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In this paper we deal with suitable generalizations of the notion of bond between contexts, as
part of the research area of Formal Concept Analysis. We study different generalizations of the
notion of bond within the L-fuzzy setting. Specifically, given a formal context there are three
prototypical pairs of concept-forming operators, and this immediately leads to three possible
versions of the notion of bond (so-called homogeneous bond wrt certain pair of concept-
forming operators). The first results show a close correspondence between a homogeneous bond
between two contexts and certain special types of mappings between the sets of extents (or
intents) of the corresponding concept lattices. Later, we introduce the so-called heterogeneous
bonds (considering simultaneously two types of concept-forming operators) and generalize the
previous relationship to mappings between the sets of extents (or intents) of the corresponding
concept lattices.

1. Introduction

Formal Concept Analysis (FCA) has become a very active research topic, both the-
oretical and practical; its wide applicability justifies the need of a deeper knowledge
of its underlying mechanisms, and one important way to obtain this extra knowl-
edge turns out to be via generalization.

Since the seminal paper (Burusco and Fuentes-González 1994), several fuzzy
variants of generalized FCA have been introduced and developed both from the
theoretical and the practical side. The consideration of the adjointness property
in residuated lattices as the main building blocks of fuzzy concept lattices was
an important milestone simultaneously developed by (Pollandt 1997, Belohlavek
1998).

More recently, a number of new generalizations have been introduced, either
based on fuzzy set theory (Alcalde et al. 2010, 2011), or the multi-adjoint frame-
work (Medina et al. 2009, Medina and Ojeda-Aciego 2010, 2013) or heterogeneous
approaches (Butka et al. 2012, Medina and Ojeda-Aciego 2012, Dı́az et al. 2014).

FCA has been extended as well by considering alternative paradigms, for instance
one can find generalizations of the framework and scope of FCA based on from
possibility theory (Dubois and Prade 2012) or rough set theory (Wu and Liu 2009,
Lei and Luo 2009, Lai and Zhang 2009, Medina 2012, Kang et al. 2013).

Concerning applications of techniques of generalized formal concept analysis, one
can see papers ranging from ontology merging (Chen et al. 2011) and resolution of
fuzzy or multi-adjoint relational equations (Alcalde et al. 2012, Dı́az and Medina
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2013), to applications to the Semantic Web by using the notion of concept similarity
or rough sets (Formica 2012), and from noise control in document classification (Li
and Tsai 2011) to ontology-based sentiment analysis (Kontopoulos et al. 2013), or
the study of fuzzy databases, in areas such as functional dependencies (Mora et al.
2012), or even linguistics (Falk and Gardent 2014).

All the generalizations stated above focused on the development of a general
framework of FCA including extra features (fuzzy, possibilistic, rough, etc.) and
some of its possible applications. However, not much have been published on the
suitable general version of certain specific notions, such as the bonds between
formal contexts.

One of the motivations for introducing the notion of bond was to provide a tool
for studying mappings between formal contexts, somehow mimicking the behavior
of Galois connections between their corresponding concept lattices. In this paper
we deal with generalizations of the notion of bond for which, to the best of our
knowledge, only one general version has been introduced, see (Kŕıdlo et al. 2012),
wrt the standard concept-forming operators used in (Belohlavek 1998).

The notions of bonds, scale measures and informorphisms were studied by
Krötzsch et al. (2005) aiming at a thorough study of the theory of morphisms in
FCA; in areas related to ontology research, just infomorphisms are used, whereas
more general approaches, namely more general heterogenous bonds, could be uti-
lized. Kŕıdlo et al. (2013) use bonds to include background knowledge into data;
the heterogeneous bonds described in this paper enable us to give an alternative
semantics the background knowledge. Another application of bonds can be seen in
(Meschke 2010) where bonds are used to approximate concepts, allowing to focus
on just a sub context without losing implicational knowledge and, hence, reducing
the size of a concept lattice.

We study generalizations of the notion of bond within the L-fuzzy setting. Specif-
ically, given a formal context there are three prototypical pairs of concept-forming
operators, and this immediately leads to three possible versions of the notion of
bond (so-called homogeneous bond wrt certain pair of concept-forming operators).
The first results show a close correspondence between a homogeneous bond between
two contexts and certain special types of mappings between the sets of extents (or
intents) of the corresponding concept lattices. Later, we introduce the so-called
heterogeneous bonds (considering simultaneously two types of concept-forming op-
erators) and generalize the previous relationship to mappings between the sets of
extents (or intents) of the corresponding concept lattices.

2. Preliminaries

2.1 Residuated Lattices, Fuzzy Sets, and Fuzzy Relations

We use complete residuated lattices as basic structures of truth-degrees. A complete
residuated lattice is a structure L � xL,^,_,b,Ñ, 0, 1y such that

(i) xL,^,_, 0, 1y is a complete lattice, i.e. a partially ordered set in which
arbitrary infima and suprema exist;

(ii) xL,b, 1y is a commutative monoid, i.e. b is a binary operation which is
commutative, associative, and ab 1 � a for each a P L;

(iii) b and Ñ satisfy adjointness, i.e. ab b ¤ c iff a ¤ bÑ c.

Recall that the partial order of L is denoted by ¤, elements 0 and 1 denote the
least and greatest elements and, note that throughout this work, L denotes an
arbitrary complete residuated lattice whose multiplicative unit is also its greatest
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element in the spirit of Goguen (1967).
Elements a of L are called truth degrees. Operations b (multiplication) and Ñ

(residuum) play the role of (truth functions of) “fuzzy conjunction” and “fuzzy
implication”. Furthermore, we define the complement of a P L as

 a � aÑ 0 (1)

An L-set (or L-fuzzy set) A in a universe set X is a mapping assigning to each
x P X some truth degree Apxq P L. The set of all L-sets in a universe X is
denoted LX .

The operations with L-sets are defined componentwise. For instance, the intersec-
tion of L-sets A,B P LX is an L-set AXB in X such that pAXBqpxq � Apxq^Bpxq
for each x P X, etc. An L-set A P LX is also denoted tApxq{x | x P Xu. If for all
y P X distinct from x1, x2, . . . , xn we have Apyq � 0, we also write

tApx1q{x1,
Apx2q{x2, . . . ,

Apxnq{xnu. (2)

Furthermore, in (2) we write just x instead of 1{x.
An L-set A P LX is called crisp if Apxq P t0, 1u for each x P X. Crisp L-sets can

be identified with ordinary sets. For a crisp A, we also write x P A for Apxq � 1 and
x R A for Apxq � 0. An L-set A P LX is called empty (denoted by H) if Apxq � 0
for each x P X. For a P L and A P LX , the L-sets ab A, aÑ A, AÑ a, and  A
in X are defined by

pabAqpxq � abApxq, (3)

paÑ Aqpxq � aÑ Apxq, (4)

pAÑ aqpxq � Apxq Ñ a, (5)

 Apxq � Apxq Ñ 0. (6)

For A P LX the L-sets ab A, aÑ A,AÑ a are called a-multiplication, a-shift,
and a-complement, respectively.

Binary L-relations (binary L-fuzzy relations) between X and Y can be thought
of as L-sets in the universe X �Y . That is, a binary L-relation I P LX�Y between
a set X and a set Y is a mapping assigning to each x P X and each y P Y a truth
degree Ipx, yq P L (a degree to which x and y are related by I). By IT we denote
the transpose of I; i.e. IT P LY�X with ITpy, xq � Ipx, yq for all x P X, y P Y .

Various composition operators for binary L-relations were extensively studied by
Kohout and Bandler (1985); we will use the following three composition operators,
defined for relations A P LX�F and B P LF�Y :

pA �Bqpx, yq �
ª
fPF

Apx, fq bBpf, yq, (7)

pA �Bqpx, yq �
©
fPF

Apx, fq Ñ Bpf, yq, (8)

pA �Bqpx, yq �
©
fPF

Bpf, yq Ñ Apx, fq. (9)

All of them have natural verbal descriptions. For instance, pA � Bqpx, yq is the
truth degree of the proposition “there is factor f such that f applies to object x
and attribute y is a manifestation of f”; pA � Bqpx, yq is the truth degree of “for



November 17, 2014 10:6 International Journal of General Systems text

4 J. Konecny, M. Ojeda-Aciego

every factor f , if f applies to object x then attribute y is a manifestation of f”.
Note also that for L � t0, 1u, A �B coincides with the well-known composition of
binary relations.

