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Abstract—A two-fold general approach to the theory of formal
concept analysis is introduced by considering intuitionistic fuzzy
sets valued on a residuated lattice as underlying structure for
the construction.

I. INTRODUCTION

Formal Concept Analysis (FCA) arose in the eighties of last
century from the pioneering work of Rudolph Wille, developed
together with the collaboration of Bernhard Ganter [1]. Since
then, FCA has proved to be a very fruitful research line both
from the theoretical and from the practical standpoint. Several
extensions to the fuzzy case have been proposed, the first at-
tempt by Burusco and Fuentes-González [2] using a complete
lattice, and later by Bělohlávek using a complete residuated
lattice [3]. A number of other extensions have been introduced
so far, for instance, the (one-sided) generalized FCA [4], multi-
adjoint FCA [5]–[7], heterogeneous and higher-order FCA [8],
[9], etc.

We focus on the extension of FCA to the so-called intuition-
istic fuzzy sets (IF-sets for short). IF-sets were introduced by
Atanassov [10] by considering for all element x a membership
degree µ(x) together with a non-membership degree ν(x) such
that µ(x) + ν(x) ≤ 1, somehow allowing an indetermination
degree about x in the case of strict inequality. This construction
was later generalized when allowing a complete residuated
lattice instead of the unit interval as underlying set of truth-
values [11], [12].

Some approaches to intuitionistic formal concept analysis
have been already introduced in the bibliography, and often
using different terms: for instance, in [13] the construction of
the concept-forming operators is given as the fuzzy dilation
and fuzzy erosion operators of bipolar fuzzy mathematical
morphology (on the unit interval).

Other authors have introduced intuitionistic extensions of
FCA [14], [15] focusing just on the one-sided approach given
by Krajči, or [16] which focuses on an interval-valued intu-
itionistic fuzzy rough approach. All three previous approaches
are based on the unit interval.

We introduce, for the first time as far as we know, a
definition of concept-forming operators purely based on in-
tuitionistic fuzzy sets valued on a complete residuated lattice.
Two different constructions are given, the first one gives a

pair of operators which form a (antitone) Galois connection,
whereas the second one gives an isotone Galois connection.
Both constructions are based on the assumption that the
residuated negation is involutive.

II. PRELIMINARY DEFINITIONS AND RESULTS

As stated above, we will be primary dealing with truth-
values not necessarily belonging to the unit interval, but to a
complete residuated lattice (see [17] for further details).

Definition 1: An algebra L = 〈L,∧,∨,⊗,→, 0, 1〉 is said
to be a complete residuated lattice if

1) 〈L,∧,∨, 0, 1〉 is a complete lattice with least element 0
and greatest element 1,

2) 〈L,⊗, 1〉 is a commutative monoid,
3) 〈⊗,→〉 is an adjoint pair, i.e. a ⊗ b ≤ c if and only if

a ≤ b → c, for all a, b, c ∈ L, where ≤ is the ordering
generated by ∧ and ∨.

Remark 1: By commutativity of fuzzy conjunction ⊗, the
following equivalence holds for any a, b, c ∈ L

a ≤ b→ c ⇐⇒ b ≤ a→ c .

Example 1: We will consider in our examples a three-
element set {1, 0.5, 0} together with the Łukasiewicz logic
operations

• k ⊗m = max{a+ b− 1, 0}
• k → m = min{1− a+ b, 1}

We now recall the basics of fuzzy formal concept analysis
(see [18, chapter 5] for more details).

Definition 2: A triple 〈B,A, r〉 where r ∈ LB×A is said to
be an L-fuzzy formal context. B is the set of objects, A the
set of attributes and r the incidence relation.

Definition 3: Given an L-fuzzy formal context 〈B,A, r〉,
two pairs of concept-forming operators 〈↑, ↓〉 and 〈↗,↙〉



can be defined between the L-fuzzy powersets 〈LB ,⊆〉 and
〈LA,⊆〉. Let f ∈ LB and g ∈ LA be two arbitrary L-sets.

