An adjoint pair for intuitionistic *L*-fuzzy values

O. Krídlo and M. Ojeda-Aciego

¹ University of Pavol Jozef Šafárik, Košice, Slovakia*
² Universidad de Málaga. Departamento de Matemática Aplicada. Spain**

Abstract. We continue our prospective study of the generalization of formal concept analysis in terms of intuitionistic *L*-fuzzy sets. The main contribution here is an adjoint pair in the set \mathcal{L}_{ILF} of intuitionistic *L*-fuzzy values associated to a complete residuated lattice \mathcal{L} , which allows the definition of a pair of derivation operators which form an antitone Galois connection.

Keywords: formal concept analysis, complete residuated lattice, intuitionistic fuzzy sets

1 Introduction

In this work, we continue our study of the extension of Formal Concept Analysis (FCA) to the so-called intuitionistic fuzzy sets (IF-sets), introduced in [1] by considering for all element x a membership degree $\mu(x)$ together with a non-membership degree $\nu(x)$ such that $\mu(x) + \nu(x) \leq 1$, somehow allowing an *indetermination degree* about x in the case of strict inequality. This construction was later generalized when allowing a complete residuated lattice instead of the unit interval as underlying set of truth-values [2, 5]. Although some authors have already introduced intuitionistic extensions of FCA (for instance [10, 12] or [11]), all of them are based on the unit interval.

In [7], we introduced for the first time a definition of concept-forming operators purely based on intuitionistic *L*-fuzzy (ILF) sets valued on a complete residuated lattice. In order to get a Galois connection in the antitone case, the ILF-formal context had to provide values without indetermination, i.e. $\mu(x) = \neg(\mu(x))$, which are essentially equivalent to (usual) *L*-fuzzy sets. Then in [8] an alternative approach was presented, in terms of isotone Galois connection and an adjoint triple.

In this paper, we construct an adjoint pair in order to generate (by standard means) a Galois connection in the set of intuitionistic L-fuzzy sets which, contrariwise to [7], need not be indetermination-free.

^{*} Partially supported by the Slovak Research and Development Agency contract No. APVV-15-0091, University Science Park TECHNICOM for Innovation Applications Supported by Knowledge Technology, ITMS: 26220220182 and II. phase, ITMS2014+: 313011D232, supported by the ERDF.

^{**} Partially supported by the Spanish Science Ministry project TIN15-70266-C2-P-1, co-funded by the European Regional Development Fund (ERDF).

2 Preliminary definitions

As stated above, we will be primary dealing with truth-values not necessarily belonging to the unit interval, but to a complete residuated lattice (see [6] for further details).

Definition 1. An algebra $\mathcal{L} = \langle L, \wedge, \vee, 0, 1, \otimes, \rightarrow \rangle$ is said to be a complete residuated lattice *if*

- 1. $\langle L, \wedge, \vee, 0, 1 \rangle$ is a complete lattice where 0 and 1 are the bottom and top elements (resp.).
- 2. $\langle L, \otimes, 1 \rangle$ is a commutative monoid.
- (⊗,→) is an adjoint pair, i.e. k ⊗ m ≤ n if and only if k ≤ m → n, for all k, m, n ∈ L, where ≤ is the ordering generated by ∧ and ∨.

Let us recall the notion of intuitionistic fuzzy set defined on a complete lattice, as introduced in [2].

Definition 2. Given a complete lattice L together with an involutive order reversing operation $N: L \to L$, and a universe set E: An intuitionistic L-fuzzy set (ILF set) A in E is defined as an object having the form:

$$A = \left\{ \langle \mu_A(x), \nu_A(x) \rangle / x \mid x \in E \right\}$$

where the functions $\mu_A \colon E \to L$ and $\nu_A \colon E \to L$ define the degree of membership and the degree of non-membership, respectively, to A of the elements $x \in E$, and for every $x \in E$:

$$\mu_A(x) \le N(\nu_A(x)) \,.$$

When the previous inequality is strict, there is a certain indetermination degree on the knowledge about x.

Note that, when the underlying lattice is residuated, we already have a negation operator defined by $\neg x = x \rightarrow 0$. As a result, we can define the ILF-lattice associated with a given residuated lattice \mathcal{L} as follows:

Definition 3. Given a complete residuated lattice $\mathcal{L} = \langle L, \wedge, \vee, 0, 1, \otimes, \rightarrow \rangle$, we can consider the lattice of intuitionistic truth values

$$\mathcal{L}_{\mathrm{ILF}} = \left\langle \{ \langle k_1, k_2 \rangle \in L \times L \mid k_2 \leq \neg k_1 \}, \leq \right\rangle$$

where ordering \leq on \mathcal{L}_{ILF} is defined as follows $\langle k_1, k_2 \rangle \leq \langle m_1, m_2 \rangle$ when $k_1 \leq m_1$ and $k_2 \geq m_2$.

Note that \mathcal{L}_{ILF} is just the construction of the Pareto ordering, as used in [4], considering \mathcal{L} as the underlying set of truth-values instead of the unit interval. Consider also the following notation for any element of \mathcal{L}_{ILF} as follows $\overline{a} = \langle a_1, a_2 \rangle$.

Lemma 1. $\langle \mathcal{L}_{ILF}, \leq \rangle$ forms a complete lattice in which the meet and join are defined by

$$\bigwedge_{i \in I} \overline{a_i} = \left\langle \bigwedge_{i \in I} a_{i1}; \bigvee_{i \in I} a_{i2} \right\rangle \qquad \bigvee_{i \in I} \overline{a_i} = \left\langle \bigvee_{i \in I} a_{i1}; \bigwedge_{i \in I} a_{i2} \right\rangle$$

Proof. It is enough to check that the above defined meet and join actually are elements of \mathcal{L}_{ILF} , since the rest is straightforward.