We will occasionally use some of the following properties concerning the associa-
tivity of several composition operators, see (Belohlavek 2002).

Theorem 2.1 : The operators above have the following properties concerning
composition.


 Associativity:

R � pS � T q � pR � Sq � T, (10)

R � pS � T q � pR � Sq � T, (11)

R � pS � T q � pR � Sq � T, (12)

R � pS � T q � pR � Sq � T. (13)


 Distributivity:

p
¤
i

Riq � S �
¤
i

pRi � Sq, and R � p
¤
i

Siq �
¤
i

pR � Siq, (14)

p
£
i

Riq � S �
£
i

pRi � Sq, and R � p
¤
i

Siq �
£
i

pR � Siq, (15)

p
¤
i

Riq � S �
£
i

pRi � Sq, and R � p
£
i

Siq �
£
i

pR � Siq. (16)

2.2 Formal fuzzy concept analysis

An L-context is a triplet xX,Y, Iy where X and Y are (ordinary nonempty) sets
and I P LX�Y is an L-relation between X and Y . Elements of X are called objects,
elements of Y are called attributes, I is called an incidence relation. Ipx, yq � a is
read: “The object x has the attribute y to degree a.”

Consider the following pairs of operators induced by an L-context xX,Y, Iy. First,
the pair xÒ, Óy of operators Ò : LX Ñ LY and Ó : LY Ñ LX is defined, for all A P LX

and B P LY , by

AÒpyq �
©
xPX

Apxq Ñ Ipx, yq, BÓpxq �
©
yPY

Bpyq Ñ Ipx, yq. (17)

Second, the pair xX, Yy of operators X : LX Ñ LY and Y : LY Ñ LX is defined by

AXpyq �
ª
xPX

Apxq b Ipx, yq, BYpxq �
©
yPY

Ipx, yq Ñ Bpyq, (18)

Third, the pair x^, _y of operators ^ : LX Ñ LY and _ : LY Ñ LX is defined by

A^pyq �
©
xPX

Ipx, yq Ñ Apxq, B_pxq �
ª
yPY

Bpyq b Ipx, yq, (19)

The three previous pairs are those more commonly used in the literature related
to residuated lattice-based generalizations of FCA. In this respect, it is worth to
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note that there exists a fourth pair of concept-forming operators not considered in
the present work which can be viewed as a double dualization on the first pair.

Remark 2.2 Notice that the three different pairs of concept-forming operators
can be interpreted as instances of the composition operators between relations.
Applying the isomorphisms L1�X � LX and LY�1 � LY whenever necessary, one
could write them, alternatively, as follows:

AÒ � A � I AX � A � I A^ � A � I
BÓ � I �B BY � I �B B_ � I �B

Furthermore, denote the corresponding sets of fixed points by BÒÓpX,Y, Iq,
BXYpX,Y, Iq, and B^_pX,Y, Iq, i.e.

BÒÓpX,Y, Iq � txA,By P LX � LY | AÒ � B, BÓ � Au,

BXYpX,Y, Iq � txA,By P LX � LY | AX � B, BY � Au,

B^_pX,Y, Iq � txA,By P LX � LY | A^ � B, B_ � Au.

The sets of fixpoints are complete lattices (Pollandt 1997, Belohlavek 1999,
Georgescu and Popescu 2004), called the standard (resp. object-oriented, and
property-oriented) L-concept lattices associated with I, and their elements are
called formal concepts.

For a concept lattice BMOpX,Y, Iq, where BMO is either of BÒÓ, BXY, or B^_, denote
the corresponding sets of extents and intents by ExtMOpX,Y, Iq and IntMOpX,Y, Iq.
That is,

ExtMOpX,Y, Iq � tA P LX | xA,By P BMOpX,Y, Iq for some Bu,

IntMOpX,Y, Iq � tB P LY | xA,By P BMOpX,Y, Iq for some Au,

The operators induced by an L-context and their sets of fixpoints have extensively
been studied, see e.g. (Pollandt 1997, Belohlavek 1999, 2001, 2004, Georgescu and
Popescu 2004).

We will need the following result by Belohlavek and Konecny (2012b).

Theorem 2.3 : Consider L-contexts xX,Y, Iy, xX,F,Ay, and xF, Y,By.

(a) IntXYpX,Y, Iq � IntXYpF, Y,Bq if and only if there exists A1 P LX�F such
that I � A1 �B,

(b) Ext^_pX,Y, Iq � Ext^_pX,F,Aq if and only if there exists B1 P LF�Y such
that I � A �B1,

(c) IntÒÓpX,Y, Iq � IntÒÓpF, Y,Bq if and only if there exists A1 P LX�F such
that I � A1 �B,

(d) ExtÒÓpX,Y, Iq � ExtÒÓpX,F,Aq if and only if there exists B1 P LF�Y such
that I � A �B1.

(e) ExtÒÓpX,Y, Iq � ExtXYpX,F,Aq if and only if there exists B1 P LF�Y such
that I � A �B1,

(f) IntÒÓpX,Y, Iq � Int^_pF, Y,Bq if and only if there exists A1 P LX�F such
that I � A1 �B.

In addition, we also have

(g) ExtXYpX,Y,A �Bq � ExtXYpX,F,Aq.
(h) Int^_pX,Y,A �Bq � Int^_pF, Y,Bq.
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We will also utilize following lemma by Belohlavek and Konecny (2011).

Lemma 2.4: Let I, J P LX�Y . We have BYI � BYJ for each B P LY iff I � J .

2.3 Morphisms of closure and interior systems

A system of L-sets V � LX is called an L-interior system if

– V is closed under b-multiplication, i.e. for every a P L and C P V we have
ab C P V ;

– V is closed under union, i.e.
¤
jPJ

Cj P V whenever Cj P V for all j P J .

V � LX is called an L-closure system if

– V is closed under left Ñ-multiplication (or Ñ-shift), i.e. for every a P L and
C P V we have aÑ C P V ;

– V is closed under intersection, i.e.
£
jPJ

Cj P V whenever Cj P V for all j P J .

One can find examples of L-closure and L-interior systems in the framework
of formal fuzzy concept analysis as follows: for an L-context xX,Y, Iy, the sets
ExtÒÓpX,Y, Iq, ExtXYpX,Y, Iq, Int^_pX,Y, Iq, and IntÒÓpX,Y, Iq are L-closure sys-
tems, while Ext^_pX,Y, Iq and IntXYpX,Y, Iq are L-interior systems, see (Be-
lohlavek and Konecny 2011, 2012b, Konecny 2012).

Definition 2.5:

(a) A mapping h : V ÑW from an L-interior system V � LX into an L-interior
system W � LY is called an i-morphism if it is a b- and

�
-morphism, i.e.

– hpab Cq � ab hpCq for each a P L and C P V ;
– hp

�
kPK Ckq �

�
kPK hpCkq for every collection of Ck P V (k P K).

An i-morphism h : V Ñ W is said to be an extendable i-morphism if h can
be extended to an i-morphism of LX to LY , i.e. if there exists an i-morphism
h1 : LX Ñ LY such that for every C P V we have h1pCq � hpCq.

(b) A mapping h : V Ñ W from an L-closure system V � LX into an L-closure
system W � LY is called a c-morphism if it is a Ñ- and

�
-morphism and it

preserves a-complements, i.e. if
– hpaÑ Cq � aÑ hpCq for each a P L and C P V ;
– hp

�
kPK Ckq �

�
kPK hpCkq for every collection of Ck P V (k P K);

– if C is an a-complement then hpCq is an a-complement.
A c-morphism h : V Ñ W is called an extendable c-morphism if h can be
extended to a c-morphism of LX to LY , i.e. if there exists a c-morphism
h1 : LX Ñ LY such that for every C P V we have h1pCq � hpCq.

