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Universidad de Málaga
Málaga, Spain

Email: aciego@uma.es

Abstract—We continue our study of intuitionistic L-fuzzy
formal concept analysis by presenting a construction of an adjoint
triple based on a non-commutative conjunctor, so that it enables
the construction of intuitionistic L-fuzzy t-formal concepts.

I. INTRODUCTION

In this paper we keep investigating the additional flexibility
that the framework of intuitionistic fuzzy sets and provide to
the research area of Formal Concept Analysis (FCA).

FCA arose some thirty years ago as an applied lattice theory
from the seminal work by Ganter and Wille [1]. Originally,
the theory was developed in the crisp but was soon extended
to the fuzzy case by Burusco and Fuentes-González [2] and,
since then, a great number of different generalizations have
been developed: by Bělohlávek using a complete residuated
lattice [3], the (one-sided) generalized FCA by Krajči [4],
multi-adjoint FCA by Medina et al [5]–[8], heterogeneous and
higher-order FCA by Krı́dlo et al [9], [10], etc.

Our approach here will be based on the intuitionistic fuzzy
sets (IF-sets for short) introduced by Atanassov [11]. His
original construction was later adapted to the L-fuzzy case,
in which a complete residuated lattice was used instead of the
unit interval as underlying set of truth-values [12], [13].

Although some authors have already introduced IF-based
ideas within the FCA framework: for instance, [15], [16] define
a generalization based on Krajči’s one-sided approach; on the
other hand, [17] focuses on an interval-valued intuitionistic
fuzzy rough approach. And all three previous approaches are
based on the unit interval.

We introduce for the first time, as far as we know, an adjoint
triple of operators defined on an IF complete residuated lattice
of truth-values which, naturally, allows for introducing the
notion of IF-L-fuzzy formal t-concept.

II. PRELIMINARY DEFINITIONS AND RESULTS

As stated above, we will be primary dealing with truth-
values not necessarily belonging to the unit interval, but to a
complete residuated lattice (see [18] for further details).

Definition 1: An algebra L = 〈L,∧,∨,⊗,→, 0, 1〉 is said
to be a complete residuated lattice if

1) 〈L,∧,∨, 0, 1〉 is a complete lattice with least element 0
and greatest element 1,

2) 〈L,⊗, 1〉 is a commutative monoid,

3) 〈⊗,→〉 is an adjoint pair, i.e. a ⊗ b ≤ c if and only if
a ≤ b → c, for all a, b, c ∈ L, where ≤ is the ordering
generated by ∧ and ∨.

Example 1: We will consider in our examples a three-
element set {1, 0.5, 0} together with the Łukasiewicz logic
operations
• k ⊗m = max{a+ b− 1, 0}
• k → m = min{1− a+ b, 1}
We now recall the basics of fuzzy formal concept analysis

(see [19, chapter 5] for more details).
Definition 2: A triple 〈B,A, r〉 where r ∈ LB×A is said to

be an L-fuzzy formal context. B is the set of objects, A the
set of attributes and r the incidence relation.

Definition 3: Given an L-fuzzy formal context 〈B,A, r〉,
two pairs of concept-forming operators 〈↑, ↓〉 and 〈↗,↙〉
can be defined between the L-fuzzy powersets 〈LB ,⊆〉 and
〈LA,⊆〉. Let f ∈ LB and g ∈ LA be two arbitrary L-sets.

↑f(a) =
∧
b∈B

(
f(b)→ r(b, a)

)
↓g(b) =

∧
a∈A

(
g(a)→ r(b, a)

)
↗f(a) =

∨
b∈B

f(b)⊗ r(b, a)

↙g(b) =
∧
a∈A

(
r(b, a)→ g(a)

)
It is well-known that the previous constructions lead to two

Galois connections between 〈LB ,⊆〉 and 〈LA,⊆〉,
1) The pair of mappings 〈↑, ↓〉 forms a Galois connection,

i.e. for all L-fuzzy sets f ∈ LB and g ∈ LA it holds
that

f ⊆↓g ⇔ g ⊆↑f

2) The pair 〈↗,↙〉 forms an isotone Galois connection
(also called adjunction), i.e.

