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Abstract. In this paper, we focus on a logical approach to the impor-
tant notion of closeness, which has not received much attention in the
literature. Our notion of closeness is based on the so-called proximity in-
tervals, which will be used to decide the elements that are close to each
other. Some of the intuitions of this definition are explained on the basis
of examples. We prove the decidability of the recently introduced mul-
timodal logic for closeness and, then, we show some capabilities of the
logic with respect to expressivity in order to denote particular positions
of the proximity intervals.

1 Introduction

Qualitative reasoning (QR) is very useful for searching solutions to problems
about the behavior of physical systems without using exact numerical data. This
way, it is possible to reason on incomplete knowledge by providing an abstraction
of the numerical values in order to be able to solve problems that cannot be dealt
with using just a quantitative approach. QR has many applications in AI such as
Robot Kinematics [12], and dealing with movements [13, 14]. Concerning logics
for QR, some papers have been focused on Spatio-Temporal Reasoning [4]; more
recently, we can find proposals of logics to deal with movement, for instance [14].

Another interesting approach to QR is to reason with orders of magni-
tude [15], in which the management of exact values is substituted by reasoning
on qualitative classes and relations among them. There are some multimodal
logics for order of magnitude reasoning dealing with the relations of negligibility
and comparability, see for instance [7,10]; as far as we know, the only published
references on the notion of closeness in a logic-based context are [3, 5, 6].

In [5], the notions of closeness and distance are treated using Propositional
Dynamic Logic, and their definitions are based on the concept of qualitative sum;
specifically, two values are assumed to be close if one of them can be obtained
from the other by adding a small number, and small numbers are defined as
those belonging to a fixed interval. This approach has a number of potential
applications but might not be so useful in other situations, for instance, when
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considering physical spaces where there are natural or artificial barriers: you
can be very close to a place, but if they are separated by a river, this place is
not really so close in terms of time consumed and distance traveled (since we
should look for a bridge to cross the river); a similar situation arises for a robot
moving in a house between two points separated by a wall. Similarly, one can
consider time barriers, such as a deadline to submit an article: if the deadline is,
for instance, May 31, the date May 30 can be considered close to the deadline,
from the author’s point of view, but Jun 1 is not so, because it is already over.

On the other hand, in [6] a multi-modal logic approach was considered to deal
with closeness and negligibility, in which the notion of closeness stems from the
fact that two values were considered to be close if they are within a prescribed
area or proximity interval; in some sense, this approach resembles the notion
of granularity as given in [8]. This idea is useful to deal with the situations
described in the previous paragraph since the set of proximity intervals can be
established according to the existence of the barriers. This approach is purely
crisp and does not use fuzzy set-related ideas as in [1], where a fuzzy set-based
approach for handling relative orders of magnitude was introduced.

We continue the study of the multimodal logic for order of magnitude rea-
soning introduced in [6], where an axiom system was included together with the
proof of soundness and completeness. This work is two-fold: from a theoretical
standpoint, we prove the decidability of the logic and, on the practical side, we
elaborate on the capability of the logic in order to express different properties of
the closeness relation in terms of the main technical novelty of this logic, namely,
proximity intervals represented by using finitely many constants. This approach
can be seen as hybrid in many ways: on the one hand, it considers jointly multi-
modal logics and order-of-magnitude qualitative reasoning, in the line of [11];
on the other hand, it considers both the absolute and the relative approaches to
order-of-magnitude, in which the former is a purely qualitative approach based
on abstractions of quantitative values, whereas the latter is based on relations
between quantitative values. Moreover, it can also be seen as hybrid in the sense
of hybrid logics, [2], because of the use of nominals.

2 On the notions of closeness and neglibility

We will consider a strictly ordered set of real numbers (S, <) divided into the
following qualitative classes:

nl = (−∞,−γ) ps = (+α,+β]

nm = [−γ,−β) inf = [−α,+α] pm = (+β,+γ]

ns = [−β,−α) pl = (+γ,+∞)

The elements −α,+α,−β,+β,−γ,+γ will be called milestones. Note that all
the intervals are considered relative to S.