(c) A mapping h : V Ñ W from an L-interior system V � LX into an L-closure
system W � LY is called an a-morphism if

– hpab Cq � aÑ hpCq for each a P L and C P V ;
– hp

�
kPK Ckq �

�
kPK hpCkq for every collection of Ck P V .

An a-morphism h : V Ñ W is called an extendable a-morphism if h can be
extended to an a-morphism of LX to LY , i.e. if there exists an a-morphism
h1 : LX Ñ LY such that for every C P V we have h1pCq � hpCq.

In this paper we will consider only extendable morphisms, for which the following
results will be used hereafter, see (Belohlavek and Konecny 2011, 2012b, Konecny
2012).

Lemma 2.6: For V � LX ,
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(a) if h : V Ñ LY is an i-morphism then there exists an L-relation R P LX�Y

such that hpCq � C �R for every C P V .
(b) if h : V Ñ LY is a c-morphism then there exists an L-relation R P LX�Y

such that hpCq � C �R for every C P V .
(c) if h : V Ñ LY is an a-morphism then there exists an L-relation R P LX�Y

such that hpCq � C �R for every C P V .

Lemma 2.7: Let R P LY�X ,

(a) the mapping hR : LX Ñ LY defined by hRpCq � R � C and the mapping
gR : LY Ñ LX defined by gRpCq � C �R are i-morphisms.

(b) the mapping hR : LX Ñ LY defined by hRpCq � R � C and the mapping
hg : LY Ñ LX defined by gRpCq � C �R are c-morphisms.

(c) the mapping gR : LX Ñ LY defined by hRpCq � R � C and the mapping
gR : LY Ñ LX defined by gRpCq � C �R are a-morphisms.

The previous lemmas together with Remark 2.2 allow for establishing a link
between {i,c,a}-morphisms with formal fuzzy concept analysis in that, for instance,
hRpCq in (a) coincides with C_ just using R as incidence relation (hence we will
denote the corresponding concept-forming operator as _R). Similarly, we will use
ÓR, YR and so on.

3. Homogeneous L-bonds

This section introduces some new notions studied in this work. To begin with,
we introduce the notion of homogeneous L-bond as a convenient generalization of
bond. Firstly, it will be convenient to recall the classical notion of bond.

A bond between two contexts K1 � xX1, Y1, I1y and K2 � xX2, Y2, I2y is a relation
β � X1 � Y2 such that

(B1) For all x P X1, the set βpxq is an intent of xX2, Y2, I2y;
(B2) For all y P Y2, the set β�1pyq is an extent of xX1, Y1, I1y;

where βpxq � Y2, β
�1pyq � X1 s.t. pβpxqqpyq � βpx, yq � β�1pyqpxq.

Note that, in the classical case, these conditions are equivalent to

(B1’) Each extent of xX1, Y2, βy is an extent of xX1, Y1, I1y.
(B2’) Each intent of xX1, Y2, βy is an intent of xX2, Y2, I2y.

These conditions lead us to the following generalization to the L-fuzzy case.

Definition 3.1: A homogeneous bond wrt xM,Oy between two L-contexts K1 �
xX1, Y1, I1y and K2 � xX2, Y2, I2y is an L-relation β P LX1�Y2 s.t.

ExtMOpX1, Y2, βq � ExtMOpX1, Y1, I1q and IntMOpX1, Y2, βq � IntMOpX2, Y2, I2q.

Now, we can explain the use of the term homogeneous in that the same pair of
concept-forming operators is used in both inclusions in the definition above. Later,
in Section 4 we will consider heterogeneous bonds in which the concept-forming
operators appear mixed in the inclusions above.

In this section we study homogeneous bonds with respect to xX, Yy and homoge-
neous bonds with respect to x^, _y.

Remark 3.2

(a) Note that homogeneous bonds with respect to xÒ,Ó y were studied in (Kŕıdlo
et al. 2012). In Section 4.2 we will provide a comparison of our results with
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those in the previous reference. See also Remark 3.15.
(b) One can observe that homogeneous bonds wrt x^, _y from xX1, Y1, I1y to

xX2, Y2, I2y are transposes of homogeneous bonds wrt xX, Yy from xY2, X2, I
T
2 y

to xY1, X1, I
T
1 y.

Homogeneous bonds can be put in relation to that of c-morphism.

Theorem 3.3 :

(a) The homogeneous bonds from xX1, Y1, I1y to xX2, Y2, I2y wrt xX, Yy are in
one-to-one correspondence with the c-morphisms from ExtXYpX2, Y2, I2q to
ExtXYpX1, Y1, I1q.

(b) The homogeneous bonds from xX1, Y1, I1y to xX2, Y2, I2y wrt x^, _y are in
one-to-one correspondence with the c-morphisms from Int^_pX1, Y1, I1q to
Int^_pX2, Y2, I2q.

Proof :

(a) We show procedures to obtain the c-morphism from a homogeneous bond and
vice versa.

“ñ”: Let β be a homogeneous bond from xX1, Y1, I1y to xX2, Y2, I2y wrt
xX, Yy. By Definition 3.1 we have IntXYpX1, Y2, βq � IntXYpX2, Y2, I2q; thus
by Theorem 2.3 there exists R P LX1�X2 such that β � R � I2. Now, by
Lemma 2.7, the induced operator of this type YR : LX2 Ñ LX1 , such that
CYR � R � C, is a c-morphism.

It only remains to check that when C is an extent of K2, its image R � C
is an extent of K1. Assume C P ExtXYpX2, Y2, I2q, then we have that C �
DYI2 � I2 �D for some D P LY2 ; now using this expression in R � C we have

R � C � R � pI2 �Dq � pR � I2q �D � β �D � DYβ

and, as a result, we obtain that R �C is in ExtXYpX1, Y2, βq and, therefore, as
β is a homogeneous bond, it is also an extent of K1.

Now, let us show that the previous construction, given a homogeneous bond
β from xX1, Y1, I1y to xX2, Y2, I2y wrt xX, Yy, produces a unique c-morphism
fβ : ExtXYpX2, Y2, I2q Ñ ExtXYpX1, Y1, I1q.

It is enough to check that the construction does not depend on the relation
used to factorize β, i.e. for any R,S P LX1�X2 satisfying β � R � I2 � S � I2

we have that the equality

CYR � CYS (20)

holds for all C P ExtXYpX2, Y2, I2q. Now, by definition, ExtXYpX2, Y2, I2q �
tDYI2 | D P LY2u the equality (20) is equivalent to

DYI2YR � DYI2YS for all D P LY2 . (21)

but we have that

DYI2YR � R � pI2 �Dq � pR � I2q �D � β �D

DYI2YS � S � pI2 �Dq � pS � I2q �D � β �D

Thus, equality (21) holds true, and both relations R and S induce the same
c-morphism fβ : ExtXYpX2, Y2, I2q Ñ ExtXYpX1, Y1, I1q.
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“ð”: For a c-morphism f : ExtXYpX2, Y2, I2q Ñ ExtXYpX1, Y1, I1q, by
Lemma 2.6, there is an L-relation S P LX2�X1 s.t. fpCq � CYS � ST �

C� C � S for each C P ExtXYpX2, Y2, I2q.
By considering β � ST � I2, and using Theorem 2.3(a) one obtains

that IntXYpX1, Y2, βq � IntXYpX2, Y2, I2q. For the inclusion between the ex-
tents, it is sufficient to show that ExtXYpX1, Y2, βq � Impfq: assume C P
ExtXYpX1, Y2, βq, then there exists a D such that C � β � D. Unfolding the
definition of β and applying some relational equalities we obtain the following:

C � β �D � pST � I2q �D � ST � pI2 �Dq � pI2 �Dq
T
� S � fppI2 �Dq

T q

As, by assumption, Impfq � ExtXYpX1, Y1, I1q, we have that β is a homoge-
neous bond from xX1, Y1, I1y to xX2, Y2, I2y w.r.t xX, Yy.