↗f ⊆ g ⇔ f ⊆↙g .

Definition 4: An L-fuzzy concept of an L-context C =
〈B,A, r〉 with respect to 〈↑, ↓〉 is a pair 〈f, g〉 ∈ LB × LA

such that ↑f = g and ↓g = f . The first component f is said
to be the extent of the concept, whereas the second component
g is the intent of the concept. An L-fuzzy concept of an



L-context C = 〈B,A, r〉 with respect to 〈↗,↙〉 is a pair
〈f, g〉 ∈ LB × LA such that ↗f = g and ↙g = f .

Example 2: Consider the following example of L-context
related to the ice-cream preferences of two girls.

chocolate vanilla stracciatella
Ester 1 0 0.5
Lydia 1 0.5 0

Here are some of obtained concepts after applying the
derivation operators 〈↑, ↓〉.
• {1/Ester; 0.5/Lydia}; {1/choc.; 0/vanilla; 0.5/strac.}
• {0.5/Ester; 1/Lydia}; {1/choc.; 0.5/vanilla; 0/strac.}
• {1/Ester; 1/Lydia}; {1/choc.; 0/vanilla; 0/strac.}
• {0.5/Ester; 0.5/Lydia}; {1/choc.; 0.5/vanilla; 0.5/strac.}
• {0/Ester; 0/Lydia}; {1/choc.; 1/vanilla; 1/strac.}

The results can be interpreted in terms of the satisfaction
of customers of patisserie. Ester and Lydia are both fully
satisfied only with full dose of chocolate ice-cream. If they
would obtain lower dose of vanilla ice cream over full dose
of chocolate ice cream then Lydia was still fully satisfied but
good mood of Ester went little down. Similarly with Lydia
and stracciatella ice cream.

Definition 5: Let L be a complete residuated lattice. The
residuated negation ¬ and residuated disjunction ⊕ on L are
defined as follows:
• ¬k = k → 0
• k ⊕m = ¬k → m

for any k,m ∈ L.
Remark 1: Note that if the negation ¬ satisfies the double

negation law on L then ⊕ is a commutative operation, and
we can use it as the disjunction operation on L. Specifically,
Łukasiewicz implication satisfies the double negation law.

III. INTUITIONISTIC FUZZY SETS BASED ON COMPLETE
RESIDUATED LATTICES

We start by recalling the notion of intuitionistic fuzzy set
defined on a complete lattice, as introduced in [12].

Definition 6: Given a complete lattice L together with an
involutive order reversing operation N : L→ L, and a universe
set E: An intuitionistic L-fuzzy set (IF set) A in E is defined
as an object having the form:

A =
{
〈x, µA(x), νA(x) | x ∈ E

}
where the functions µA : E → L and νA : E → L define
the degree of membership and the degree of non-membership,
respectively, to A of the elements x ∈ E, and for every x ∈ E:

µA(x) ≤ N(νA(x)) .

When the previous inequality is strict, there is certain indeter-
mination degree on the knowledge about x.

The IF-lattice associated to a given residuated lattice L
was introduced in [14] as a natural extension of the Pareto
ordering [20] taking L as the underlying set of truth-values
instead of the unit interval. The formal definition can be seen
below:

Definition 7: Given L =
〈
L, 0, 1,⊗,→,∧,∨

〉
a complete

residuated lattice, we can consider the lattice of intuitionistic
truth values

LIF =
〈
{〈k1, k2〉 ∈ L× L | k2 ≤ ¬k1},≤

〉
where ordering ≤ on LIF is defined as follows 〈k1, k2〉 ≤
〈m1,m2〉 when k1 ≤ m1 and k2 ≥ m2.

The negation operator in L can be easily generalized to
elements in LIF by

¬〈k1, k2〉 = 〈k2, k1〉 .

Remark 2: Note that the elements of LIF will represent the
membership (and non-membership) degrees and, hence, will
be denoted in terms of µ and ν whenever necessary.

