈A p-max[x]∼=A

= {b, c, d}.

a

b

c

d

o

p

q

〈A,≤A〉 B

Notice that f is surjective, and does not fulfill the conditions in Theorem 3,
specifically the second one. Thus, there does not exist any partial ordering
relation in B for which some g : B → A would be a right adjoint to f . Notice,
however, that if we relax the requirement to be an adjunction between preordered
sets, then there exists a preordering (actually more than one) which generates a
right adjoint to f . Some examples are worked out below to illustrate the previous
situation.

Example 3. Consider B = 〈B,.B〉 preordered with o ≈B p, o .B q and p .B
q, and the mapping g1 : B → A defined as g1(o) = g1(p) = c and g1(q) = d.
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a

b

c

d

q

o≈ p
(A,.A) (B,.B)

Firstly, we have that S = g1f(A) = {c, d} is a subset of
⋃
x∈A

p-max[x]∼=A
.

For the two other conditions in Theorem 6, it is not difficult to check that
p-min(UB[x]∼=A

∩ S) 6= ∅ for all x ∈ A. Specifically, we have

p-min(UB[a]∼=A
∩ S) = p-min(UB[b]∼=A

∩ S) = p-min(UB[c]∼=A
∩ S) = {c, d}

and
p-min(UB[d]∼=A

∩ S) = {d}

Finally, with the previous computation, it is straightforward to check that if
a1 .A a2 then p-min(UB[a1]∼=A

∩ S) v p-min(UB[a2]∼=A
∩ S).

As a result, the pair (f, g1) is an adjunction between A and B. �

Example 4. Now, consider B′ = 〈B,.′B〉 preordered by o ≈′B p and p ≈′B q,
and the mapping g2 : B → A defined as g′2(o) = g2(p) = g2(q) = d.

a

b

c

d

o≈ p≈ q(A,.A) (B,.′B)

Again we will check the conditions in Theorem 6.
In this case, S = g2f(A) = {d} which is a subset of

⋃
x∈A p-max[x]∼=A

=
{b, c, d}. The second condition holds since p-min(UB[a]∼=A

∩S) = p-min(UB[b]∼=A
∩

S) = p-min(UB[c]∼=A
∩ S) = p-min(UB[d]∼=A

∩ S) = {d}. As all the previous
sets coincide, the third condition follows trivially.

As a result, the pair (f, g2) is an adjunction between the preorders A and B′.
�
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5. Closure operators on preorders

There is a tight relation between adjunctions and closure and kernel opera-

tors, in that every adjunction (f, g) leads to a closure operator g◦f and a kernel

f ◦ g. In this section, we state the necessary and sufficient conditions obtained

in the previous section in terms of closure operators and closure systems. To

begin with, we have to recall their formal definitions:

Definition 7. Let A be a poset.

• A mapping f : A → A is a closure operator if it is inflationary, isotone
and idempotent (that is if f ◦ f = f).

• A subset S ⊆ A is a closure system if there exist a minimum element in
a↑ ∩ S for all a ∈ A.

Closure operators and closure systems are different approaches to the same

phenomenon. We will focus now on the development of the well-known link

between these two notions on a partially ordered set, but in the more general

framework of preordered sets.

To begin with, both notions have to be adapted to the lack of antisymmetry.

This involves the use of the equivalence relation ≈ introduced in the previous

sections.

Definition 8. Let A = 〈A,.A〉 be a preordered set.

1. A mapping c : A→ A is said to be a ≈A-closure operator if c is inflation-
ary, isotone and ≈A-idempotent, i.e. (c ◦ c)(a) ≈A c(a), for all a ∈ A.

2. A subset S ⊆ A is a ≈A-closure system if the set p-min(a↑ ∩ S) is non-
empty for all a ∈ A.

The notion of ≈A-closed set can be found in [16], whereas the previous

version of ≈A-closure system is, to the best of our knowledge, a novel notion.

Remark 1. It is not difficult to see that given a ≈A-closure operator c : A→ A,
the set Sc = {x ∈ A | c(a) = a} is a ≈A-closure system; conversely, given a
≈A-closure system S, any mapping c : A → A satisfying c(a) ∈ p-min(a↑ ∩ S)
for all a ∈ A is a ≈A-closure operator; we will say that c is associated to S.

As usual, it is convenient to introduce the notion of compatibility with an

equivalence relation.

Definition 9. Let A = 〈A,.A〉 be a preordered set an equivalence relation ∼
on A.

1. A ≈A-closure operator c : A→ A is said to be compatible with ∼ if a ∼ b
implies c(a) ≈A c(b) for all a, b ∈ A.
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2. Similarly, a ≈A-closure system S is said to be compatible with ∼ if a .A s
implies [a]∼ ⊆ s↓, for all a ∈ A, s ∈ S.