↑f(a) =
∧
b∈B

(
f(b)→ r(b, a)

)
↓g(b) =

∧
a∈A

(
g(a)→ r(b, a)

)
↗f(a) =

∨
b∈B

f(b)⊗ r(b, a)

↙g(b) =
∧
a∈A

(
r(b, a)→ g(a)

)
Lemma 1: Let L be a complete residuated lattice with

adjoint pair 〈⊗,→〉. Let 〈B,A, r〉 be an L-fuzzy formal
context. Then the pair of mappings 〈↑, ↓〉 forms a Galois
connection and the pair 〈↗,↙〉 forms an isotone Galois
connection (adjunction) between 〈LB ,⊆〉 and 〈LA,⊆〉, i.e.
for all L-fuzzy sets f ∈ LB and g ∈ LA it holds that

1) f ⊆↓g ⇔ g ⊆↑f
2) ↗f ⊆ g ⇔ f ⊆↙g .
Definition 4: An L-fuzzy concept of an L-context C =
〈B,A, r〉 is a pair 〈f, g〉 ∈ LB × LA such that ↑f = g and
↓g = f . The first component f is said to be the extent of the
concept, whereas the second component g is the intent of the
concept. The set of all L-fuzzy concepts associated to a fuzzy
context 〈B,A, r〉 will be denoted as L-FCL(B,A, r).

Example 2: Consider the following example of L-context
related to the ice-cream preferences of two girls.

chocolate vanilla stracciatella
Ester 1 0 0.5
Lydia 1 0.5 0

Here are some of obtained concepts after applying the
derivation operators 〈↑, ↓〉.
• {1/Ester; 0.5/Lydia}; {1/choc.; 0/vanilla; 0.5/strac.}
• {0.5/Ester; 1/Lydia}; {1/choc.; 0.5/vanilla; 0/strac.}
• {1/Ester; 1/Lydia}; {1/choc.; 0/vanilla; 0/strac.}
• {0.5/Ester; 0.5/Lydia}; {1/choc.; 0.5/vanilla; 0.5/strac.}
• {0/Ester; 0/Lydia}; {1/choc.; 1/vanilla; 1/strac.}

The results can be interpreted in terms of the satisfaction
of customers of patisserie. Ester and Lydia are both fully
satisfied only with full dose of chocolate ice-cream. If they
would obtain lower dose of vanilla ice cream over full dose
of chocolate ice cream then Lydia was still fully satisfied but
good mood of Ester went little down. Similarly with Lydia
and stracciatella ice cream.

Definition 5: Let L be a complete residuated lattice. The
residuated negation ¬ and residuated disjunction ⊕ on L are
defined as follows:
• ¬k = k → 0
• k ⊕m = ¬k → m

for any k,m ∈ L.
Lemma 2: If a residuated lattice L satisfies the law of double

negation, i.e. ¬¬k = k for any k ∈ L then it also satisfies the
following conditions:

1) l→ k = ¬(k ⊗ ¬l)

2) ¬(
∧

i∈I li) =
∨

i∈I ¬li
3) l→ k = ¬k → ¬l
Remark 2: Note that if the negation ¬ satisfies the double

negation law on L then ⊕ is a commutative operation, and
we can use it as the disjunction operation on L. Specifically,
Łukasiewicz implication satisfies the double negation law.

III. INTUITIONISTIC FUZZY SETS BASED ON COMPLETE
RESIDUATED LATTICES

Let us recall the notion of intuitionistic fuzzy set defined
on a complete lattice, as introduced in [11].

Definition 6: Given a complete lattice L together with an
involutive order reversing operation N : L→ L, and a universe
set E: An intuitionistic L-fuzzy set (IF set) A in E is defined
as an object having the form:

A =
{
〈x, µA(x), νA(x) | x ∈ E

}
where the functions µA : E → L and νA : E → L define
the degree of membership and the degree of non-membership,
respectively, to A of the elements x ∈ E, and for every x ∈ E:

µA(x) ≤ N(νA(x)) .

When the previous inequality is strict, there is certain indeter-
mination degree on the knowledge about x.