Example 3: Considering L = 〈{1, 0.5, 0},⊗,→〉 we have
LIF = 〈{〈1, 0〉, 〈0.5, 0〉, 〈0.5, 0.5〉, 〈0, 0〉, 〈0, 0.5〉, 〈0, 1〉},≤〉.
All the pairs 〈p1, p2〉 satisfy p2 ≤ ¬p1, where ¬p1 = p1 → 0
and, in particular, ¬0.5 = 0.5. A possible interpretation of
such a new richer set of truth-values could be as follows:
• 〈1, 0〉 absolutely YES, sure, satisfied, full dose, . . .
• 〈0.5, 0〉 more yes than no, not completely sure, . . .
• 〈0.5, 0.5〉 user in general agree but has some doubts, . . .
• 〈0, 0〉 not interested, but not disagree, . . .
• 〈0, 0.5〉 more no than yes, . . .
• 〈0, 1〉 absolutely NO, . . .
The two well-known equivalences in classical logic below

(A⇒ B)⇔ (¬A ∨B) and ¬(A⇒ B)⇔ (A ∧ ¬B)

inspired the introduction in [14] of the following binary
operator ⇒1: LIF ×LIF → LIF in the lattice of truth degrees
of intuitionistic fuzzy sets LIF. Its definition is as follows, for
all pair of elements 〈p1, p2〉, 〈q1, q2〉 ∈ LIF

〈p1, p2〉⇒1 〈q1, q2〉 = 〈p2 ⊕ q1, p1 ⊗ q2〉

Notice that the nonmembership value (second component of
the pairs) plays the role of the negated atoms in the previous
construction.

The proof that ⇒1 is well-defined, namely, that their results
are in LIF was given in [14].

The behavior of ⇒1 with respect to the top and bottom
elements of LIF directly follows that of 0, 1 ∈ L. Namely, for
all 〈p1, p2〉, 〈q1, q2〉 ∈ LIF, we have that

〈1, 0〉⇒1 〈p1, p2〉 = 〈0⊕ p1, 1⊗ p2〉 = 〈p1, p2〉
〈0, 1〉⇒1 〈p1, p2〉 = 〈1⊕ p1, 0⊗ p2〉 = 〈1, 0〉
〈p1, p2〉⇒1 〈1, 0〉 = 〈p2 ⊕ 1, p1 ⊗ 0〉 = 〈1, 0〉
〈p1, p2〉⇒1 〈0, 1〉 = 〈p2 ⊕ 0, p1 ⊗ 1〉 = 〈p2, p1〉 = ¬〈p1, p2〉

Moreover, we have that if
(
〈p1, p2〉 ⇒1 〈q1, q2〉

)
= 〈r1, r2〉

and the inequality 〈p1, p2〉 ≤ 〈q1, q2〉 holds, then r1 ≥ r2.
In order to prove this property, we have to show that p1 ⊗

q2 ≤ p2 ⊕ q1:
Firstly, since p1 ≤ q1, we have

p1 ⊗ q2 ≤ q1 ⊗ q2 (1)



⇒1 〈1, 0〉 〈0.5, 0〉 〈0.5, 0.5〉 〈0, 0〉 〈0, 0.5〉 〈0, 1〉
〈1, 0〉 〈1, 0〉 〈0.5, 0〉 〈0.5, 0.5〉 〈0, 0〉 〈0, 0.5〉 〈0, 1〉
〈0.5, 0〉 〈1, 0〉 〈0.5, 0〉 〈0.5, 0〉 〈0, 0〉 〈0, 0〉 〈0, 0.5〉
〈0.5, 0.5〉 〈1, 0〉 〈1, 0〉 〈1, 0〉 〈0.5, 0〉 〈0.5, 0〉 〈0.5, 0.5〉
〈0, 0〉 〈1, 0〉 〈0.5, 0〉 〈0.5, 0〉 〈0, 0〉 〈0, 0〉 〈0, 0〉
〈0, 0.5〉 〈1, 0〉 〈1, 0〉 〈1, 0〉 〈0.5, 0〉 〈0.5, 0〉 〈0.5, 0〉
〈0, 1〉 〈1, 0〉 〈1, 0〉 〈1, 0〉 〈1, 0〉 〈1, 0〉 〈1, 0〉

Fig. 1. Truth-table of ⇒1 for the examples.