Let us prove now that this construction produces a unique homoge-
neous bond βf from xX1, Y1, I1y to xX2, Y2, I2y for a given c-morphism
f : ExtXYpX2, Y2, I2q Ñ ExtXYpX1, Y1, I1q wrt xX, Yy. It is enough to show

RT � I2 � ST � I2. (22)

for all relations R,S P LX2�X1 satisfying

fpCq � C �R � C � S for all C P ExtXYpX2, Y2, I2q (23)

Since ExtXYpX2, Y2, I2q � tD
YI2 | D P LY2u the condition (23) is equivalent to

fpDYI2 q � DYI2 �R � DYI2 � S for all D P LY2 . (24)

We have DYI2 �R � pI2 �Dq �R � RT � pI2 �Dq � pR
T � I2q �D and similarly

DYI2 � S � pST � I2q �D, hence the condition (23) is equivalent to

fpDYI2 q � pRT � I2q �D � pS
T � I2q �D

� DÓRT�I2 � DÓST�I2 for all D P LY2 .

By Lemma 2.4 we have RT � I2 � ST � I2 and (22) is satisfied and βf is
well-defined.

Finally, the one-to-one correspondence stated by the theorem will be com-
pletely proved if βfβ � β and fβf � f . For this, it is worth to recall both
directions of the correspondence in purely relational terms:

 Given β, if β � R � I2, then fβpCq � R � C � C �RT


 Given f , if fpCq � C � S, then βf � ST � I2

Assume that β � R � I2, then βfβ � ST � I2 for some relation S which is a
right factor of fβ wrt �, by definition of fβ it is possible to consider ST � R.
As a result, we obtain βfβ � β.

Now, assume f can be written as fpCq � C � S, then βf � ST � I2 which,
in its turn, implies that fβf � ST � C � C � S � f .

(b) Follows from (a) and Remark 3.2(b).

�

The previous remark and theorem show that the homogeneous bonds wrt xX, Yy
are different from homogeneous bonds wrt x^, _y
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Theorem 3.4 : The system of all homogeneous bonds wrt xX, Yy (resp. wrt x^, _y)
from K1 to K2 is an L-interior system.

Proof : We prove the result only for xX, Yy; the other part then follows from Remark
3.2(b).

Consider a family tβj P LX1�X2 | j P Ju of homogeneous bonds from K1 to
K2 and let us show that β �

�
j βj is a homogeneous bond; i.e. that AXβ P

IntXYpX2, Y2, I2q and BYβ P ExtXYpX1, Y1, I1q.

AXβ � A � β � A � p
¤
j

βjq �
¤
j

pA � βjq �
¤
j

AXβj

Thus we have that AXβ �
�
jPJ A

Xβj proving that AXβ P IntXYpX2, Y2, I2q since
IntXYpX2, Y2, I2q is an L-interior system.

Similarly we have

BYβ � β �B � p
¤
j

βjq �B �
£
j

pβj �Bq �
£
j

BYβj

Thus we have that BYβ �
�
jPJ B

Yβj proving that BYβ P ExtXYpX2, Y2, I2q since
ExtXYpX2, Y2, I2q is an L-closure system.

Second, we show that if β is a homogeneous bond from xX1, Y1, I1y to xX2, Y2, I2y
then ab β is a homogeneous bond as well. For every A P LX1 we have

AXabβ � A � pIda � βq � pA � Idaq � β � pabAqXβ ,

where Ida the identity relation on X1 multiplied by a P L; i.e. Ida � ab Id. Thus
AXabβ � pabAqXβ P IntXYpX2, Y2, I2q.

For every B P LY2 we have

BYabβ � pIda � βq �B � Ida � pβ �Bq � aÑ BYβ .

Thus BYabβ � a Ñ BYβ , proving that BYabβ P ExtXYpX2, Y2, I2q since
ExtXYpX2, Y2, I2q is an L-closure system.

The system of all homogeneous bonds is closed under union and multiplication,
whence it is an L-interior system.

�

3.1 Strong homogeneous bonds

In this section, we will consider homogeneous bonds wrt both pairs of isotone
concept-forming operators simultaneously; the antitone pair xÒ,Ó y will be consid-
ered in Section 4.2. Formally, we introduce the notion of strong homogeneous bond
as follows:

Definition 3.5: A strong homogeneous bond from L-context K1 � xX1, Y1, I1y
to L-context K2 � xX2, Y2, I2y is an L-relation β P LX1�Y2 s.t. β is a homogeneous
bond wrt both xX, Yy and x^, _y.

The following shows that there exist homogeneous bonds which are not strong
homogeneous bonds. as the following example shows.
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Example 3.6 Consider L a finite chain 0   a   b   1 with b defined as follows:

xb y �

#
x^ y if x � 1 or y � 1,
0 otherwise,

for each x, y P L. One can easily see that x b
�
j yj �

�
jpx b yjq and thus an

adjoint operation Ñ exists such that xL,^,_,b,Ñ, 0, 1y is a complete residuated
lattice. Namely, Ñ is given as follows for all x, y P L:

xÑ y �

$'&
'%

1 if x ¤ y,
y if x � 1,
b otherwise,

Consider the sets X1 � X2 � txu, Y1 � Y2 � tyu, and the re-
lations I1 � ta{xx, yyu and I2 � tb{xx, yyu. One can check that, we
have ExtXYptxu, tyu, I1q � ExtXYptxu, tyu, I2q � ttb{xu, txuu and, trivially,
IntXYptxu, tyu, I2q � IntXYptxu, tyu, I2q. Thus I2 is a homogeneous bond between
I1 and I2 wrt xX, Yy.

On the other hand, I2 is not a homogeneous bond between I1 and I2 wrt x^, _y
since Ext^_ptxu, tyu, I1q � tH, t

a{xuu � tH, tb{xuu � Ext^_ptxu, tyu, I2q.

The following lemma introduces alternative characterizations of the notion of
strong homogeneous bond.

Lemma 3.7: The following statements are equivalent:

(1) β is a strong homogeneous bond from K1 � xX1, Y1, I1y to K2 � xX2, Y2, I2y.
(2) β satisfies both Ext^_pX1, Y2, βq � Ext^_pX1, Y1, I1q and IntXYpX1, Y2, βq �

IntXYpX2, Y2, I2q.
(3) β satisfies both tyu_β P Ext^_pX1, Y1, I1q and txuXβ P IntXYpX2, Y2, I2q for

each x P X1, y P Y2.
(4) β � Se � I2 � I1 � Si for some Se P L

X1�X2 and Si P L
Y1�Y2.

Proof : (1) ñ (2): Directly from definition of strong homogeneous bond.
(2) ñ (3): Trivial, since tyu_β P Ext^_pX1, Y2, βq and txuXβ P IntXYpX1, Y2, βq.
(3 ñ (4): Each L-set A in LX1 can be written in the following form

�
xPX1

Apxqb
txu. Then we have:

AXβpyq �
ª
x1PX1

p
¤
xPX1

Apxq b txuqpx1q b βpx1, yq

�
ª
x1PX1

p
ª
xPX1

Apxq b txupx1qq b βpx1, yq

�
ª
xPX1

ª
x1PX1

Apxq b txupx1q b βpx1, yq

�
ª
xPX1

Apxq b
ª
x1PX

txupx1q b βpx1, yq

�
ª
xPX1

Apxq b txuXβpyq

� p
¤
xPX1

Apxq b txuXβqpyq.
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As a result we obtain AXβ P IntXYpX2, Y2, I2q since txuXβ P IntXYpX2, Y2, I2q for
each x P X1 and IntXYpX2, Y2, I2q is an L-interior system. Because each intent in
IntXYpX1, Y2, βq has the form AXβ , we get IntXYpX1, Y2, βq � IntXYpX2, Y2, I2q. The
existence of Se now follows from Theorem 2.3. The existence of Si can be proved
similarly.