The IF-lattice associated to a given residuated lattice L is
defined as follows:

Definition 7: Given L =
〈
L, 0, 1,⊗,→,∧,∨

〉
a complete

residuated lattice, we can consider the lattice of intuitionistic
truth values

LIF =
〈
{〈k1, k2〉 ∈ L× L | k2 ≤ ¬k1},≤

〉
where ordering ≤ on LIF is defined as follows 〈k1, k2〉 ≤
〈m1,m2〉 when k1 ≤ m1 and k2 ≥ m2.

Note that LIF is just the construction of the Pareto order-
ing [19] taking L as the underlying set of truth-values instead
of the unit interval.

Remark 3: Note that the elements of LIF will represent
the membership (and non-membership) degrees and, hence,
will be denoted in terms of µ and ν whenever necessary, for
instance in the statement and proof of Theorem 1.

Example 3: Considering L = 〈{1, 0.5, 0},⊗,→〉 we have
LIF = 〈{〈1, 0〉, 〈0.5, 0〉, 〈0.5, 0.5〉, 〈0, 0〉, 〈0, 0.5〉, 〈0, 1〉},≤〉.
All the pairs 〈p1, p2〉 satisfy p2 ≤ ¬p1, where ¬p1 = p1 → 0
and, in particular, ¬0.5 = 0.5. A possible interpretation of
such a new richer set of truth-values could be as follows:

• 〈1, 0〉 absolutely YES, sure, satisfied, full dose, . . .
• 〈0.5, 0〉 more yes than no, not completely sure, . . .
• 〈0.5, 0.5〉 user in general agree but has some doubts, . . .
• 〈0, 0〉 not interested, but not disagree, . . .
• 〈0, 0.5〉 more no than yes, . . .
• 〈0, 1〉 absolutely NO, . . .

Definition 8: Let L be a complete residuated lattice and
consider its associated lattice of truth degrees of intuitionistic



⇒ 〈1, 0〉 〈0.5, 0〉 〈0.5, 0.5〉 〈0, 0〉 〈0, 0.5〉 〈0, 1〉
〈1, 0〉 〈1, 0〉 〈0.5, 0〉 〈0.5, 0.5〉 〈0, 0〉 〈0, 0.5〉 〈0, 1〉
〈0.5, 0〉 〈1, 0〉 〈0.5, 0〉 〈0.5, 0〉 〈0, 0〉 〈0, 0〉 〈0, 0.5〉
〈0.5, 0.5〉 〈1, 0〉 〈1, 0〉 〈1, 0〉 〈0.5, 0〉 〈0.5, 0〉 〈0.5, 0.5〉
〈0, 0〉 〈1, 0〉 〈0.5, 0〉 〈0.5, 0〉 〈0, 0〉 〈0, 0〉 〈0, 0〉
〈0, 0.5〉 〈1, 0〉 〈1, 0〉 〈1, 0〉 〈0.5, 0〉 〈0.5, 0〉 〈0.5, 0〉
〈0, 1〉 〈1, 0〉 〈1, 0〉 〈1, 0〉 〈1, 0〉 〈1, 0〉 〈1, 0〉

Fig. 1. Truth-table of ⇒ for the examples.

fuzzy sets LIF. We define the operator ⇒: LIF ×LIF → LIF

as follows

〈p1, p2〉⇒ 〈q1, q2〉 = 〈p2 ⊕ q1, p1 ⊗ q2〉

Lemma 3: ⇒ is well-defined.
Proof: We have to check that p1⊗q2 ≤ ¬(p2⊕q1). Since

〈p1, p2〉, 〈q1, q2〉 ∈ LIF we have that p1 ≤ ¬p2 and q1 ≤ ¬q2,
thus we can write

p1 ⊗ q2 ≤ ¬p2 ⊗ ¬q1 = ¬¬(¬p2 ⊗ ¬q1)
= ¬(¬p2 → q1) = ¬(p2 ⊕ q1)

The definition of ⇒ is inspired by two equivalences well
known in classical logic
• (A⇒ B)⇔ (¬A ∨B)
• ¬(A⇒ B)⇔ (A ∧ ¬B)

where instead of negation of some membership degree is used
false part of the degree. The second component is inspired by
the negation of classical implication.

The truth-table of ⇒ on our running example is given in
Figure 1.