Then
q1 ⊗ q2 ≤ q2 ⊕ q1 (2)

because of the following equivalence

q1 ⊗ q2 ≤ q2 ⊕ q1 = ¬q2 → q1

⇐⇒ (by the adjoint property)
q1 ⊗ q2 ⊗ ¬q2 ≤ q1 (holds trivially)

Finally, since q2 ≤ p2 or, equivalently, ¬p2 ≤ ¬q2 we have

q2 ⊕ q1 = ¬q2 → q1 ≤ ¬p2 → q1 = p2 ⊕ q1 (3)

The desired result follows by inequalities (1), (2), (3).
Finally, we also have∧
i∈I

(〈k1i, k2i〉⇒1〈m1i,m2i〉) =

=
∧
i∈I

〈k2i ⊕m1i, k1i ⊗m2i〉

=

〈∧
i∈I

(k2i ⊕m1i),
∨
i∈I

(k1i ⊗m2i)

〉
.

Let us finally show the behavior of ⇒1 with respect to
monotonicity.

Lemma 1: ⇒1 is decreasing in first and increasing in sec-
ond argument.

Proof: Assume 〈p1, p2〉, 〈p′1, p′2〉, 〈q1, q2〉 ∈ LIF be arbi-
trary intuitionistic truth values, such that 〈p1, p2〉 ≤ 〈p′1, p′2〉,
i.e. p1 ≤ p′1 and p2 ≥ p′2. Now, we have

p2 ⊕ q1 ≥ p′2 ⊕ q1 and p1 ⊗ q2 ≤ p′1 ⊗ q2

and, as a result,

〈p1, p2〉⇒1 〈q1, q2〉 = 〈p2 ⊕ q1, p1 ⊗ q2〉
≥ 〈p′2 ⊕ q1, p′1 ⊗ q2〉
= 〈p′1, p′2〉⇒1 〈q1, q2〉 .

Similarly, we have

q2 ⊕ p1 ≤ q2 ⊕ p′1 and q1 ⊗ p2 ≥ q1 ⊗ p′2
therefore

〈q1, q2〉⇒1 〈p1, p2〉 = 〈q2 ⊕ p1, q1 ⊗ p2〉
≤ 〈q2 ⊕ p′1, q1 ⊗ p′2〉
= 〈q1, q2〉⇒1 〈p′1, p′2〉

The truth-table of ⇒1 on our running example is given in
Figure 1.

The mere consideration of the intuitionistic lattice LIF

instead of L, provides more expressiveness to the obtained
concept lattice.

Example 4: By considering an LIF-based formal con-
text in our previous example, replacing values 1, 0.5, 0 by
〈1, 0〉, 〈0.5, 0.5〉, 〈0, 1〉 one can notice that the behaviour of
such intuitionistic values are the same as the original values
with respect to implication → in L, as can be seen using the
table of ⇒1 (see Fig. 1). But, after applying the new concept
forming operators some new LIF-concepts are obtained. 〈0, 0〉
can be interpreted on the standpoint of customers as to be not
interested, whereas from the ice cream standpoint should be
read more likely as “I don’t know how much I’ll obtain”.
• The pair with extent {Ester/〈0, 0〉; Lydia/〈0, 0〉}, and

intent {choco./〈1, 0〉, vanilla/〈0, 0〉, strac./〈0, 0〉} should
be interpreted as Ester and Lydia would not be interested
in any ice cream portion where is no certainty of how
much unpopular ice cream they will obtain.

IV. IF-FORMAL CONCEPT ANALYSIS

The introduction of the lattice of IF-degrees allows for
extending the constructions of FCA to this more general
framework. Following the methodology and constructions in
the fuzzy case, the definitions of IF-formal context and its
associated concept-forming operations were given in [14]
based on the operator ⇒1.

Definition 8: Let L be a complete residuated lattice and
LIF be its associated lattice of intuitionistic degrees. A triple
〈B,A, r〉 where r : B × A → LIF is said to be an IF-formal
context.