(4) ñ (1): By Theorem 2.3 items (a),(b),(g),(h).
�

Remark 3.8 It is worth noting that, although conditions (B1’)-(B2’) are equiv-
alent to (B1)-(B2) for the concept-forming operators xÒ,Ó y, they are no longer
equivalent for other concept-forming operators, i.e. xX, Yy and x^, _y, instead the
conditions (B1’)-(B2’) are weaker. Definition 3.5 corresponds to conditions (B1)-
(B2) as Lemma 3.7 (3) shows.

Strong homogeneous bonds can be related to the i-morphisms.

Theorem 3.9 : The strong homogeneous bonds from K1 � xX1, Y1, I1y to K2 �
xX2, Y2, I2y are in one-to-one correspondence with

(a) i-morphisms from IntXYpX1, Y1, I1q to IntXYpX2, Y2, I2q.
(b) i-morphisms from Ext^_pX2, Y2, I2q to Ext^_pX1, Y1, I1q.

Proof : We prove only (a), the proof of (b) is dual. We show procedures to obtain
the i-morphism from IntXYpX1, Y1, I1q to IntXYpX2, Y2, I2q from a strong homoge-
neous bond and vice versa.

“ñ”: Let β be a strong homogeneous bond from K1 � xX1, Y1, I1y to K2 �
xX2, Y2, I2y. By Lemma 3.7 there is Si P L

Y1�Y2 such that β � I1 � Si. The in-
duced operator XSi is an i-morphism from IntXYpX1, Y1, I1q to IntXYpX2, Y2, I2q by
Lemma 2.7(a).

“ð”: For i-morphism f from IntXYpX1, Y1, I1q to IntXYpX2, Y2, I2q there is an
L-relation Si s.t. fpBq � BXSi for each B P IntXYpX1, Y1, I1q by Lemma 2.6(a).
Denote β � I1 � Si. Each C P IntXYpX1, Y2, βq is equal to AXβ for some A P LX1

and AXβ � A � β � A � pI1 � Siq � pA � I1q � Si � pA � I1q
XSi � fpA � I1q P

Impfq. Thus, we have IntXYpX1, Y2, βq � Impfq � IntXYpX2, Y2, I2q; furthermore we
have Ext^_pX1, Y2, βq � Ext^_pX1, Y1, I1q by Theorem 2.3(b). Hence β is strong
homogeneous bond by Lemma 3.7.

The fact that the two mappings between bonds and i-morphisms are mutually
inverse can be checked as in the proof of Theorem 3.3. �

Theorem 3.10 : The system of all strong homogeneous bonds is an L-interior
system.

Proof : Using Lemma 3.7 (2), it is an intersection of the L-interior systems from
Theorem 3.4. �

3.2 Direct �-products

In the previous section we have studied the properties of homogeneous bonds, in
particular its one-to-one correspondence with c-morphisms and i-morphisms. In this
section, somehow paraphrasing Ganter (2007), we introduce the parameterized1

direct product of contexts in order to elegantly describe the different families of
generalized bonds between two given contexts.

1We introduce here the �-product, but we will later introduce the �-product and the �-product as well.
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Definition 3.11: Let K1 � xX1, Y1, I1y,K2 � xX2, Y2, I2y be L-contexts. The
direct �-product of K1 and K2 is defined as the L-context

K1 bK2 � xX2 � Y1, X1 � Y2,∆y

with ∆pxx2, y1y, xx1, y2yq � I1px1, y1q b I2px2, y2q.

Theorem 3.12 :

(a) The xX, Yy-intents of K1 bK2 are strong homogeneous bonds from K1 to K2.
(b) The x^, _y-extents of K1 bK2 are strong homogeneous bonds from K2 to K1.

Proof : We prove only (a); the (b)-part is dual. We have

φX∆px1, y2q �
ª

xx2,y1yPX2�Y1

φpx2, y1q b∆pxx2, y1y, xx1, y2yq

�
ª

xx2,y1yPX2�Y1

φpx2, y1q b I1px1, y1q b I2px2, y2q

�
ª
y1PY1

ª
x2PX2

φpx2, y1q b I1px1, y1q b I2px2, y2q

�
ª
y1PY1

I1px1, y1q b
ª
x2PX2

φpx2, y1q b I2px2, y2q

�
ª
y1PY1

I1px1, y1q b pφ
T � I2qpy1, y2q

� pI1 � φ
T � I2qpx1, y2q.

Now, notice that pI1 �φ
T q � I2 � I1 � pφ

T � I2q � β is a strong homogeneous bond
by Lemma 3.7. �

Remark 3.13 It is worth mentioning that not every strong homogeneous bond is
included in IntXYpX1 � Y2, X2 � Y1,∆q since there are strong homogeneous bonds
which are not of the form of I1 � φ

T � I2. For instance, using the same structure
of truth degrees and I1 as in Example 3.6, obviously I1 is a strong homogeneous
bond on K1 (i.e. from K1 to K1), but IntXYpX1 � Y2, X2 � Y1,∆q contains only an
empty set.

Corollary 3.14: The intents of K1 b K2 are exactly those strong homogeneous
bonds from K1 to K2 which can be decomposed as I1 �φ

T � I2 for some φ P LX2�Y1.

Proof : The final line of the proof of Theorem 3.12 explains which strong homo-
geneous bonds are intents of K1 bK2.

�

Remark 3.15 The relationship with the homogeneous bonds wrt xÒ,Ó y introduced
in (Kŕıdlo et al. 2012) is the following: If the double negation law holds true in L
we have the equality ExtÒÓpX,Y, Iq � ExtXYpX,Y, Iq. Thus, for a strong homo-
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geneous bond β P LX1�Y2 � Se � I2 � I1 � Si from K1 to K2 we have

p βqpx1, y2q �  pSe � I2qpx1, y2q

� p
ª
x2PX2

pSepx1, x2q b I2px2, y2qqq Ñ 0

�
©
x2PX2

pSepx1, x2q b I2px2, y2qq Ñ 0q

�
©
x2PX2

pSepx1, x2q Ñ pI2px2, y2q Ñ 0qq

� pSe � I2qpx1, y2q.

for each x1 P X1, y2 P Y2. Similarly, we can show that  β �  I1 � Si. Thus  β is
a homogeneous bond wrt xÒ,Ó y from  K1 to  K2.

Some papers (Ganter 2007, Kŕıdlo et al. 2012) have considered direct products
in the crisp and the fuzzy settings, respectively, for the concept-forming operators
xÒ,Ó y. In (Kŕıdlo et al. 2012) conditions are specified under which a homogeneous
bond wrt xÒ,Ó y is present in the concept lattice of the direct product. Corollary 3.14
and Remark 3.15 provide a simplification of these conditions.

A different direct product of contexts K1 ` K2 � xX2 � Y1, X1 � Y2,∆y was
defined in (Kŕıdlo et al. 2012), with the incidence relation given by

∆pxx2, y1y, xx1, y2yq �  I1px1, y1q Ñ I2px2, y2q

p �  I2px2, y2q Ñ I1px1, y1qq.
(25)

For the concept-forming operator Ò∆ we have

φÒ∆px1, y2q �
©

xx2,y1yPX2�Y1

φpx2, y1q Ñ p I1px1, y1q Ñ I2px2, y2qq

�
©

xx2,y1yPX2�Y1

 I1px1, y1q Ñ pφpx2, y1q Ñ I2px2, y2qq

�
©
x2PX2

©
y1PY1

 I1px1, y1q Ñ pφpx2, y1q Ñ I2px2, y2qq

�
©
y1PY1

 I1px1, y1q Ñ
©
x2PX2

pφpx2, y1q Ñ I2px2, y2qq

�
©
y1PY1

 I1px1, y1q Ñ pφT � I2qpy1, y2q

� r I1 � pφ
T
� I2qspx1, y2q

� rp I1 � φ
T q � I2qspx1, y2q

� r p I1 � φ
T �  I2qspx1, y2q.