The following remarks are in order now:
1) 〈1, 0〉⇒ 〈p1, p2〉 = 〈p1, p2〉 to any 〈p1, p2〉 ∈ LIF

2) 〈p1, p2〉⇒ 〈0, 1〉 = 〈p2, p1〉 = ¬〈p1, p2〉
3) if 〈p1, p2〉 ≤ 〈q1, q2〉 then 〈p1, p2〉⇒ 〈q1, q2〉 = 〈r1, r2〉

where r1 ≥ r2.
4)
∧

i∈I(〈k1i, k2i〉⇒ 〈m1i,m2i〉) =

=
∧
i∈I

〈k2i ⊕m1i, k1i ⊗m2i〉

=

〈∧
i∈I

(k2i ⊕m1i),
∨
i∈I

(k1i ⊗m2i)

〉

IV. IF-FCA WITH ANTITONE CONCEPT FORMING
OPERATORS

To begin with, the notion of IF-formal context is given.
Definition 9: Let L be a complete residuated lattice and

LIF be its associated lattice of intuitionistic degrees. A triple
〈B,A, r〉 where r : B × A → LIF is said to be an IF-formal
context.

We are now in position to define the first pair of concept
forming operators associated to an IF-formal context.

Definition 10: Given an IF-formal context 〈B,A, r〉 be the,
we define a pair of mappings 〈�,�〉 between the intuitionistic
LIF-fuzzy powersets 〈LIF

B ,⊆〉 and 〈LIF
A,⊆〉 as follows

• �f(a) =
∧

b∈B(f(b)⇒ r(b, a)), for any f ∈ LIF
B

• �g(b) =
∧

a∈A(g(a)⇒ r(b, a)), for any g ∈ LIF
A.

The pair of mappings 〈�,�〉 are the concept forming opera-
tors for the IF-formal context 〈B,A, r〉.

Following the construction in the non-intuitionistic case, one
would expect that the two previous operators form a Galois
connection. This is not the case in general; however, assuming
the extra assumption that the incidence relation r should assign
values (p, q) for which q = ¬p. The formal statement is given
and proved below (where we make use of µ and ν following
the notational convention of Remark 3).

Theorem 1: Let L be a complete residuated lattice and LIF

its associated lattice of intuitionistic degrees. Let 〈B,A, r〉
be an IF-formal context where ν

(
r(b, a)

)
= ¬µ(r(b, a)) for

any (b, a) ∈ B × A. Then 〈�,�〉 forms a Galois connection
between powersets 〈LB

IF,⊆〉 and 〈LA
IF,⊆〉.

Proof: We have to prove the following equivalence

f ⊆�g ⇔ g ⊆�f

for arbitrary intuitionistic fuzzy sets f ∈ LB
IF and g ∈ LA

IF.
Firstly, assume f ⊆�g. This means that, for any b ∈ B, it

holds
f(b) ≤�g(b) =

∧
a∈A

(
g(a)⇒ r(b, a)

)
By the previous definitions, this means that the two following
inequalities hold:

µ
(
f(b)

)
≤
∧
a∈A

(
ν
(
g(a)

)
⊕ µ

(
r(b, a)

))
(1)

ν
(
f(b)

)
≥
∨
a∈A

(
µ
(
g(a)

)
⊗ ν
(
r(b, a)

))
(2)

In the rest of the proof we will obtain an equivalent
expression of the previous inequalities which will turn out
to prove the intended inclusion, namely, g ⊆�f . The details
are the following:

(1) Unfolding the definition of the operator ⊕ we obtain

µ
(
f(b)

)
≤
∧
a∈A

(¬ν
(
g(a)

)
→ µ

(
r(b, a)

))
for all b ∈ B which, by Remark 1, is equivalent to

¬ν(g(a)) ≤
∧
b∈B

(µ
(
f(b)

)
→ µ(r(b, a)))



for all a ∈ A. Hence

¬ν
(
g(a)

)
≤
∧
b∈B

(
µ
(
f(b)

)
→ µ

(
r(b, a)

))
=
∧
b∈B

(
µ
(
f(b)

)
→ ¬ν

(
r(b, a)

))
=
∧
b∈B

(
µ
(
f(b)