Definition 9: Given an IF-formal context 〈B,A, r〉, its con-
cept forming operators are a pair of mappings 〈�1,�1〉
between the intuitionistic LIF-fuzzy powersets 〈LIF

B ,⊆〉 and
〈LIF

A,⊆〉 defined as follows
• �1 f(a) =

∧
b∈B(f(b) ⇒1 r(b, a)), for any f ∈ LIF

B

• �1 g(b) =
∧

a∈A(g(a) ⇒1 r(b, a)), for any g ∈ LIF
A.

Unfortunately, and contrariwise to what one would expect,
the concept-forming operators need not form a Galois connec-
tion unless the extra assumption that the incidence relation r
should assign values (p, q) satisfying q = ¬p is assumed, but
this means that the IF-formal context has to provide values
without indetermination, which are essentially equivalent to



(usual) L-fuzzy sets. As a result, not much is gained in this
approach.

In [14] this problem was circumvented by providing an
alternative construction in terms of an isotone Galois connec-
tion which did not require so strong extra assumptions. In
this paper, we will follow an alternative path by providing a
construction in terms of adjoint triples, and giving rise to the
so-called t-formal concepts [6].

To begin with, let us recall the notion of adjoint triple.
Definition 10: Let 〈P1,≤1〉, 〈P2,≤2〉, 〈P3,≤3〉 be posets

and consider three mappings & : P1 × P2 −→ P3, ↗: P1 ×
P3 −→ P2, ↘: P2 × P3 −→ P1, then 〈&,↗,↘〉 is a adjoint
triple with respect to P1, P2, P3 if:

1) & is increasing in both arguments.
2) ↗,↘ are decreasing in first argument and increasing in

second argument.
3) x ≤1 y ↘ z ⇔ x&y ≤3 z ⇔ y ≤2 x ↗ z for any

x ∈ P1, y ∈ P2, z ∈ P3.
We have just proved that ⇒1 is an implication operators,

so property 2) above holds for it. In order to build an adjoint
triple we need a conjunction and a second implication operator
satisfying the mutual adjoint property. The conjunction is
introduced as follows:

Definition 11: Let L be a complete residuated lattice
and consider its associated lattice of intuitionistic truth de-
grees LIF. The operator � : LIF × LIF → LIF is defined as
follows

〈p1, p2〉� 〈q1, q2〉 =
〈
p1 ⊗ ¬q2, (¬p1 ⊕ q2) ∧ (p2 ⊕ ¬q1)

〉
.

The very construction of � leads to the fact that its output
is in LIF, so it is well-defined. Its properties with respect to
the distinguished elements of LIF are given below:

〈0, 1〉� 〈q1, q2〉 = 〈0, 1〉
〈p1, p2〉� 〈0, 1〉 = 〈0, 1〉
〈1, 0〉� 〈q1, q2〉 = 〈¬q2, q2〉
〈p1, p2〉� 〈1, 0〉 = 〈p1, p2〉

Furthermore, the following monotonicity properties hold:
Lemma 2: � is increasing in both arguments.

Proof:
Let 〈p1, p2〉, 〈p′1, p′2〉, 〈q1, q2〉 ∈ LIF be arbitrary intuition-

istic truth values, such that 〈p1, p2〉 ≤ 〈p′1, p′2〉, i.e. p1 ≤ p′1
and p2 ≥ p′2. Then
• p1 ⊗ ¬q2 ≤ p′1 ⊗ ¬q2
• ¬p1 ⊕ q2 ≥ ¬p′1 ⊕ q2
• p2 ⊕ ¬q1 ≥ p′2 ⊕ ¬q1
• (¬p1 ⊕ q2) ∧ (p2 ⊕ ¬q1) ≥ (¬p′1 ⊕ q2) ∧ (p′2 ⊕ ¬q1)

Then

〈p1, p2〉� 〈q1, q2〉 = 〈p1 ⊗ ¬q2, (¬p1 ⊕ q2) ∧ (p2 ⊕ ¬q1)〉
≤ 〈p′1 ⊗ ¬q2, (¬p′1 ⊕ q2) ∧ (p′2 ⊕ ¬q1)〉
= 〈p′1, p′2〉� 〈q1, q2〉