Whence a strong homogeneous bond wrt xÒ,Ó y is an intent of the concept lattice
of K1 `K2 iff it is possible to write it as  p I1 � φ

T �  I2q, i.e. if its complement
is an intent of  K1 b K2.
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Figure 1. Lattice of all homogeneous bonds wrt isotone concept-forming operators on K from Example
3.16. Homogeneous bonds wrt xX, Yy are drawn with dashed border; Homogeneous bonds wrt x^, _y are
drawn with dotted border; strong homogeneous bonds are drawn with solid border; and intents of K b K
are drawn with double border.

Example 3.16 Consider formal L-context

K �
1
3

1
3 1

0 2
3 1

.

Figure 1 depicts a lattice of all homogeneous bonds from K to K wrt xX, Yy and
x^, _y.

4. Heterogeneous L-bonds

This section introduces heterogeneous L-bonds in the sense that conditions gener-
alizing (B1’) and (B2’) relate different pairs of concept-forming operators. Partic-
ularly, we study so-called a-bonds and c-bonds defined as follows.

Definition 4.1:

(a) An a-bond from K1 � xX1, Y1, I1y to K2 � xX2, Y2, I2y is an L-relation
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β P LX1�Y2 such that

ExtÒÓpX1, Y2, βq � ExtXYpX1, Y1, I1q

IntÒÓpX1, Y2, βq � IntÒÓpX2, Y2, I2q.
(26)

(b) A c-bond from two L-contexts K1 � xX1, Y1, I1y to K2 � xX2, Y2, I2y is an
L-relation β P LX1�Y2 s.t.

ExtÒÓpX1, Y2, βq � ExtÒÓpX1, Y1, I1q

IntÒÓpX1, Y2, βq � Int^_pX2, Y2, I2q.
(27)
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Remark 4.2

(a) The terms a-bond and c-bond have been chosen to match with the notions of
a-morphism and c-morphism (Belohlavek and Konecny 2011, Konecny 2012,
Belohlavek and Konecny 2012b). Later, in Theorem 4.4 we will show that
a-bonds (resp. c-bonds) are in one-to-one correspondence with a-morphisms
(resp. c-morphisms) on associated sets of intents.

(b) Notice that both the sets of extents and intents in (26) and (27) are L-closure
systems. From this point of view, the condition of subsethood is natural.

(c) Notice also that a-bonds from xX1, Y1, I1y to xX2, Y2, I2y are transposed ver-
sions of c-bonds from xY2, X2, I

T
2 y to xY1, X1, I

T
1 y.

The following theorem brings a characterization of a-bonds (resp. c-bonds) in
terms of relational compositions.

Theorem 4.3 :

(a) β P LX1�Y2 is an a-bond from K1 � xX1, Y1, I1y to K2 � xX2, Y2, I2y iff
there exist L-relations Si P L

Y1�Y2 and Se P L
X1�X2, such that

β � I1 � Si � Se � I2.

(b) β P LX1�Y2 is a c-bond from K1 � xX1, Y1, I1y to K2 � xX2, Y2, I2y iff there
exist L-relations Si P L

Y1�Y2 and Se P L
X1�X2, such that

β � I1 � Si � Se � I2.

Proof :

(a) Follows from Definition 4.1 and Theorem 2.3, items (c) and (e).
(b) Follows from Definition 4.1 and Theorem 2.3, items (d) and (f).

�

Theorem 4.4 :

(a) The a-bonds from K1 � xX1, Y1, I1y to K2 � xX2, Y2, I2y are in one-to-one
correspondence with

 a-morphisms from IntXYpX1, Y1, I1q to IntÒÓpX2, Y2, I2q;

 c-morphisms from ExtÒÓpX2, Y2, I2q to ExtXYpX1, Y1, I1q.

(b) The c-bonds from K1 � xX1, Y1, I1y to K2 � xX2, Y2, I2y are in one-to-one
correspondence with

 c-morphisms from IntÒÓpX1, Y1, I1q to Int^_pX2, Y2, I2q;

 a-morphisms from Ext^_pX2, Y2, I2q to ExtÒÓpX1, Y1, I1q.

Proof :
(a) Let β be an a-bond from K1 to K2. By Theorem 4.3(a) we have β � I1 � Si.

By Lemma 2.7 (c) f : LX2 Ñ LX1 defined by

fpBq � B � Si p� BÒSi q

is an a-morphism. We need to show that it maps intents in IntXYpX1, Y1, I1q to
intents in IntÒÓpX2, Y2, I2q.

For each xA,By P BXYpX1, Y1, I1q we have B � AXI1 , which is equivalent to
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B � A � I1 by Remark 2.2. Then we have

fpBq � B � Si � pA � I1q � Si � A � pI1 � Siq �

� A � β � AÒβ P IntÒÓpX1, Y2, βq � IntÒÓpX2, Y2, I2q.

For the c-morphism, by Theorem 4.3(a) we have β � Se � I2. By Lemma 2.7 (b)
f : LX2 Ñ LX1 defined by

fpAq � Se �A p� AYSe q

is a c-morphism. We need to show that it maps extents in ExtÒÓpX2, Y2, I2q to
extents in ExtXYpX1, Y1, I1q. For each xA,By P BÒÓpX2, Y2, I2q we have A � BÓI2 ,
which is equivalent to A � I2 �B by Remark 2.2. Then we have

fpAq � Se �A � Se � pI2 �Bq � pSe � I2q �B �

� β �B � BÓβ P ExtÒÓpX1, Y2, βq � ExtXYpX1, Y1, I1q.

We have just shown how to construct the associated c-morphism and the associated
a-morphism for a given a-bond. Now we show the inverse procedures.

Given an a-morphism f from IntXYpX1, Y1, I1q to IntÒÓpX2, Y2, I2q, by using
Lemma 2.6 (c), there is an L-relation Si P LY1�Y2 such that fpBq � B � Si for
each B P LY1 . Now, we consider βf � I1 � Si, and we need to show that it is an
a-bond from K1 to K2.

Firstly, by Theorem 2.3 (e) we have ExtÒÓpX1, Y2, βf q � ExtXYpX1, Y1, I1q.
Now, all the elements in IntÒÓpX1, Y2, βf q have the form A

Òβf for some A P LX1 .
Thus, we can write

A
Òβf � A � βf � A � pI1 � Siq � pA � I1q � Si

and, since A � I1 � AXI1 P IntXYpX1, Y1, I1q,

pA � I1q � Si � AXI1 � Si � fpAXI1 q P IntÒÓpX2, Y2, I2q,

proving that IntÒÓpX1, Y2, βf q � IntÒÓpX2, Y2, I2q, and βf is an a-bond from K1

to K2.

Similarly, let g be a c-morphism from ExtÒÓpX2, Y2, I2q to ExtXYpX1, Y1, I1q. By
Lemma 2.6 (b) there is an L-relation R P LX2�X1 such that gpAq � A � R for
each A P LX2 . That is equivalent to gpAq � RT � A. Denoting Se � RT we get
gpAq � Se � A for each A P LX2 . We consider βg � Se � I2 and we need to show
that it is an a-bond from K1 to K2.

By Theorem 2.3 (e) we directly have IntÒÓpX1, Y2, βgq � IntÒÓpX2, Y2, I2q.
Now, all the elements in ExtÒÓpX1, Y2, βgq have the form BÓβg for some B P LY2 .

Thus, we can write

BÓβg � pSe � I2q �B � Se � pI2 �Bq

and, since I2 �B � BÓI2 P ExtÒÓpX2, Y2, I2q,

Se � pI2 �Bq � Se �B
ÓI2 � gpBÓI2 q P ExtXYpX1, Y1, I1q,
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proving that ExtÒÓpX1, Y2, βgq � ExtXYpX1, Y1, I1q, and βg is an a-bond from K1

to K2.
The fact that the two pairs of mappings between bonds and a-morphisms (resp.

c-morphisms) are mutually inverse can be checked as in the proof of Theorem 3.3.
The proof of (b) is similar. �

Theorem 4.5 :

(a) The system of all a-bonds from K1 to K2 is an L-closure system.
(b) The system of all c-bonds from K1 to K2 is an L-closure system.