The notion of compatibility in the previous definition is preserved when mov-

ing between operators and systems in the sense of Remark 1. This is formally

stated in the following result:

Lemma 10. Let c : A→ A be a ≈A-closure operator compatible with an equiv-
alence relation ∼ on A, then the ≈A-closure system Sc = {x ∈ A | c(a) = a} is
compatible with ∼.

Conversely, let S be a ≈A-closure system compatible with ∼, then any ≈A-
closure operator c associated to S is compatible with ∼ as well.

Proof. Consider a ≈A-closure operator c : A → A compatible with ∼ and the

closure system Sc = {a ∈ A | c(a) = a}. Let a ∈ A and s ∈ Sc such that

a . s. By compatibility of c with ∼, for all x ∈ [a]∼, we have that x ∼ a

and c(x) ≈A c(a), and, since c is a ≈A-closure operator, we conclude that

x .A c(x) ≈A c(a) .A c(s) = s. Therefore, [a]∼ ⊆ s↓ and Sc is compatible

with ∼.

Conversely, let S be a ≈A-closure system compatible with ∼ and let c be

a ≈A-closure operator satisfying c(a) ∈ p-min(a↑ ∩ S) for all a ∈ A. Consider

a, b ∈ A such that a ∼ b. Since a ≤ c(a) and b ∈ [a]∼, by compatibility

of S with ∼, we have that b .A c(a) and, since c is a ≈A-closure operator,

c(b) .A c(c(a)) ≈A c(a). Similarly, from b .A c(b) and a ∈ [b], we obtain

c(a) .A c(c(b)) ≈A c(b). Therefore, c(a) ≈A c(b). �

Lemma 11. Let A = 〈A,.A〉 be a preordered set and a mapping f : A → B. A
≈A-closure system is compatible with ≡f if and only if it is compatible with ∼=A.

Proof. Assuming that S is a ≈A-closure system compatible with ≡f , and a ∈ A
and s ∈ S such that a ≤ s, by hypothesis, we have [a]≡f

⊆ s↓; we will have to

show that [a]∼=A
⊆ s↓ as well.

Given x ∈ [a]∼=A
we will reason by induction on the length of the chain

connecting a and x:

• The base case of length one is straightforward, both in the case of x ≈A a
and in the case of f(x) = f(a).

• As induction hypothesis, assume the result is true for any chain of length k,

and assume that there exists a finite chain {xi}i∈{0,...,k+1} ⊆ A such that

x0 = a, xk+1 = x and, for all i ∈ {0, . . . , k}, either xi ≡f xi+1 or xi ≈A
xi+1 and therefore, xk .A s. Now, we have that either xk ≈A xk+1 (in

this case we easily obtain xk+1 .A s) or f(xk) = f(xk+1) (this case follows

from the compatibility with ≡f ).
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The converse implication is trivial, since the relation ≡f is contained in the

relation ∼=A. �

In the sections above, we have addressed the problem of defining a preorder-

ing on an unstructured set B, which is the codomain of a mapping f : A→ B,

so that f is a left adjoint. If the answer was affirmative, then the composition

of the two components of the adjunction leads to a ≈A-closure operator which,

moreover, is compatible with the kernel relation associated to f . As a result,

the existence of a ≈A-compatible system turns out to be a necessary condition.

The following results states that this condition is also sufficient.

Theorem 7. Let A = 〈A,.A〉 be a preordered set and a mapping f : A → B.
Then, there exists a preorder in B and a mapping g : B → A such that (f, g)
forms an adjunction if and only if there exists a ≈A-closure system S compatible
with ≡f .

Proof. The existence of the preordering and the adjunction implies the existence

of a ≈A-closure system (that associated to the composition g◦f as in Remark 1)

which is obviously compatible with ≡f .

For the converse, let us assume the existence of the ≈A-closure system S

compatible with ≡f and let us show the existence of right adjoint g : B → A.

By Lemma 11, we have that the ≈A-closure system S is compatible with ∼=A

and we can directly apply Theorem 6: we have just to show that the ≈A-closure

system S is such that the following three conditions hold:

• S ⊆
⋃
a∈A

p-max[a]∼=A
.

This holds because x ∈ p-max[x]∼=A
, for all x ∈ S. In effect, from x ∈ [x]∼=A

and x ∈ x↓ one obtains [x]∼=A
⊆ x↓, that is, y .A x, for all y ∈ [x]∼=A

.

• ϕ
S
(a) = p-min(UB[a]∼=A

∩ S) 6= ∅, for all a ∈ A.

Firstly, we will see that UB[a]∼=A
∩ S = a↑ ∩ S. For this, as UB[a]∼=A

=⋂
{z|z∼=Aa}

z↑, it is sufficient to show that a1 ∼=A a2 implies a1
↑∩S = a2

↑∩S.

Let x ∈ a1↑ ∩ S, then a1 .A x which implies [a1]∼=A
⊆ x↓. In particular,

a2 .A x, thus x ∈ a2
↑ ∩ S. Therefore, a1

↑ ∩ S ⊆ a2
↑ ∩ S. Similarly,

a2
↑ ∩ S ⊆ a1↑ ∩ S.