Similarly,
• q1 ⊗ ¬p2 ≤ q1 ⊗ ¬p′2

• ¬q1 ⊕ p2 ≥ ¬q1 ⊕ p′2
• q2 ⊕ ¬p1 ≥ q2 ⊕ ¬p′1
• (¬q1 ⊕ p2) ∧ (q2 ⊕ ¬p1) ≥ (¬q1 ⊕ p′2) ∧ (q2 ⊕ ¬p′1)

then

〈q1, q2〉� 〈p1, p2〉 = 〈q1 ⊗ ¬p2, (¬q1 ⊕ p2) ∧ (q2 ⊕ ¬p1)〉
≤ 〈q1 ⊗ ¬p′2, (¬q1 ⊕ p′2) ∧ (q2 ⊕ ¬p′1)〉
= 〈q1, q2〉� 〈p′1, p′2〉

Hence � is increasing in both arguments.

The fact that � is, in general, non-commutative suggests
the existence of two residuals depending on which argument
is fixed. This second construction as follows.

Definition 12: Let L be a complete residuated lattice
and consider its associated lattice of intuitionistic truth de-
grees LIF, and consider the following implication

〈p1, p2〉⇒2 〈q1, q2〉 = 〈(¬p1 ⊕ q1) ∧ (p2 ⊕ ¬q2), p1 ⊗ ¬q1〉

defined for all 〈p1, p2〉, 〈q1, q2〉 ∈ LIF.
It is not difficult to check that the output of ⇒2 actually

belongs to LIF. Its properties with respect to the distinguished
elements of LIF are given below:

〈0, 1〉⇒2 〈q1, q2〉 = 〈1, 0〉
〈p1, p2〉⇒2 〈0, 1〉 = 〈p2, p1〉 = ¬〈p1, p2〉
〈1, 0〉⇒2 〈q1, q2〉 = 〈q1,¬q1〉
〈p1, p2〉⇒2 〈1, 0〉 = 〈1, 0〉

Lemma 3: ⇒2 is decreasing in its first argument and in-
creasing in its second argument.

Proof: Let 〈p1, p2〉, 〈p′1, p′2〉, 〈q1, q2〉 ∈ LIF be arbitrary
intuitionistic truth values, such that 〈p1, p2〉 ≤ 〈p′1, p′2〉, i.e.
p1 ≤ p′1 and p2 ≥ p′2. Then, we have
• ¬p1 ⊕ q1 ≥ ¬p′1 ⊕ q1
• p2 ⊕ ¬q2 ≥ p′2 ⊕ ¬q2
• (¬p1 ⊕ q1) ∧ (p2 ⊕ ¬q2) ≥ (¬p′1 ⊕ q1) ∧ (p′2 ⊕ ¬q2)
• p1 ⊗ ¬q2 ≤ p′1 ⊗ ¬q2

And, as a result, we obtain

〈p1, p2〉⇒2 〈q1, q2〉 = 〈(¬p1 ⊕ q1) ∧ (p2 ⊕ ¬q2), p1 ⊗ ¬q2〉
≥ 〈(¬p′1 ⊕ q1) ∧ (p′2 ⊕ ¬q2), p′1 ⊗ ¬q2〉
= 〈p′1, p′2〉⇒2 〈q1, q2〉

Similarly,
• ¬q1 ⊕ p1 ≤ ¬q1 ⊕ p′1
• q2 ⊕ ¬p2 ≤ q2 ⊕ ¬p′2
• (¬q1 ⊕ p1) ∧ (q2 ⊕ ¬p2) ≤ (¬q1 ⊕ p′1) ∧ (q2 ⊕ ¬p′2)
• q1 ⊗ ¬p1 ≥ q1 ⊗ ¬p′1

therefore

〈q1, q2〉⇒2 〈p1, p2〉 = 〈(¬q1 ⊕ p11) ∧ (q2 ⊕ ¬p2), q1 ⊗ ¬p1〉
≤ 〈(¬q1 ⊕ p′1) ∧ (q2 ⊕ ¬p′2), q1 ⊗ ¬p′1〉
= 〈q1, q2〉⇒2 〈p′1, p′2〉

Hence ⇒2 is decreasing in its first and increasing in its second
argument.



