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Abstract. We continue our prospective study of the generalization of
formal concept analysis in terms of intuitionistic L-fuzzy sets. The main
contribution here is an adjoint pair in the set LILF of intuitionistic L-
fuzzy values associated to a complete residuated lattice L, which allows
the definition of a pair of derivation operators which form an antitone
Galois connection.
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1 Introduction

In this work, we continue our study of the extension of Formal Concept Anal-
ysis (FCA) to the so-called intuitionistic fuzzy sets (IF-sets), introduced in [1]
by considering for all element x a membership degree µ(x) together with a
non-membership degree ν(x) such that µ(x) + ν(x) ≤ 1, somehow allowing an
indetermination degree about x in the case of strict inequality. This construction
was later generalized when allowing a complete residuated lattice instead of the
unit interval as underlying set of truth-values [2, 5]. Although some authors have
already introduced intuitionistic extensions of FCA (for instance [10, 12] or [11]),
all of them are based on the unit interval.

In [7], we introduced for the first time a definition of concept-forming op-
erators purely based on intuitionistic L-fuzzy (ILF) sets valued on a complete
residuated lattice. In order to get a Galois connection in the antitone case, the
ILF-formal context had to provide values without indetermination, i.e. µ(x) =
¬(µ(x)), which are essentially equivalent to (usual) L-fuzzy sets. Then in [8] an
alternative approach was presented, in terms of isotone Galois connection and
an adjoint triple.

In this paper, we construct an adjoint pair in order to generate (by stan-
dard means) a Galois connection in the set of intuitionistic L-fuzzy sets which,
contrariwise to [7], need not be indetermination-free.
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2 Preliminary definitions

As stated above, we will be primary dealing with truth-values not necessarily
belonging to the unit interval, but to a complete residuated lattice (see [6] for
further details).

Definition 1. An algebra L =
〈
L,∧,∨, 0, 1,⊗,→

〉
is said to be a complete

residuated lattice if

1.
〈
L,∧,∨, 0, 1

〉
is a complete lattice where 0 and 1 are the bottom and top

elements (resp.).
2.
〈
L,⊗, 1

〉
is a commutative monoid.

3. 〈⊗,→〉 is an adjoint pair, i.e. k ⊗m ≤ n if and only if k ≤ m → n, for all
k,m, n ∈ L, where ≤ is the ordering generated by ∧ and ∨.

Let us recall the notion of intuitionistic fuzzy set defined on a complete
lattice, as introduced in [2].

Definition 2. Given a complete lattice L together with an involutive order re-
versing operation N : L→ L, and a universe set E: An intuitionistic L-fuzzy set
(ILF set) A in E is defined as an object having the form:

A =
{
〈µA(x), νA(x)〉/x | x ∈ E

}
where the functions µA : E → L and νA : E → L define the degree of membership
and the degree of non-membership, respectively, to A of the elements x ∈ E, and
for every x ∈ E:

µA(x) ≤ N(νA(x)) .

When the previous inequality is strict, there is a certain indetermination degree
on the knowledge about x.

Note that, when the underlying lattice is residuated, we already have a nega-
tion operator defined by ¬x = x→ 0. As a result, we can define the ILF-lattice
associated with a given residuated lattice L as follows:

Definition 3. Given a complete residuated lattice L =
〈
L,∧,∨, 0, 1,⊗,→

〉
, we

can consider the lattice of intuitionistic truth values

LILF =
〈
{〈k1, k2〉 ∈ L× L | k2 ≤ ¬k1},≤

〉
where ordering ≤ on LILF is defined as follows 〈k1, k2〉 ≤ 〈m1,m2〉 when k1 ≤ m1

and k2 ≥ m2.

Note that LILF is just the construction of the Pareto ordering, as used in [4],
considering L as the underlying set of truth-values instead of the unit interval.
Consider also the following notation for any element of LILF as follows a =
〈a1, a2〉.



Lemma 1. 〈LILF,≤〉 forms a complete lattice in which the meet and join are
defined by ∧

i∈I

ai =
〈∧

i∈I

ai1;
∨
i∈I

ai2

〉 ∨
i∈I

ai =
〈∨

i∈I

ai1;
∧
i∈I

ai2

〉
Proof. It is enough to check that the above defined meet and join actually are
elements of LILF, since the rest is straightforward.