)
→
(
ν(r(b, a))→ 0)

))
=
∧
b∈B

((
µ
(
f(b)

)
⊗ ν
(
r(b, a)

)
→ 0

))
=
( ∨

b∈B

(
µ
(
f(b)

)
⊗ ν
(
r(b, a)

)
→ 0

))
= ¬

∨
b∈B

µ
(
f(b)

)
⊗ ν
(
r(b, a)

)
From the antitonicity of negation we finally obtain

ν(g(a)) ≥
∨
b∈B

µ
(
f(b)

)
⊗ ν
(
r(b, a)

)
(2) By Remark 1, this inequality is equivalent to

µ
(
g(a)

)
≤
∧
b∈B

(
ν
(
r(b, a)

)
→ ν

(
f(b)

))
for all a ∈ A.

Therefore, we have

µ
(
g(a)

)
≤
∧
b∈B

(
ν
(
r(b, a)

)
→ ν(f(b))

)
=
∧
b∈B

(
¬ν
(
f(b)

)
→ ¬ν

(
r(b, a)

))
=
∧
b∈B

(
¬ν
(
f(b)

)
→ µ

(
r(b, a)

))
=
∧
b∈B

(
ν
(
f(b)

)
⊕ µ

(
r(b, a)

))
As a result, we obtain that

g(a) ≤
∧
b∈B

(
f(b)⇒ r(b, a)

)
holds for all a ∈ A, i.e. g ⊆�f holds.

As all the steps in the previous chains are reversible, the
converse implication is already proven.

We show below that the equality µ = ¬ν cannot be dropped
from the statement of the previous theorem.

Example 4: Consider the following IF-formal context〈
{b}, {a}, {〈0, 0〉/(b, a)}

〉
for which, obviously, we have that µ(〈0, 0〉) 6= ¬ν(〈0, 0〉).

Consider the following equality

��
(
{〈1, 0〉/b}

)
(b) =

(
〈1, 0〉⇒ 〈0, 0〉

)
⇒ 〈0, 0〉

= 〈0, 0〉⇒ 〈0, 0〉 = 〈0, 0〉

As a result, the composition �� (and also ��) is not a
closure operator since it is not extensive. Hence the pair
of mappings 〈�,�〉 cannot be a Galois connection between
complete lattices of intuitionistic fuzzy powersets of the set of
objects and attributes of the input formal context.

The mere consideration of the intuitionistic lattice LIF

instead of L, provides more expressiveness to the obtained
concept lattice.

Example 5: By considering an LIF-based formal con-
text in our previous example, replacing values 1, 0.5, 0 by
〈1, 0〉, 〈0.5, 0.5〉, 〈0, 1〉 one can notice that the behaviour of
such intuitionistic values are the same as the original values
with respect to implication → in L, as can be seen using the
table of ⇒ (see Fig. 1). But, after applying the new concept
forming operators some new LIF-concepts are obtained. 〈0, 0〉
can be interpreted on the standpoint of customers as to be not
interested, whereas from the ice cream standpoint should be
read more likely as “I don’t know how much I’ll obtain”.
• The pair with extent {Ester/〈0, 0〉; Lydia/〈0, 0〉}, and

intent {choco./〈1, 0〉, vanilla/〈0, 0〉, strac./〈0, 0〉} should
be interpreted as Ester and Lydia would not be interested
in any ice cream portion where is no certainty of how
much unpopular ice cream they will obtain.

V. IF-FCA WITH ISOTONE CONCEPT FORMING OPERATORS

We now focus our attention to a suitable definition of
concepts based on the isotone concept forming operators.

Definition 11: Let L be a complete residuated lattice
and consider its associated lattice of intuitionistic truth de-
grees LIF. The operator � : LIF × LIF → LIF is defined as
follows

〈p1, p2〉� 〈q1, q2〉 =
〈
p1 ⊗ ¬q2, (¬p1 ⊕ q2) ∧ (p2 ⊕ ¬q1)

〉
.