The labels correspond to “negative large” (nl), “negative medium”(nm),
“negative small”(ns), “infinitesimals”(inf), “positive small” (ps), “positive me-
dium” (pm) and “positive large” (pl). Note that this classification is slightly
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Fig. 1. Proximity intervals.

more general than the standard one [15], since the qualitative class containing the
element 0, i.e. inf, need not be a singleton; this allows for considering values very
close to zero as null values in practice, which is more in line with a qualitative
approach where accurate measurements are not always possible.

Let us now introduce the notion of closeness. As stated in the introduction,
the intuitive idea underlying our notion of closeness is that, in real life problems,
there are situations in which we consciously choose not to distinguish between
certain pairs of elements (for instance, two cars priced 19 000 e and 18 000 e
might be both acceptable, but perhaps 20 000 e is considered too expensive for
our budget). Somehow, there exist some areas of indistinguishability so that x
is said to be close to y if and only if both x and y belong to the same area
(although, in the example, 18 000 and 20 000 are equidistant to 19 000, the psy-
chological perception3 is that 20 000 might be too expensive and, therefore, it is
not considered close to 19 000).

We will consider each qualitative class to be divided into disjoint intervals
called proximity intervals, as shown in Figure 1. The qualitative class inf is itself
one proximity interval.

Definition 1. Let (S, <) be a strictly linear ordering divided into the qualitative
classes defined above.

– An (r-)proximity structure is a finite set of proximity intervals in S of car-
dinal r, I(S) = {I1, I2, . . . , Ir}, satisfying that:
1. For all Ii, Ij ∈ I(S), if i 6= j, then Ii ∩ Ij = ∅.
2. I1 ∪ I2 ∪ · · · ∪ Ir = S.
3. For all x, y ∈ S and Ii ∈ I(S), if x, y ∈ Ii, then x, y belong to the same

qualitative class.
4. inf ∈ I(S).

– Given a proximity structure I(S), the binary relation of closeness c is defined,
for all x, y ∈ S, as follows: x cy if and only if there exists Ii ∈ I(S) such that
x, y ∈ Ii.

Notice that, as a consequence of item 3 above, each proximity interval is
included in some qualitative class; this feature will be used later.

It is also worth to notice that, by definition, the number of proximity intervals
is finite, regardless of the cardinality of the set S. This choice is justified by the
nature of the measuring devices that after reaching a certain limit, they do not

3 This is a well-known effect in marketing.
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distinguish among nearly equal amounts; for instance, consider the limits to
represent numbers in a pocket calculator, thermometer, speedometer, etc.

As a result of considering just finitely many proximity intervals, it can be the
case that there exist two elements whose magnitudes are not comparable but,
according to this approach, turn out to be comparable. In everyday life, we often
face similar situations where excessively large quantities are no longer considered
to have an appreciable difference. For instance, if the limit of users simultane-
ously connected to a server is, say, 1 000 000 users, it is clear that the response
would be the same whether 10 000 000 users or 100 000 000 are connected to the
server. In this case, although these quantities may not be comparable in absolute
terms, they turn out to be comparable from the point of view of the response
of the server. Nevertheless, we need these quantities to be not comparable, we
have just to change the choice of the qualitative classes in our approach.

From now on, we will denote by Q = {nl,nm,ns, inf,ps,pm,pl} the set of
qualitative classes, and we will use qc to refer to any element of Q.

The following proposition is an immediate consequence of the definition of
the closeness relation.

Proposition 1. The relation c defined above has the following properties:

1. c is an equivalence relation on S.
2. For all x, y, z ∈ S, the following holds:

(a) If x, y ∈ inf, then x c y.
(b) For every qc ∈ Q, if x ∈ qc and x c y, then y ∈ qc.

The informal notion of negligibility we will use in this paper is the following:
x is said to be negligible with respect to y if and only if either (i) x is infinitesimal
and y is not, or (ii) x is small (but not infinitesimal) and y is sufficiently large.