Given {ai | i ∈ I} ⊆ LILF, recall that for any ai ∈ LILF it holds that
ai2 ≤ ¬ai1. Hence

∧
i∈I ai2 ≤

∧
i∈I ¬ai1 =

∧
i∈I(ai1 → 0) = (

∨
i∈I ai1 → 0) =

¬
∨

i∈I ai1.
On the other hand, we also have that ai1 ≤ ¬ai2 for all i ∈ I. Hence∧

i∈I ai1 ≤
∧

i∈I ¬ai2 = ¬
∨

i∈I ai2, which is equivalent to
∨

i∈I ai2 ≤ ¬
∧

i∈I ai1.
ut

The definition of the conjunctor in LILF (to be introduced in the next section)
will make use of the following operator:

Definition 4. The operator ⊕ : L× L→ L is defined by

a⊕ b = ¬a→ b = (a→ 0)→ b.

Assuming an involutive negation, it is not difficult to check the De Morgan
laws between ⊗ and ⊕, contraposition, and associativity and commutativity
of ⊕:

Lemma 2. The following equalities hold

¬(a⊗ b) = ¬a⊕ ¬b ¬(a⊕ b) = ¬a⊗ ¬b a→ b = ¬b→ ¬a

Proof. It is straightforward checking; note that double negation is only used in
the second and third equalities.

¬(a⊗ b) = (a⊗ b)→ 0 = a→ (b→ 0)

= a→ ¬b = ¬a⊕ ¬b

¬(a⊕ b) = ¬(¬¬a⊕ ¬¬b) = ¬¬(¬a⊗ ¬b)
= ¬a⊗ ¬b

¬b→ ¬a = (b→ 0)→ (a→ 0) = ((b→ 0)⊗ a)→ 0

= (a⊗ (b→ 0))→ 0 = a→ ((b→ 0)→ 0)

= a→ ¬¬b = a→ b

ut

If we think of a→ b as ¬a⊕b, then it is easy to see that ¬(a→ b) = (a⊗¬b).

Lemma 3. Let L be a complete residuated lattice endowed with an involutive
negation (i.e. ¬¬a = a). Then ⊕ is commutative and associative.



Proof. Firstly,
From a→ b = ¬b→ ¬a we obtain commutativity of ⊕

a⊕ b = ¬a→ b = ¬b→ a = b⊕ a.

Associativity is straightforward

(a⊕ b)⊕ c = ¬(a⊕ c)→ c = (¬a⊗ ¬b)→ c

= ¬a→ (¬b→ c) = ¬a→ (b⊕ c) = a⊕ (b⊕ c)

ut

Hereafter we will assume that L satisfies the double negation law.

3 The complete residuated lattice LILF

We will define an intuitionistic conjunctor on LILF with the help of the operators
⊗ and ⊕.

Definition 5. Let LILF be the ILF-lattice associated to a residuated lattice L.
We define two binary operations on LILF by

〈a1; a2〉� 〈b1; b2〉 = 〈a1 ⊗ b1; a2 ⊕ b2〉
〈a1; a2〉⇒ 〈b1; b2〉 = 〈(a1 → b1) ∧ (¬a2 → ¬b2); (¬a2 ⊗ b2)〉

for all 〈a1, a2〉, 〈b1, b2〉 ∈ LILF.

The following lemma shows that both operations are well defined. Formally,

Lemma 4. � and ⇒ are internal binary operations in LILF.

Proof. We have just to check the condition for belonging to LILF, namely, the
non-membership degree is less or equal than the negation of the membership
degree. In the following chain of equalities we will use the De Morgan laws from
Lemma 2.

1. a2 ≤ ¬a1 and b2 ≤ ¬b1. Hence because of the monotonicity of ⊕ we have
a2 ⊕ b2 ≤ ¬a1 ⊕ ¬b1 = ¬(a1 ⊗ b1).

2. ¬(¬b2 ⊗ c2) = b2 ⊕ ¬c2 = ¬b2 → ¬c2 ≥ (¬b2 → ¬c2) ∧ (b1 → c1). Hence
¬b2 ⊗ c2 ≤ ¬((¬b2 → ¬c2) ∧ (b1 → c1)). ut

We can now state and prove the main contribution of this work.

Theorem 1. 〈LILF, 〈1, 0〉, 〈0, 1〉,�,⇒〉 is complete residuated lattice.