Proof : (a) Consider a family tβj P LX1�X2 | j P Ju of a-bonds from K1 to K2 and
let us show that

�
j βj is an a-bond. By Theorem 4.3 a-bonds βj are of the form

βj � I1 � Sij � Sej � I2 for each j P J.

We have the following two expressions for
�
jPJ βj

£
jPJ

βj �
£
jPJ

pI1 � Sijq � I1 � p
£
jPJ

Sijq;

£
jPJ

βj �
£
jPJ

pSej � I2q � p
¤
jPJ

Sejq � I2.

Thus, by Theorem 4.3,
�
jPJ βj is an a-bond.

Similarly, consider an a-bond β, hence β � I1 � Si � Se � I2. Let us show that
aÑ β is an a-bond as well:

aÑ β � β � Ida � pI1 � Siq � Ida � I1 � pSi � Idaq;

aÑ β � Ida � β � Ida � pSe � I2q � pIda � Seq � I2.

Thus, a Ñ β is an a-bond from K1 to K2 by Theorem 4.3. We showed that the
system of all a-bonds is closed under intersections and shifts, whence it is an L-
closure system.

Proof of (b) is similar.
�

4.1 Direct �-product and direct �-product

In this part, we focus on direct products of L-contexts which are related to a-bonds
and c-bonds.

Definition 4.6: Let K1 � xX1, Y1, I1y,K2 � xX2, Y2, I2y be L-contexts.

(a) A direct �-product of K1 and K2 is defined as the L-context K1qK2 �
xX2 � Y1, X1 � Y2,∆y with ∆pxx2, y1y, xx1, y2yq � I1px1, y1q Ñ I2px2, y2q
for all x1 P X1, x2 P X2, y1 P Y1, y2 P Y2.

(b) A direct �-product of K1 and K2 is defined as the L-context K1pK2 �
xX2 � Y1, X1 � Y2,∆y with ∆pxx2, y1y, xx1, y2yq � I2px2, y2q Ñ I1px1, y1q
for all x1 P X1, x2 P X2, y1 P Y1, y2 P Y2.

The following theorem shows that K1qK2 (resp. K1pK2) induces a-bonds (resp.
c-bonds) as its intents.
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Theorem 4.7 :

(a) The intents of K1qK2 w.r.t xÒ,Ó y are a-bonds from K1 to K2, i.e for each
φ P LX2�Y1, φÒ is an a-bond from K1 to K2.

(b) The intents of K1pK2 w.r.t xÒ,Ó y are c-bonds from K1 to K2, i.e for each
φ P LX2�Y1, φÒ is a c-bond from K1 to K2.

Proof : (a) For φ P LX2�Y1 we have

φÒpx1, y2q �
©

xx2,y1yPX2�Y1

φpx2, y1q Ñ ∆pxx2, y1y, xx1, y2yq

�
©
x2PX2

©
y1PY1

φpx2, y1q Ñ pI1px1, y1q Ñ I2px2, y2qq

�
©
x2PX2

©
y1PY1

I1px1, y1q Ñ pφpx2, y1q Ñ I2px2, y2qq

�
©
y1PY1

I1px1, y1q Ñ
©
x2PX2

φpx2, y1q Ñ I2px2, y2q

�
©
y1PY1

I1px1, y1q Ñ
©
x2PX2

φTpy1, x2q Ñ I2px2, y2q

�
©
y1PY1

I1px1, y1q Ñ pφT
� I2qpy1, y2q

� rI1 � pφ
T
� I2qspx1, y2q

� rpI1 � φ
Tq � I2spx1, y2q.

Thus φÒ is an a-bond by Theorem 4.3 (a). Proof of (b) is similar. �

A similar proposition can be stated also for extents of direct �-products and direct
�-products. More exactly, extents of K1pK2 are c-morphisms from K2 to K1, and
extents of K1qK2 are a-morphisms from K2 to K1.

Remark 4.8 It is worth to note that not all a-bonds need to be intents of the
direct product as the following examples shows.

Example 4.9 Consider the L-context K � xtxu, tyu, t0.5{xx, yyuy with L being the
three-element  Lukasiewicz chain. Consider β to be the L-relation t0.5{xx, yyu. We
have

ExtXYptxu, tyu, βq � t0.5{x, xu � ExtÒÓptxu, tyu, t0.5{xx, yyuq,

and IntÒÓptxu, tyu, βq � IntÒÓptxu, tyu, t0.5{xx, yyuq is trivial. Thus β is an a-bond
from K to K. We have KqK � xtxx, yyu, txx, yyu, txx, yy, xx, yyuy. The only intent
of KqK is txx, yyu; thus the a-bond β � t0.5{xx, yyu is not among its intents.

Example 4.10 Consider the following L-context with L being three-element
 Lukasiewicz chain.

K1 �
0 0 0 1

2
1 0 1

2
1
2

K2 �
0 1 1
1 1 1
1
2

1
2 1

.

There are 11 a-bonds from K1 to K2, but K1qK2 has only 9 concepts; see Figure 1.
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1 1 1
1 1 1

1 1 1
1
2

1 1

1 1 1
0 1 1

1
2

1 1
1
2

1 1

1 1 1
1
2

1
2

1

1
2

1 1
0 1 1

1 1 1
0 1

2
1

1
2

1 1
1
2

1
2

1

1
2

1 1

0 1
2

1

1
2

1
2

1
1
2

1
2

1

1
2

1
2

1

0 1
2

1

Figure 2. System of a-bonds between K1 and K2 from Example 4.10. The a-bonds with double border are
those which are intents of K1 q K2.

4.2 Relationship to homogeneous bonds with respect to xÒ,Ó y

In this section we establish a relationship of a-bonds and c-bonds with homoge-
neous bonds with respect to xÒ,Ó y. Firstly, we will introduce the notion of strong
heterogeneous bond and, then, will prove that they are a special case of homoge-
neous bond wrt xÒ,Ó y. Then we study equality of homogeneous bonds wrt xÒ,Ó y
with a-bonds and c-bonds under special conditions.

Definition 4.11: An L-relation β is called strong heterogeneous bond from
xX1, Y1, I1y to xX2, Y2, I2y if it is both a-bond and c-bond from xX1, Y1, I1y to
xX2, Y2, I2y.

Let us start with the analogous version of Lemma 3.7 (with alternative charac-
terizations) for homogeneous bonds wrt xÒ,Ó y.

Lemma 4.12: The following statements are equivalent:

(1) β is a homogeneous bond wrt xÒ,Ó y from K1 � xX1, Y1, I1y to K2 �
xX2, Y2, I2y.

(2) β satisfies both tyuÓβ P ExtÒÓpX1, Y1, I1q and txuÒβ P IntÒÓpX2, Y2, I2q for
each x P X1, y P Y2.

(3) β � Se � I2 � I1 � Si for some Se P L
X1�X2 and Si P L

Y1�Y2.

Proof :
(1) ñ (2): Trivially, we have that tyuÓβ P ExtÒÓpX1, Y2, βq and txuÒβ P

IntÒÓpX1, Y2, βq.
(2) ñ (3): Each L-set A in LX1 can be written in the form

�
xPX Apxq b txu.
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Thus, we have

AÒβpyq �
©
x1PX

p
¤
xPX

Apxq b txuqpx1q Ñ βpx1, yq

�
©
x1PX

p
ª
xPX

Apxq b txupx1qq Ñ βpx1, yq

�
©
x1PX

©
xPX

Apxq Ñ ptxupx1q Ñ βpx1, yqq

�
©
xPX

Apxq Ñ
©
x1PX

txupx1q Ñ βpx1, yq

�
©
xPX

Apxq Ñ txuÒβpyq

� p
£
xPX

Apxq Ñ txuÒβqpyq.

As a result we have AÒβ P IntÒÓpX2, Y2, I2q since txuÒβ P IntÒÓpX2, Y2, I2q for
each x P X1 and IntÒÓpX2, Y2, I2q is an L-closure system. Because each intent
in IntÒÓpX1, Y2, βq has the form AÒβ , we get IntÒÓpX1, Y2, βq � IntÒÓpX2, Y2, I2q.
The existence of Se now follows from Theorem 2.3. Similarly, the existence of Si

can be proved.
(c) ñ (a): From Theorem 2.3 (c) and (d). �

One can easily observe that each strong heterogeneous bond is a homogeneous
bond wrt xÒ,Ó y. The following example shows that the converse is not true in
general.