Definition 2. Let (S, <) be a strictly linear divided into the qualitative classes
defined above. The binary relation of negligibility n is defined on S as xny if and
only if one of the following situations holds:

(i) x ∈ inf and y /∈ inf,

(ii) x ∈ ns ∪ ps and y ∈ nl ∪ pl.

The following result states some interesting properties about the interaction
between the relations of closeness and negligibility.

Proposition 2. For all x, y, z ∈ S we have:

(i) If x c y and y n z, then x n z.
(ii) If x n y and y c z, then x n z.

Proof. (i). Let x c y and y n z. Then, by Definition 2, we have two possibilities:

– y ∈ inf and z /∈ inf. So, as x c y, by Proposition 1(2b), we have x ∈ inf and
as z /∈ inf, we obtain x n z.

– y ∈ ns ∪ ps and z ∈ nl ∪ pl. So, as x c y, by Proposition 1(2b), we have
x ∈ ns ∪ ps, then x n z again.

The proof of item (ii) is analogous. qed

4



3 Syntax and semantics

In this section, we define a logic for multimodal qualitative reasoning based on
proximity intervals, whose language will be denoted by L(MQ)P . We will use

the modal connectives
−→
� and

←−
� to deal with the usual ordering <, so

−→
�A and←−

�A have the informal readings A is true for all numbers greater than the current
one and A is true for all numbers less than the current one, respectively. We
will also use �c for closeness, where the informal reading of �c A is A is true for
all numbers close to the current one, and �n for negligibility, where �n A means A
is true for all numbers with respect to the current one is negligible.

The alphabet of the language L(MQ)P is defined by using a stock of atoms or
propositional variables, V, the classical connectives ¬,∧,∨ and→; the constants
for milestones α−, α+, β−, β+, γ−, γ+; a finite set C of constants for proximity

intervals, C = {c1, . . . , cr} 4; the unary modal connectives
−→
� ,
←−
� , �n , �c , and the

parentheses ‘(’ and ‘)’. We define the formulas of L(MQ)P as follows:

A = p | ξ | ci | ¬A | (A ∧A) | (A ∨A) | (A→ A) | −→�A | ←−�A | �n A | �c A

where p ∈ V, ξ ∈ {α+, α−, β+, β−, γ+, γ−} and ci ∈ C.
The mirror image of a formula A is the result of replacing in A each oc-

currence of
−→
� ,
←−
� , α+, β+ and γ+, respectively, by

←−
� ,
−→
� , α−, β− and γ−

and reciprocally. We will use the symbols
−→
♦ ,
←−
♦ ,♦c ,♦n as abbreviations, respec-

tively, of ¬−→�¬, ¬←−�¬, ¬�c ¬ and ¬�n ¬. Moreover, we will introduce nl, . . . , pl as

abbreviations for qualitative classes, for instance, ps for (
←−
♦α+ ∧

−→
♦β+) ∨ β+.

The cardinality r of the set C of constants for proximity intervals will play
an important role since it, somehow, encodes the granularity of the underlying
logic. This implies that, actually, we are introducing a family of logics which
depend parametrically on r.

Definition 3. A multimodal qualitative frame for L(MQ)P (a frame, for short)
is a tuple Σ = (S,D, <, I(S),P), where:

1. (S, <) is a strict linearly ordered set.
2. D = {+α,−α,+β,−β,+γ,−γ} is a set of milestones in S.
3. I(S) is an r-proximity structure.
4. P is a bijection (called proximity function), P : C −→ I(S), that assigns to

each proximity constant c a proximity interval.

Notice that item 4 above means that every proximity interval corresponds to
one and only one proximity constant.