Lemma 4: � is well-defined.
Proof: We have to check that

(¬p1 ⊕ q2) ∧ (p2 ⊕ ¬q1) ≤ ¬(p1 ⊗ ¬q2)

This follows easily from the facts that

¬p1 ⊕ q2 = p1 → q2 = ¬(p1 ⊗ ¬q2)

Remark 4: It is worth to note that, in fact, � : L×L → LIF

since the proof does not use that the arguments were in LIF

as in the case of ⇒.
Lemma 5: Let L be a complete residuated lattice and con-

sider its associated lattice of intuitionistic truth degrees LIF.
The pair of operations 〈�,⇒〉 forms an adjoint pair on LIF,
i.e. for any three values 〈p1, p2〉, 〈q1, q2〉, 〈r1, r2〉 ∈ LIF it
holds that

〈p1, p2〉� 〈q1, q2〉 ≤ 〈r1, r2〉

if and only if

〈p1, p2〉 ≤ 〈q1, q2〉⇒ 〈r1, r2〉.

Proof: Assume 〈p1, p2〉 � 〈q1, q2〉 ≤ 〈r1, r2〉. Unfolding
the definition of � and the order between intuitionistic truth-
values we obtain two inequalities:

1) p1 ⊗ ¬q2 ≤ r1.
Equivalently, we have p1 ≤ ¬q2 → r1 = q2 ⊕ r1.



� 〈1, 0〉 〈0.5, 0〉 〈0.5, 0.5〉 〈0, 0〉 〈0, 0.5〉 〈0, 1〉
〈1, 0〉 〈1, 0〉 〈1, 0〉 〈0.5, 0〉 〈1, 0〉 〈0.5, 0.5〉 〈0, 1〉
〈0.5, 0〉 〈0.5, 0〉 〈0.5, 0.5〉 〈0, 0.5〉 〈0.5, 0.5〉 〈0, 1〉 〈0, 1〉
〈0.5, 0.5〉 〈0.5, 0.5〉 〈0.5, 0.5〉 〈0, 1〉 〈0.5, 0.5〉 〈0, 1〉 〈0, 1〉
〈0, 0〉 〈0, 0〉 〈0, 0.5〉 〈0, 0.5〉 〈0, 1〉 〈0, 1〉 〈0, 1〉
〈0, 0.5〉 〈0, 0.5〉 〈0, 1〉 〈0, 1〉 〈0, 1〉 〈0, 1〉 〈0, 1〉
〈0, 1〉 〈0, 1〉 〈0, 1〉 〈0, 1〉 〈0, 1〉 〈0, 1〉 〈0, 1〉

Fig. 2. Truth-table of � for the examples.

2) r2 ≤ (¬p1 ⊕ q2) ∧ (p2 ⊕ ¬q1) ≤

≤ p2 ⊕ ¬q1
= ¬p2 → ¬q1 = q1 → p2

which is equivalent to q1 ⊗ r2 ≤ p2.
Hence 〈p1, p2〉 ≤ 〈q2 ⊕ r1, q1 ⊗ r2〉 = 〈q1, q2〉⇒ 〈r1, r2〉.

Conversely, assuming 〈p1, p2〉 ≤ 〈q1, q2〉 ⇒ 〈r1, r2〉 we
have:

1′) p1 ≤ q2⊕r1 which, by reversing the previous steps lead
to p1 ⊗ ¬q2 ≤ r1.

2′) q1⊗r2 ≤ p2 which, by reversing the previous steps lead
to r2 ≤ p2 ⊕ ¬q1.

To finish with, we have just to show that r2 ≤ ¬p1⊕ q2 holds
as well or, equivalently, p1 ⊗ r2 ≤ q2. We have

p1 ⊗ r2
(?)

≤ p1 ⊗ ¬r1
(∗)
≤ q2

where (?) follows from 〈r1, r2〉 ∈ LIF, i.e. r2 ≤ ¬r1, and (∗)
follows from p1 ⊗ ¬r1 ≤ q2, which is a consequence of 1′)
above.