� 〈1, 0〉 〈0.5, 0〉 〈0.5, 0.5〉 〈0, 0〉 〈0, 0.5〉 〈0, 1〉
〈1, 0〉 〈1, 0〉 〈1, 0〉 〈0.5, 0〉 〈1, 0〉 〈0.5, 0.5〉 〈0, 1〉
〈0.5, 0〉 〈0.5, 0〉 〈0.5, 0.5〉 〈0, 0.5〉 〈0.5, 0.5〉 〈0, 1〉 〈0, 1〉
〈0.5, 0.5〉 〈0.5, 0.5〉 〈0.5, 0.5〉 〈0, 1〉 〈0.5, 0.5〉 〈0, 1〉 〈0, 1〉
〈0, 0〉 〈0, 0〉 〈0, 0.5〉 〈0, 0.5〉 〈0, 1〉 〈0, 1〉 〈0, 1〉
〈0, 0.5〉 〈0, 0.5〉 〈0, 1〉 〈0, 1〉 〈0, 1〉 〈0, 1〉 〈0, 1〉
〈0, 1〉 〈0, 1〉 〈0, 1〉 〈0, 1〉 〈0, 1〉 〈0, 1〉 〈0, 1〉

Fig. 2. Truth-table of � for the examples.

⇒2 〈1, 0〉 〈0.5, 0〉 〈0.5, 0.5〉 〈0, 0〉 〈0, 0.5〉 〈0, 1〉
〈1, 0〉 〈1, 0〉 〈0.5, 0.5〉 〈0.5, 0.5〉 〈0, 1〉 〈0, 1〉 〈0, 1〉
〈0.5, 0〉 〈1, 0〉 〈1, 0〉 〈0.5, 0〉 〈0.5, 0.5〉 〈0.5, 0.5〉 〈0, 0.5〉
〈0.5, 0.5〉 〈1, 0〉 〈1, 0〉 〈1, 0〉 〈0.5, 0.5〉 〈0.5, 0.5〉 〈0.5, 0.5〉
〈0, 0〉 〈1, 0〉 〈1, 0〉 〈0.5, 0〉 〈1, 0〉 〈0.5, 0〉 〈0, 0〉
〈0, 0.5〉 〈1, 0〉 〈1, 0〉 〈1, 0〉 〈1, 0〉 〈1, 0〉 〈0.5, 0〉
〈0, 1〉 〈1, 0〉 〈1, 0〉 〈1, 0〉 〈1, 0〉 〈1, 0〉 〈1, 0〉

Fig. 3. Truth-table of ⇒2 for the examples.

We are now in position to prove that the operators �, ⇒1,
and ⇒2 form an adjoint triple in LIF (in this case, the three
posets coincide with LIF).

Theorem 1: 〈�,⇒1,⇒2〉 is an adjoint triple with respect
to LIF,LIF,LIF.

Proof: By Lemma we have and Lemmas 1, 2 and 3 we
have the monotonicity properties of � and ⇒1 and ⇒2.

The adjoint properties were proved in [14] for (�,⇒1) and
(�,⇒2) separately.

Now, following [6] we have two possibilities to construct
concept-forming operators in terms of Galois connections. The
first one is the following:

Definition 13: Given an IF-formal context 〈B,A, r〉 we can
define two pairs of mappings between the intuitionistic LIF-
fuzzy powersets 〈LIF

B ,⊆〉 and 〈LIF
A,⊆〉

1) 〈�1,�2〉 is defined by

�1 f(a) =
∧
b∈B

(f(b) ⇒1 r(b, a)), for all f ∈ LIF
B

�2 g(b) =
∧
a∈A

(g(a) ⇒2 r(b, a)), for all g ∈ LIF
A .

2) 〈�2,�1〉 is defined by

�2 f(a) =
∧
b∈B

(f(b) ⇒2 r(b, a)), for all f ∈ LIF
B

�1 g(b) =
∧
a∈A

(g(a) ⇒1 r(b, a)), for all g ∈ LIF
A .

The pair of mappings 〈�1,�2〉 are the multi adjoint concept
forming operators for the IF-formal context 〈B,A, r〉.

Theorem 2: Let L be a complete residuated lattice and LIF

its associated lattice of intuitionistic degrees. Let 〈B,A, r〉 be
an IF-formal context. Then 〈�1,�2〉 and 〈�2,�1〉 form Ga-
lois connections between powersets 〈LIF

B ,⊆〉 and 〈LIF
A,⊆〉.