Definition 4. Let Σ be a frame for L(MQ)P , a multimodal qualitative model
on Σ (an MQ-model, for short) is an ordered pair M = (Σ, h), where h is a
meaning function (or, interpretation) h : V −→ 2S. Any interpretation can be
uniquely extended to the set of all formulas in L(MQ)P (also denoted by h)

4 There are at least as many elements in C as qualitative classes.
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by means of the usual conditions for the classical Boolean connectives and the
following conditions:

h(
−→
�A) = {x ∈ S | y ∈ h(A) for all y such that x < y}

h(
←−
�A) = {x ∈ S | y ∈ h(A) for all y such that y < x}

h(�c A) = {x ∈ S | y ∈ h(A) for all y such that x c y}
h(�n A) = {x ∈ S | y ∈ h(A) for all y such that x n y}
h(α+) = {+α} h(β+) = {+β} h(γ+) = {+γ}
h(α−) = {−α} h(β−) = {−β} h(γ−) = {−γ}
h(ci) = {x ∈ S | x ∈ P(ci)}

The definitions of truth, satisfiability and validity are the usual ones.

Example 1. The aim of this example is to specify in L(MQ)P the behavior
of a device to automatically control the speed of a car. Assume the system
has, ideally, to maintain the speed close to some speed limit v. For practical
purposes, any value in an interval [v − ε, v + ε] for small ε is admissible. The
extreme points of this interval can then be considered as the milestones −α and
+α of our frames; on the other hand, we will consider different levels of velocity
in a qualitative approach ranging from very slow to very fast. We will introduce
consequently the atoms v−3, v−2, v−1, v0, v1, v2, v3 associated to them (which are
interpreted, respectively, as the qualitative classes nl, nm, ns, inf, ps, pm, pl
and, moreover, v0 represents the interval [v − ε, v + ε]).

We will introduce also the atoms accelerate, maintain, release and brake

to describe actions of the system with their intuitive meaning.
Now we represent how the system works:

1. Whenever the speed is below the intended limit, then the engine is acceler-
ated, whereas when the speed is within the admissible limits, the speed is
maintained. Thus, we have the two formulas below

(v−3 ∨ v−2 ∨ v−1)→ accelerate v0 → maintain

2. It can happen that the speed increases more than the limit allowed due to
external factors, for instance when the road has negative slope, this way
some rules are required to maintain the speed. Usually, when the car reaches
the speed limit, the driver does not brake immediately but releases the accel-
erator instead, so that the air friction helps to recover an admissible speed.
We accomplish this action precisely in the proximity interval immediately
after v0, which we will call, say, c. As a result, we have the two formulas

c→ (
←−
♦α+ ∧←−�(

←−
♦α+ → c)) c→ release

3. When we are beyond the limit imposed by the interval c, then the system
has to actively brake:

(¬c ∧
←−
♦ c)→ brake
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According to the intended meaning of the previous formulas, the atoms accelerate,
maintain, release, and brake are true, respectively, at

nl ∪ nm ∪ ns inf Ic (psr Ic) ∪ pm ∪ pl

where Ic is the proximity interval represented by c. Note that the length of this
interval depends on the granularity of the system.

Some consequences of the behavior of the system (specifically, valid formulas
in the model) are the following:

brake→ −→�brake

(If the system brakes at a specific speed, then it brakes at higher speeds)

release→ �c (v1 ∧ ¬brake)
(If the throttle is released at certain speed, then any small variation implies

that the speed is still slightly fast and the system does not brake)

release→ �n (v−3 → accelerate)
(If the throttle is released at certain speed and, by any circumstances, the

speed decreases excessively, then it has to accelerate again)

accelerate→ �c ¬brake
(If the system accelerates, it will not brake immediately)

−→
�(v2 →

←−
♦ release)

(The throttle will be released before reaching a fast speed)

4 On the expressivity of L(MQ)P wrt proximity intervals

In this section, we consider the question whether it is possible to express the
positions, with respect to the underlying ordering, of the proximity intervals
within a qualitative class by means of formulas of L(MQ)P . Specifically, we
consider the existence of formulas which are true, just in a given proximity
interval. For instance, the following formula

r∨
i=1

(
ci ∧
←−
♦α+ ∧←−�(

←−
♦α+ → ci)