Definition 12: Let L be a complete residuated lattice
and consider its associated lattice of intuitionistic truth de-
grees LIF. Let 〈B,A, r〉 be an IF-formal context and define
a pair of mappings 〈#,"〉 between intuitionistic LIF-fuzzy
powersets 〈LIF

B ,⊆〉 and 〈LIF
A,⊆〉 as follows:

• #f(a) =
∨

b∈B

(
r(b, a)� f(b)

)
, for any f ∈ LIF

B

• "g(b) =
∧

a∈A

(
r(b, a)⇒ g(a)

)
, for any g ∈ LIF

A.
Theorem 2: The pair 〈#,"〉 forms an isotone Galois

connection between complete lattices of powersets 〈LIF
B ,⊆〉

and 〈LIF
A,⊆〉.

Proof: Follows directly from Lemma 5.
It is remarkable that, contrary to Theorem 1, no precondition

ν
(
r(b, a)

)
= ¬µ(r(b, a)) for all (b, a) ∈ B ×A.

The fact that � is, in general, noncommutative suggest the
existence of two residuals depending on which argument is
fixed. We introduce this second construction as follows.

Definition 13: Let L be a complete residuated lattice
and consider its associated lattice of intuitionistic truth de-
grees LIF, and consider the following implication

〈p1, p2〉⇒2 〈q1, q2〉 = 〈(¬p1 ⊕ q1) ∧ (p2 ⊕ ¬q2), p1 ⊗ ¬q1〉

defined for all 〈p1, p2〉, 〈q1, q2〉 ∈ LIF.
It is not difficult to check that the output of ⇒2 is in LIF.

Lemma 6: ⇒2 is well-defined.
Proof: We have to check that

p1 ⊗ ¬q1 ≤ ¬
[
(¬p1 ⊕ q1) ∧ (p2 ⊕ ¬q2)]

but this is straightforward since

¬
[
(¬p1 ⊕ q1) ∧ (p2 ⊕ ¬q2)] = ¬(¬p1 ⊕ q1) ∨ ¬(p2 ⊕ ¬q2)

= (p1 ⊗ ¬q1) ∨ ¬(p2 ⊕ ¬q2) .

Theorem 3: 〈�,⇒2〉 is an adjoint pair.
Proof: We have just to check that

〈p1, p2〉� 〈q1, q2〉 ≤ 〈r1, r2〉

if and only if

〈q1, q2〉 ≤ 〈p1, p2〉⇒2 〈r1, r2〉.

Hence, assume 〈p1, p2〉 �1 〈q1, q2〉 ≤ 〈r1, r2〉. This means
that the two following inequalities hold:
• p1 ⊗ ¬q2 ≤ r1. This is equivalent to

¬q2 ≤ p1 → r1 (3)
q2 ≥ ¬(p1 → r1) = p1 ⊗ ¬r1 (4)

• r2 ≤ (¬p1 ⊕ q2) ∧ (p2 ⊕ ¬q1). In particular, we have

r2 ≤ p2 ⊕ ¬q1 = ¬p2 → ¬q1 ⇐⇒ ¬p2 ⊗ r2 ≤ ¬q1
⇐⇒ q1 ≤ p2 ⊕ ¬r2

Now, from (3), and q1 ≤ ¬q2 we obtain q1 ≤ ¬p1 ⊕ r1
which, together with the previous result leads to

q1 ≤ (¬p1 ⊕ r1) ∧ (p2 ⊕ ¬r2) (5)

From (4) and (5) we get 〈q1, q2〉 ≤ 〈p1, p2〉⇒2 〈r1, r2〉.
The proof of the converse implication is essentially the same

as above.

VI. CONCLUSION

We have introduced two possible constructions of the
concept-forming operators with intuitionistic L-fuzzy sets. In
order to get a Galois connection in the antitone case, the IF-
formal context has to provide values without indetermination,
i.e. µ(x) = ¬(µ(x)), which are essentially equivalent to
(usual) L-fuzzy sets. As a result, not much is gained in this
first approach except the following question: is it possible to
relax this restriction or, equivalently, isolate the causes which
enable us to build counterexamples?



The second construction is much more interesting, in that it
is based on a non-commutative operator � which, on a purely
IF-framework, leads to two different residuals. As future work,
it will be convenient to develop a thorough study of the full
structure provided by the given constructions (in the sense of
further properties of �, ⇒ and ⇒2).
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