Since S is a ≈A-closure system, for all a ∈ A, the set ∅ 6= p-min(a↑∩ S) =

ϕ
S
(a).

• If a1 .A a2, then ϕ
S
(a1) v ϕ

S
(a2).

Suppose that a1 .A a2 and let xi ∈ ϕ
S
(ai), for i ∈ {1, 2}. As x2 ∈

UB[a2]∼=A
, in particular, x2 ≥ a2 ≥ a1 then, by compatibility wrt ∼=A we

obtain [a1]∼=A
⊆ x2

↓. Therefore, x2 ∈ UB[a1]∼=A
∩ S which implies that

x1 .A x2. �
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We finish this section with another example showing special features of the

results introduced so far.

In Examples 3 and 4, the domain of f , that is 〈A,≤A〉, was a linearly ordered

set; this has been chosen by simplicity reasons but it is, by no means, required for

the results to hold. In the following example, 〈A,.A〉 is strictly a preorder (since

antisymmetry does not hold), and even the poset obtained after making the

quotient wrt the kernel relation is not a lattice, but a multilattice [7, 8, 34, 35].

Example 5. Consider the mapping f : (A,.A) → B depicted in the figure be-
low. Notice that (A,.A) is a strict preorder (not a partial order).

⊥

a b

≈c1 c2 d

>

p

q

r

s

t

(A,.A) B

Several ≈-closure systems can be defined in 〈A,.A〉 which, in general, lead to
different right adjoints. For example, S1 = {>, c1, c2} is a ≈-closure system that
induces the preorder relation .B (as given in the proof of Lemma 8) depicted
in the following picture.

s ≈ t

p ≈ q ≈ r
(B,≤B)

In this case, f admits eight different right adjoints such as:

• g1 with g1(s) = g1(t) = >, g1(p) = g1(q) = c1 and g1(r) = c2.

• g2 with g2(s) = g2(t) = >, g2(p) = c1 and g2(q) = g2(r) = c2.

The rest of the possible right adjoints are the rest of different assignments to the
elements p, q, r in the subset {c1, c2}.

6. Conclusions

Given a mapping f : A→ B from a (pre-)ordered set A into an unstructured

set B, we have obtained necessary and sufficient conditions which allow us to
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define a suitable (pre-)ordering relation on B such that there exists a mapping

g : B → A such that (f, g) forms an adjunction between (pre-)ordered sets.

It is worth underscoring that, although all the results have been stated in

terms of the existence and construction of right adjoints, all of them can be

straightforwardly modified for the existence and construction of left adjoints.

Whereas the study of the partially ordered case follows more or less the intu-

ition of what should be expected (Theorem 3), the description of the conditions

on the preordered case is much more involved (Theorem 6); only later, when

we consider to use of ≈-closure systems, together with the convenient defini-

tion of compatibility with the kernel operator ≡f , can we rewrite the result in

much more concise terms (Theorem 7). This result shows the convenience of

considering closure systems in the study of Galois connections in more general

carriers.

Since its introduction in [3], a number of papers have already been published

on fuzzy Galois connections, see [4, 19, 23, 29] for some recent ones. As future

work, we are planning to extend the results in this work to the fuzzy case, for

instance to the framework of fuzzy posets and fuzzy preorders, including as well

the corresponding study in terms of closure or kernel systems, and study the

potential relationship to other approaches based on generalized structures, in

the line of those given in [43, 44].

Concerning potential practical applications of the present work, we will ex-

plore the area of pattern structures, which allows for extending FCA techniques

to arbitrary partially ordered data descriptions. The scenario in which this work

could be applied is as follows: we start from a set of objects each one related to

the set of patterns it satisfies, ignoring whether there exists some (pre-)ordering

relation between patterns, but assuming that the semantics of the problem guar-

antees the existence of a Galois connection between them, the goal would be to

obtain as much information as possible about the relation existing in the set of

patterns.
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[6] P. Butka, J. Pócs, and J. Pócsová. On equivalence of conceptual scaling and

generalized one-sided concept lattices. Information Sciences, 259:57–70, 2014.

[7] I. Cabrera, P. Cordero, G. Gutiérrez, J. Mart́ınez, and M. Ojeda-Aciego. A coal-

gebraic approach to non-determinism: applications to multilattices. Information

Sciences, 180(22):4323–4335, 2010.

[8] I. Cabrera, P. Cordero, G. Gutiérrez, J. Mart́ınez, and M. Ojeda-Aciego. Fini-

tary coalgebraic multisemilattices and multilattices. Applied Mathematics and

Computation, 219(1):31–44, 2012.

[9] G. Castellini, J. Koslowski, and G. Strecker. Closure operators and polarities.

Annals of the New York Academy of Sciences, 704, 1993.
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