)
(1)

expresses the first proximity interval after +α, in the sense that it is true just in
the points belonging to that interval. The intuitive meaning of each disjunct of
formula (1), is that there are not other proximity intervals after +α and before
the current one. In order to prove this, assume a modelM = (S,D, <, I(S),P, h)
and let K be the first proximity interval after +α inM. Such an interval exists,
since ps contains at least one proximity interval. Let us prove that the formula
(1) is true in a point x (with respect to the model M) if and only if x ∈ K.
Assume that ck, for some k ∈ {1, . . . , r}, is assigned by the function P to the
interval K, that is, P(ck) = K (see Definition 3).
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Given x ∈ K, by definition of model, we have that x ∈ h(ck). Moreover,

since +α < x and +α ∈ h(α+), then x ∈ h(
←−
♦α+). For all y smaller than x, we

trivially have y ∈ h(
←−
♦α+ → ck), then x ∈ h(

←−
�(
←−
♦α+ → ck)). Thus, we have

x ∈ h(ck ∧
←−
♦α+ ∧←−�(

←−
♦α+ → ck))

and, hence, the formula (1) is true in x.
Conversely, assume x /∈ K. By Definition 1, we have that x belongs to some

proximity interval J 6= K, and assume that P(cj) = J . In these conditions, the
only disjunct of formula (1) that could be true at x would be the following

cj ∧
←−
♦α+ ∧←−�(

←−
♦α+ → cj)

Now, there are two possibilities:

– If x is to the left of K, then clearly x /∈ h(
←−
♦α+)

– If x is to the right of K, then x /∈ h(
←−
�(
←−
♦α+ → cj)), because

←−
♦α+ → cj is

not true at the points of K.

either of which possibilities above proves that formula (1) is not true in x.
Moreover, the second interval after +α can be expressed as:

r∨
i=1

(
ci ∧

r∨
j=1

(
¬cj ∧

←−
�((¬cj ∧

←−
♦ cj)→ ci) ∧

←−
♦L1

j

))
(2)

where L1
j = cj ∧

←−
�(
←−
♦α+ → cj) ∧

←−
♦α+. In this case, the intuitive meaning of

formula (2) is as follows: the second proximity interval after +α is, obviously,
some ci which is after the first one (denoted by some cj and represented by L1

j ),
and there are no other proximity intervals between them.

In order to express the n-th proximity interval after +α, it will be convenient
to consider the following generalization of L1

i :

L1
i := ci ∧

←−
♦α+ ∧←−�(

←−
♦α+ → ci)

L2
i := ci ∧

r∨
j=1

(Xi,j ∧
←−
♦L1

j )

...
...

Lni := ci ∧
r∨
j=1

(Xi,j ∧
←−
♦Lnj )

where Xi,j := ¬cj ∧
←−
�((¬cj ∧

←−
♦ cj) → ci), for any i, j ≥ r, is read as “ci

represents the first proximity interval after cj .”
It is not difficult to check that Lki states that ci denotes the k-th proximity

interval after +α. Therefore, and similarly to the formulas (1) and (2), in order
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to represent the n-th interval after +α, it is sufficient to consider the disjunction
of the formulas Lni , namely

r∨
i=1

(
ci ∧

r∨
j=1

(Xi,j ∧
←−
♦Lnj )

)
(3)

Note that the previous construction has been given for the landmark +α just
for the sake of an example but, in fact, can be used to represent any interval
after either a given landmark or proximity constant.

Focusing on the hybrid features of our logic, in the following construction we
consider simultaneously both the proximity intervals and the qualitative classes.
In the following, we introduce the formulas which allow to express the granularity
of a given qualitative class, i.e., the number of proximity intervals it contains.
For the particular case of ps = (+α,+β], we consider the following formula

Lki ∧ (β+ ∨
−→
♦β+) ∧ −→�((β+ ∨

−→
♦β+)→ ci)

which can be read as ci is the k-th proximity interval after +α (this is Lki ) and
the rest of the formula expresses that it is the last interval before +β; therefore,
its meaning is that there are exactly k intervals in the qualitative class ps.