Example 4.13 Use L � 2; obviously the empty relation is a homogeneous bond
wrt xÒ,Ó y between two formal contexts with empty incidence relation. On the other
hand, it is not an a-bond because |ExtXYpX1, Y1,Hq| � 1   2 � |ExtÒÓpX1, Y2,Hq|.
Specifically, the only concept in BXYpX1, Y1,Hq is xX1,Hy, whereas the two con-
cepts in BÒÓpX1, Y2,Hq are xX1,Hy and xH, Y2y.

4.2.1 Assuming the double negation law

If the double negation law holds true in L, each pair of the concept-forming
operators we have been using so far (namely, xÒ,Ó y, xX,Y y, and x^,_ y) can define
the other two.

As a consequence, for instance, we have that BÒÓpX,Y, Iq and BXYpX,Y, Iq are
isomorphic as lattices with xA,By ÞÑ xA, By being the isomorphism.

In order to prove this, note that A P ExtÒÓpX,Y, Iq iff A � AÒIÓI and that
A P ExtXYpX,Y, Iq iff A � AX IY I . We have

AX IY I �  I � pA �  Iq

�  I � p Id � ppA �  Iq � Idqq

�  I � p Id � pA � p I � Idqqq

�  I � p Id � pA � Iqq

� p I � Idq � pA � Iqq

� pI � pA � Iqq � AÒIÓI .
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That shows that

ExtÒÓpX,Y, Iq � ExtXYpX,Y, Iq (28)

As the ordering between the extents is defined to be the fuzzy subsethood ordering
(which is independent from the concept-forming pair used to build the concept
lattice), one obtain that both lattices are isomorphic.

To justify the intent part of the isomorphism, note that for each A P LX , B P LY

we have

 B �  pAÒI q �  pAÒ  I q �  pA �  Iq �  pA � p I � Idqq �

�  ppA �  Iq � Idq �   pA �  Iq � pA �  Iq � AX I .

Similarly, BÒÓpX,Y, Iq and B^_pX,Y, Iq are isomorphic as lattices with
xA,By ÞÑ x A,By being the isomorphism. The proof follows the line of the previ-
ous one, but showing

Int^_pX,Y, Iq � IntÒÓpX,Y, Iq. (29)

Using that we can state the following theorem.

Theorem 4.14 : Assume that the double negation holds true in L. Then homo-
geneous bonds wrt xÒ,Ó y from xX1, Y1, I1y to xX2, Y2, I2y are exactly a-bonds from
xX1, Y1, I1y to xX2, Y2, I2y; and c-bonds from xX1, Y1, I1y to xX2, Y2, I2y.

Proof : Directly from the definitions and Equations (28) and (29). �

Note that with the double negation law, the incidence relation ∆ in �-direct
product xX1, Y1, I1yq xX2, Y2, I2y becomes

∆pxx2, y1y, xx1, y2yq �  I1px1, y1q Ñ I2px2, y2q

and the incidence relation ∆ in direct �-product K1pK2 becomes

∆pxx2, y1y, xx1, y2yq �  I2px2, y2q Ñ I1px1, y1q,

which coincides with the direct product (25) from (Kŕıdlo et al. 2012).

4.2.2 Using an alternative notion of complement

The mutual reducibility of concept-forming operators (17)–(19) does not hold
generally. In (Belohlavek and Konecny 2012a), a new notion of complement of L-
relation was proposed in order to overcome that. Using this notion we showed that
each for each I P LX�Y , and fixed an element a P L, one can define �I P LX�pY�Lq

as

�Ipx, xy, ayq � Ipx, yq Ñ a,

and obtain

ExtÒÓpX,Y � L,�Iq � ExtXYpX,Y, Iq, (30)

and similarly,

IntÒÓpX � L, Y, p�ITqTq � Int^_pX,Y, Iq. (31)
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That is, for any I P LX�Y one can find a relation which induces the same
structure of extents (resp. intents) wrt xÓ,Ò y as I induces wrt xY, Xy (resp. wrt
x_, ^y). Unfortunately, the converse does not hold true in general; i.e. there are
relations I P LX�Y such that no relation induces the same structure of extents wrt
xY, Xy (resp. intents wrt x_, ^y) as I induces wrt xÓ,Ò y. Only for those L-relations
I P LX�Y whose set of extents ExtÒÓpX,Y, Iq is a c-closure system (Belohlavek and
Konecny 2011); i.e. an L-closure system generated by a system of all a-complements
of some T � LX .

Theorem 4.15 : If ExtÒÓpX1, Y1, I1q is a c-closure system, the i-bond wrt
xÒ,Ó y from xX1, Y1, I1y to xX2, Y2, I2y are exactly a-bonds from xX1, Y1 � L,�I1y
to xX2, Y2, I2y. If IntÒÓpX2, Y2, I2q is a c-closure system, the i-bonds wrt
xÒ,Ó y from xX1, Y1, I1y to xX2, Y2, I2y are exactly c-bonds from xX1, Y1, I1y to
xX2 � L, Y2, p�IT

2 q
Tqy.

Proof : Directly from Definitions and (28) and (29). �

5. Conclusions

Continuing with our study of generalized forms of formal concept analysis, we have
focused on the different natural extensions of the notion of bond.

To the best of our knowledge, only (Kŕıdlo et al. 2012) had introduced a gener-
alized definition of bond, but it turns out that, in a generalized framework, several
alternatives can be considered, depending essentially on the pair(s) of concept-
forming operators one relies on. In this paper, we have introduced the notion of
homogeneous L-bond, namely, a generalized bond wrt a pair of isotone concept-
forming operators, and presented a thorough study of them.

Specifically, homogeneous bonds with respect to xX, Yy (resp. x^, _y) have been
proved to be in one-to-one correspondence with c-morphisms from extents (resp.
intents) of the corresponding concept lattices. Moreover, the set of all homogeneous
bonds (of either case) is proved to form an L-interior system. The natural notion of
homogeneous bond wrt the two pairs of isotone concept-forming operators simulta-
neously (strong homogeneous bond) is proved to be in one-to-one correspondence
with i-morphisms between intents of xX, Yy and also with with i-morphisms be-
tween extents of x^, _y. Obviously, the set of all strong homogeneous bonds is an
L-interior system. The study is concluded by presenting the existing relationship
with the direct �-product of contexts.

A different notion of bond arises when one allows the interaction of isotone and
antitone concept-forming operators, and this leads to the so-called heterogeneous
bonds, which are proved to be closely related to the a-morphisms and c-morphisms.
Specific types of product were needed in order to establish the connection between
these new types of bonds with the direct product of contexts. It is worth to remark
that one can see applied papers in the area of information retrieval, see for instance
(Valverde-Albacete 2006), which directly calls for heterogeneous bonds, specifically
for some a-, c- and i-morphisms.

The obtained results shed new light on the structure and properties of generalized
versions of bond between contexts: on the one hand, the results are abstract versions
of those already known in the classical case and, on the other hand, generalize as
well those published in (Kŕıdlo et al. 2012).

As future work, on the one hand, it seems worth to consider a further generaliza-
tion in terms of complete idempotent semifields, which satisfy all the properties of
residuated lattices except that the multiplicative unit need not be the top element
of the lattice. In this new framework, it makes sense to consider the fourth pair of



November 17, 2014 10:6 International Journal of General Systems text

REFERENCES 25

concept-forming operators not considered in the present work, which can be viewed
as a double dualization on the first pair, see (Valverde-Albacete and Peláez-Moreno
2011) for these connections defined over completed idempotent semifields.
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Burusco, A. and Fuentes-González, R., 1994. The study of L-fuzzy concept lattice.
Mathware & Soft Computing, 3, 209–218.
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