Proof. Firstly, LILF is a complete lattice, by Lemma 1.
〈LILF,�, 〈1, 0〉〉 forms a commutative monoid. This is straightforward, by

Lemma 3 and the definition of �.
Finally, let us know prove that 〈�,⇒〉 is an adjoint pair on LILF which, in

our case, means the following:

〈a1 ⊗ b1, a2 ⊕ b2〉 ≤ 〈c1, c2〉 ⇐⇒ 〈a1, a2〉 ≤ 〈(b1 → c1) ∧ (¬b2 → ¬c2),¬b2 ⊗ c2〉



⇒: Let us assume that 〈a1 ⊗ b1, a2 ⊕ b2〉 ≤ 〈c1, c2〉.
From the second component we have that a2 ⊕ b2 ≥ c2 but a2 ⊕ b2 = ¬b2 →
a2 ≥ c2, and that is equivalent to a2 ≥ ¬b2 ⊗ c2.
From the first component we have a1 ⊗ b1 ≤ c1, which is equivalent to
a1 ≤ b1 → c1. Moreover, using 〈a1, a2〉 ∈ LILF and the previous inequality,
we obtain a1 ≤ ¬a2 ≤ ¬(¬b2 ⊗ c2) = ¬¬b2 ⊕ ¬c2 = ¬b2 → ¬c2. Hence,
a1 ≤ (b1 → c1) ∧ (¬b2 → ¬c2).
As a result, we obtain

〈a1, a2〉 ≤ 〈(b1 → c1) ∧ (¬b2 → ¬c2),¬b2 ⊗ c2〉

⇐: Conversely, let us assume that 〈a1, a2〉 ≤ 〈(b1 → c1)∧(¬b2 → ¬c2),¬b2⊗c2〉.
From the first component we obtain a1 ≤ (b1 → c1)∧(¬b2 → ¬c2) ≤ b1 → c1,
which is equivalent to a1 ⊗ b1 ≤ c1.
From the second component we have a2 ≥ ¬b2 ⊗ c2, which is equivalent to
¬b2 → a2 = a2 ⊕ b2 ≥ c2. Hence

〈a1 ⊗ b1, a2 ⊕ b2〉 ≤ 〈c1, c2〉.

ut

4 Antitonic ILF Formal Concept Analysis

Theorem 1 is the key to build a consistent version of formal concept analysis
interpreted on LILF. To begin with, the notion of ILF-formal context is given as
follows:

Definition 6. Let L be a complete residuated lattice and LILF be its associated
lattice of ILF degrees. A triple 〈B,A, r〉, where r : B × A → LILF, is said to be
an ILF-formal context.

The definition of the concept-forming operators associated with an ILF-
formal context is introduced in the standard way in terms of ⇒.

Definition 7. Let L be a complete residuated lattice and let LILF be its associ-
ated lattice of ILF values. Given an ILF-formal context 〈B,A, r〉, we define a pair
of mappings 〈�,�〉 between the intuitionistic LILF-fuzzy powersets 〈LILF

B ,⊆〉
and 〈LILF

A,⊆〉 as follows

a) �f(a) =
∧

b∈B(f(b) ⇒ r(b, a)), for all f ∈ LILF
B

b) �g(b) =
∧

a∈A(g(a) ⇒ r(b, a)), for all g ∈ LILF
A.

The pair of mappings 〈�,�〉 are the concept forming operators for the IF-formal
context 〈B,A, r〉.

Theorem 2. Let L be a complete residuated lattice and LILF its associated lat-
tice of intuitionistic degrees. Let 〈B,A, r〉 be an IF-formal context. Then 〈�,�〉
forms a Galois connection between powersets 〈LB

ILF,⊆〉 and 〈LA
ILF,⊆〉.



Proof. Follows from Theorem 1 and the standard construction on a complete
residuated lattice (see, for instance, [3]). ut

The notion of concept in this framework follows the standard approach, and
is defined as a fixpoint of the Galois connection from Theorem 2. Similarly, the
set of concepts can be ordered by the suitable extension of the subset/superset
hierarchy.

5 Conclusions and future work

An adjoint pair has been defined on the set of ILF values associated to a complete
lattice L and, as a result, an antitone Galois connection can be induced between
the powersets of ILF sets. This result improves a previous attempt in which the
Galois connection was only obtained under the assumption that the underlying
context is indetermination-free (i.e. µ(x)+ν(x) = 1 in the standard terminology
of IF sets).

As future work, we will study the possible existence of different (families of)
adjoint pairs so that the multi-adjoint framework of [9] could also be extended
to an ILF setting.
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