Example 2. Continuing with the previous example, we will introduce two new
atoms representing modified versions of the braking action, namely, gentle-brake
and hard-brake. The possibility to detect how many proximity intervals have
been passed after the speed limit determines whether the system will choose
either a gentle or hard brake. We will use the notation cnps to denote the n-th
proximity interval in ps, as introduced in formula (3).

Now we can provide a more detailed response to the situation in which the
speed increases more than the limit allowed in terms of the position of the
proximity interval detected after the speed limit:

1. If we are over the speed limit but only slightly (and this is interpreted as
that we are in the first proximity interval after the speed limit) we simply
release the throttle. As a result, we have the formula: c1ps → release.

2. When we are immediately beyond the limit imposed by the first proximity
interval in ps, then the system has to actively brake: c2ps → gentle-brake.

3. When we exceed the second proximity interval after the speed limit, then we

must brake hard. Namely, (¬c2ps ∧
←−
♦ c2ps)→ hard-brake.

5 Decidability

In order to prove the decidability, we show the strong finite model property,
following the strategy used in [9]. For this, we will work with a weaker class
of models than those stated in Definition 4. This is justified by the fact that
MQ-models do not serve our purposes in order to prove the strong finite model
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property; this is because there are formulas which are satisfiable just in infinite
MQ-models due to the fact that MQ-models are strict linear orders. The def-
inition of the MQC-models is a generalization of that of MQ-models in which
the irreflexivity is restricted just to the milestones.

Definition 5. A multimodal qualitative cluster frame for L(MQ)P (or simply
an MQC-frame) is a tuple Σ = (S,D, <,K(S),P), where:

1. S is a set containing a subset D = {+α,−α,+β,−β,+γ,−γ} of designated
elements (milestones).5

2. < is a binary relation on S which is transitive and connected. Moreover,
ξ 6< ξ for the milestones ξ ∈ D and −γ < −β < −α < +α < +β < +γ.

3. K(S) = {K1,K2, . . . ,Kn} is a partition of S such that:
(a) For all x, y ∈ S and Ki ∈ K(S), if x, y ∈ Ki, then x, y belong to the same

qualitative class defined by the milestones.
(b) inf ∈ K(S).

4. P : C −→ K(S) is a bijection.

Given an MQC-frame Σ, an MQC-model on Σ is an ordered pair M =
(Σ, h), where h is a meaning function defined as in Definition 4.

The concepts of satisfiability, truth and validity of a formula in a MQC-model
are defined as usual.

The cornerstone of this section is that validity wrt MQC-models is equivalent
to validity wrtMQ-models. Before including the proof, let us recall that an axiom
system, denoted MQP , was introduced for our logic, together with a proof of
the completeness theorem (see [6]).

Proposition 3. For every formula A of L(MQ)P , it holds that A is MQC-valid
if and only if A is MQ-valid.

Proof. If A is MQC-valid, then it is MQ-valid, since every MQ-model is an
MQC-model. If A is MQ-valid, then A is a theorem of MQP , by the complete-
ness theorem of [6]. If A is a theorem of MQP , then A is MQC-valid. qed

We will use the well-known filtration method, showing that each formula
which is satisfiable in an MQC-model is satisfiable also in a finite MQC-model
with bounded size. In order to obtain this finite model, we will define an equiva-
lence relation in the original (non-necessarily finite) model. Due to the fact that
our logic contains finitely many constants and milestones, this equivalence rela-
tion will be based on the set of subformulas of a suitable modification A∗ of the
formula A. Specifically, given a formula A written only in terms of the primitive
operators we define

A∗ =def A ∧
∨
ci∈C

ci ∧
∧
ξ∈D

(ξ → −→�¬ξ)

5 Note that these milestones induce the qualitative classes as usual.
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In what follows, we denote by Γ the set of subformulas of A∗. Given any
MQC-model M = (S,D, <,K(S),P, h) of A∗ and x, y ∈ S, we define x ∼Γ y
iff {B ∈ Γ | x ∈ h(B)} = {B ∈ Γ | y ∈ h(B)}. Clearly ∼Γ is an equivalence
relation on S. So, for every x ∈ S, we denote [x] = {y ∈ S | y ∼Γ x}.