Proof: Let 〈f, g〉 ∈ LIF
B × LIF

A be an arbitrary pair
of LIF-sets of objects and attributes. Assume g ⊆ �1f , this

means

g(a) ≤ �1f(a) =
∧
b∈B

(f(b) ⇒1 r(b, a)) ≤ f(o) ⇒1 r(o, a)

for all (o, a) ∈ B ×A. This is equivalent to the inequality
f(o) ≤ g(a) ⇒2 r(o, a) and, since a ∈ A is arbitrary, we
obtain f(o) ≤ �2 g(o) and, since o ∈ B is also arbitrary, we
have f ⊆ �2 g.

The rest of implications are similar.
The previous result allows to (in general) different construc-

tions of an IF-concept lattice associated with an IF-formal
context 〈B,A, r〉. Alternatively, one can think of existing two
different sets of IF-L-fuzzy attributes associated to each IF-
L-fuzzy set of objects, and this leads to the introduction
of the IF-L-fuzzy formal t-concept as a triplet of LIF-sets
〈f, g, h〉 ∈ LB

IF × LA
IF × LA

IF where �1 f = g, �2 g = f ,
�2 f = h, �1h = f .

Example 5: Consider the following example of LIF-context
related to the ice-cream preferences of two girls.

chocolate vanilla stracciatella
Ester 〈1, 0〉 〈0, 1〉 〈0.5, 0〉
Lydia 〈1, 0〉 〈0.5, 0.5〉 〈0, 0〉

Almost all values from LIF are used in the previous
context. After aplying 〈�1,�2〉 concept forming operators the
following concepts are obtained
• {Ester/〈0.5, 0.5〉,Lydia/〈1, 0〉} and
{choco./〈1, 0〉, vanilla/〈0.5, 0.5〉, strac./〈0, 0〉}

After aplying 〈�2,�1〉 concept forming operators the follow-
ing concepts are obtained
• {Ester/〈0.5, 0.5〉,Lydia/〈1, 0〉} and
{choco./〈1, 0〉, vanilla/〈0.5, 0.5〉, strac./〈0, 1〉}

Hence the triple
1) {Ester/〈0.5, 0.5〉,Lydia/〈1, 0〉}
2) {choco./〈1, 0〉, vanilla/〈0.5, 0.5〉, strac./〈0, 0〉}



3) {choco./〈1, 0〉, vanilla/〈0.5, 0.5〉, strac./〈0, 1〉}
forms an IF L-formal t-concept.

V. CONCLUSION

We have introduced a (purely L-)fuzzy intuitionistic gener-
alization of the framework of Formal Concept Analysis. Based
on the notion of intuitionistic L-fuzzy set, given a complete
residuated lattice L, we have worked with its associated lattice
of intuitionistic degrees LIF (the set of intuitionistic pairs
of elements together with the suitable version of the Pareto
ordering) in order to construct three binary operators on LIF

which generate an adjoint triple. The structure of adjoint triple
on LIF allows to generate to different Galois connections (the
concept-forming operators) and, then, introduce the so-called
IF-L-fuzzy formal t-concepts.

Having introduced the notion, a number of different direc-
tions have to be explored:

1) What is the scope of the new generalization?; does it
collapse to some of the existing approaches when the
underlying structure changes?

2) Although the usual frontier conditions of �, ⇒1, and
⇒2 are not required to form an adjoint triple, most of
them are satisfied and, in those which do not hold, the
result actually eliminates the degree of indetermination
of the other input argument. This suggests the need
to further analyse the underlying meaning of those
connectives and relate them to (possibly) existing ones
within the fuzzy intuitionistic framework.

3) Some approaches to intuitionistic formal concept anal-
ysis have been already introduced in the bibliography,
and often using different terms: for instance, in [21] the
construction of the concept-forming operators is given as
the fuzzy dilation and fuzzy erosion operators of bipolar
fuzzy mathematical morphology (on the unit interval).
Is there any natural interpretation of the notions intro-
duced in this paper within the area of mathematical
morphology?
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