Definition 6. Given A∗, Γ , and ∼Γ as defined above, and given an MQC-
model M = (S,D, <,K(S),P, h) of A∗, the Γ -filtration of M is a structure of
the form MΓ = (SΓ ,DΓ , <Γ ,K(S)Γ ,PΓ , hΓ ), where:

1. SΓ = {[x] | x ∈ S}.
2. DΓ = {[+α], [+β], [+γ], [−α], [−β], [−γ]}.
3. K(S)Γ = {KΓ | K ∈ K(S)}, where KΓ denotes the set {[x] ∈ SΓ | x ∈ K}.
4. PΓ (ci) = {[x] | x ∈ P(ci)}
5. <Γ ⊆ SΓ × SΓ , so that for every [x], [y] ∈ SΓ we have [x] <Γ [y] iff:

– for every
−→
�A ∈ Γ : if x ∈ h(

−→
�A), then y ∈ h(A) ∩ h(

−→
�A);

– for every
←−
�A ∈ Γ : if y ∈ h(

←−
�A), then x ∈ h(A) ∩ h(

←−
�A).

6. hΓ (p) = {[x] | x ∈ h(p)}, for every atom p ∈ Γ (if p /∈ Γ , hΓ (p) = ∅).
7. hΓ (ξ) = {[ξ]}.
8. hΓ (ci) = PΓ (ci).

From now on, we follow the standard technique of the filtration methods for
decidability. Firstly, we obtain the following results:

Lemma 1. Given an MQC-model M of A∗, the Γ -filtration of M has at most
2n elements in SΓ , where n is the cardinal of Γ .

Lemma 2. Let MΓ = (SΓ ,DΓ , <Γ ,K(S)Γ ,PΓ , hΓ ) be the Γ -filtration of a
MQC-model M = (S,D, <,K(S),P, h). Then, x < y implies [x] <Γ [y] for
every x, y ∈ S.

Lemma 3. If MΓ = (SΓ ,DΓ ,PΓ , <Γ , hΓ ) is the Γ -filtration of an MQC-model
M = (S,D,P, <, h), then MΓ is also an MQC-model.

Proof. We prove that <Γ is a transitive and connected relation. The transitiv-
ity is an immediate consequence of the definition of <Γ . On the other hand,
connectedness arises from the fact that < is connected and by Lemma 2.

Let us prove that [ξ] 6<Γ [ξ] for all ξ. Assume, by contradiction, that [ξ] <Γ
[ξ]. Now, given ξ ∈ h(ξ) and the validity of ξ → −→�¬ξ, we obtain ξ ∈ h(

−→
�¬ξ).

So, taking into account that
−→
�¬ξ ∈ Γ (by definition of Γ ) and the assumption

[ξ] <Γ [ξ], then ξ ∈ h(¬ξ), that is, ξ /∈ h(ξ), a contradiction.
We also have that [−γ] <Γ [−β] <Γ [−α] <Γ [+α] <Γ [+β] <Γ [+γ]. This

is immediate by the order of milestones in M and Lemma 2. This enables us
to build the sets: nlΓ = {[x] ∈ SΓ | [x] <Γ [−γ]} and the same for the rest of
qualitative classes.

Let us now see that K(S)Γ = {KΓ | K ∈ K(S)} is a partition of S such that:

1. For all [x], [y] ∈ SΓ and KΓ ∈ K(S)Γ , if [x], [y] ∈ KΓ , then [x], [y] belong to
the same qualitative class.
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2. infΓ ∈ K(S)Γ .

Let us prove first that K(S)Γ is a partition of S. Assume KΓ ,K
′
Γ ∈ K(S)Γ

such that KΓ 6= K ′Γ , so we have K 6= K ′. This means by Definition 1 that K
and K ′ are disjoint. Now, if there exists [x] ∈ KΓ ∩ K ′Γ , then x ∈ K ∩ K ′, a
contradiction. On the other hand, if [x] ∈ SΓ , then x ∈ S, and thus there exists
K ∈ S such that x ∈ K, so [x] ∈ KΓ . Therefore K(S)Γ is a partition of S.

For 1, assume that [x], [y] ∈ KΓ , then x, y ∈ K and, as a result, x, y belong to
the same qualitative class. Now, we have to consider several cases: for instance,
if x, y ∈ ps, we have +α < x ≤ +β, which means, by Lemma 2, that [+α] <Γ
[x] ≤Γ [+β], that is, [x] ∈ psΓ . Similarly, we obtain [y] ∈ psΓ . The other cases
can be dealt with in a similar way.

For 2, let us prove that infΓ ∈ K(S)Γ . To this end, we prove that {[x] |
x ∈ inf} = {[x] | [−α] ≤Γ [x] ≤Γ [+α]}. Assume [−α] ≤Γ [x] ≤Γ [+α],
let us prove that x ∈ inf. By contradiction, if x 6∈ inf then obviously x ∈
nl ∪ nm ∪ ns ∪ ps ∪ pm ∪ ps. Assume x ∈ nl (the remainder cases can be
treated in a similar way). As x < −γ, by Lemma 2 we obtain [x] <Γ [−γ] and
as [−γ] <Γ [−α] we also obtain, by transitivity of <Γ previously proved, that
[x] <Γ [−α]. Hence, by the assumption [−α] ≤Γ [x], we obtain [−α] <Γ [−α], a
contradiction. The other inclusion is straightforward by Lemma 2.

Finally, PΓ : C −→ K(S)Γ is a bijection. For the injectivity of PΓ assume
ci 6= cj , by the injectivity of P, then we have P(ci) 6= P(cj). So there exists x ∈ S
such that x ∈ P(ci) but x /∈ P(cj). Hence [x] ∈ PΓ (ci) and [x] /∈ PΓ (cj), that
is, PΓ (ci) 6= PΓ (cj). For the surjectivity of PΓ , consider any KΓ ∈ K(S)Γ ; thus
K ∈ K(S). Now by the surjectivity of P, there exists c ∈ C such that P(c) = K;
this means that K = {x ∈ S | x ∈ P(c)}, hence KΓ = {[x] ∈ SΓ | x ∈ P(c)} =
PΓ (c). qed

Lemma 4. LetMΓ = (SΓ ,DΓ , <Γ ,K(S)Γ ,PΓ , hΓ ) be a Γ -filtration of an MQC-
model M = (S,D, <,K(S),P, h). Then, for every A ∈ Γ and for every x ∈ S,
we have that x ∈ h(A) if and only if [x] ∈ hΓ (A).

Proof. The proof is by induction on the complexity of A ∈ Γ . qed

The strong finite model property is a consequence of the previous results:

Proposition 4. Let A be a formula of L(MQ)P . If A∗ is satisfiable in a MQC-
model, then A∗ is satisfiable in a finite MQC-model containing at most 2n points,
where n is the number of subformulas of A∗.

The previous proposition can be used to define a test for satisfiability of a
formula A with respect to MQC-models: since the class of all MQC-models with
size at most 2n is effectively enumerable, in order to determine whether A∗ is
satisfiable, one has just to traverse the list of such models and check whether A∗

gets satisfied. As a consequence, we obtain

Theorem 1 (Decidability). MQP is decidable.
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6 Conclusions

Logics for order of magnitude reasoning are important to deal with situations
where numerical values are either imprecise or unavailable. In this paper, we
continue our work with a multimodal logic for order of magnitude reasoning
which considers a new approach to closeness based on proximity intervals. In this
respect, we have shown that the relative order between the proximity intervals
can be reproduced in term of the logic, and some examples have been shown.
Last but not least, we have proved the decidability of the logic.
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5. A. Burrieza, E. Muñoz-Velasco, and M. Ojeda-Aciego. Closeness and distance
in order of magnitude qualitative reasoning via PDL. Lecture Notes in Artificial
Intelligence, 5988:71–80, 2010.
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