Given $\{\overline{a_i} \mid i \in I\} \subseteq \mathcal{L}_{\text{ILF}}$, recall that for any $\overline{a_i} \in \mathcal{L}_{\text{ILF}}$ it holds that $a_{i2} \leq \neg a_{i1}$. Hence $\bigwedge_{i \in I} a_{i2} \leq \bigwedge_{i \in I} \neg a_{i1} = \bigwedge_{i \in I} (a_{i1} \to 0) = (\bigvee_{i \in I} a_{i1} \to 0) = \neg \bigvee_{i \in I} a_{i1}$.

On the other hand, we also have that $a_{i1} \leq \neg a_{i2}$ for all $i \in I$. Hence $\bigwedge_{i \in I} a_{i1} \leq \bigwedge_{i \in I} \neg a_{i2} = \neg \bigvee_{i \in I} a_{i2}$, which is equivalent to $\bigvee_{i \in I} a_{i2} \leq \neg \bigwedge_{i \in I} a_{i1}$.

The definition of the conjunctor in \mathcal{L}_{ILF} (to be introduced in the next section) will make use of the following operator:

Definition 4. The operator $\oplus : L \times L \to L$ is defined by

$$a \oplus b = \neg a \to b = (a \to 0) \to b.$$

Assuming an involutive negation, it is not difficult to check the De Morgan laws between \otimes and \oplus , contraposition, and associativity and commutativity of \oplus :

Lemma 2. The following equalities hold

$$\neg (a \otimes b) = \neg a \oplus \neg b \qquad \neg (a \oplus b) = \neg a \otimes \neg b \qquad a \to b = \neg b \to \neg a$$

Proof. It is straightforward checking; note that double negation is only used in the second and third equalities.

$$\neg(a \otimes b) = (a \otimes b) \rightarrow 0 = a \rightarrow (b \rightarrow 0)$$

= $a \rightarrow \neg b = \neg a \oplus \neg b$
$$\neg(a \oplus b) = \neg(\neg \neg a \oplus \neg \neg b) = \neg \neg(\neg a \otimes \neg b)$$

= $\neg a \otimes \neg b$
$$\neg b \rightarrow \neg a = (b \rightarrow 0) \rightarrow (a \rightarrow 0) = ((b \rightarrow 0) \otimes a) \rightarrow 0$$

= $(a \otimes (b \rightarrow 0)) \rightarrow 0 = a \rightarrow ((b \rightarrow 0) \rightarrow 0)$
= $a \rightarrow \neg \neg b = a \rightarrow b$

If we think of $a \to b$ as $\neg a \oplus b$, then it is easy to see that $\neg(a \to b) = (a \otimes \neg b)$.

Lemma 3. Let \mathcal{L} be a complete residuated lattice endowed with an involutive negation (i.e. $\neg \neg a = a$). Then \oplus is commutative and associative.

Proof. Firstly,

From $a \to b = \neg b \to \neg a$ we obtain commutativity of \oplus

$$a \oplus b = \neg a \to b = \neg b \to a = b \oplus a.$$

Associativity is straightforward

$$(a \oplus b) \oplus c = \neg (a \oplus c) \to c = (\neg a \otimes \neg b) \to c$$
$$= \neg a \to (\neg b \to c) = \neg a \to (b \oplus c) = a \oplus (b \oplus c)$$

Hereafter we will assume that \mathcal{L} satisfies the double negation law.

The complete residuated lattice \mathcal{L}_{ILF} 3

We will define an intuitionistic conjunctor on \mathcal{L}_{ILF} with the help of the operators \otimes and \oplus .

Definition 5. Let \mathcal{L}_{ILF} be the ILF-lattice associated to a residuated lattice \mathcal{L} . We define two binary operations on \mathcal{L}_{ILF} by

$$\langle a_1; a_2 \rangle \boxtimes \langle b_1; b_2 \rangle = \langle a_1 \otimes b_1; a_2 \oplus b_2 \rangle \langle a_1; a_2 \rangle \Longrightarrow \langle b_1; b_2 \rangle = \langle (a_1 \to b_1) \land (\neg a_2 \to \neg b_2); (\neg a_2 \otimes b_2) \rangle$$

for all $\langle a_1, a_2 \rangle, \langle b_1, b_2 \rangle \in \mathcal{L}_{ILF}$.

The following lemma shows that both operations are well defined. Formally,

Lemma 4. \boxtimes and \Rightarrow are internal binary operations in \mathcal{L}_{ILF} .

Proof. We have just to check the condition for belonging to \mathcal{L}_{ILF} , namely, the non-membership degree is less or equal than the negation of the membership degree. In the following chain of equalities we will use the De Morgan laws from Lemma 2.

- 1. $a_2 \leq \neg a_1$ and $b_2 \leq \neg b_1$. Hence because of the monotonicity of \oplus we have $a_2 \oplus b_2 \leq \neg a_1 \oplus \neg b_1 = \neg (a_1 \otimes b_1).$ 2. $\neg (\neg b_2 \otimes c_2) = b_2 \oplus \neg c_2 = \neg b_2 \rightarrow \neg c_2 \geq (\neg b_2 \rightarrow \neg c_2) \land (b_1 \rightarrow c_1).$ Hence $\neg b_2 \otimes c_2 \leq \neg ((\neg b_2 \rightarrow \neg c_2) \land (b_1 \rightarrow c_1)).$

We can now state and prove the main contribution of this work.

Theorem 1. $\langle \mathcal{L}_{ILF}, \langle 1, 0 \rangle, \langle 0, 1 \rangle, \boxtimes, \rightrightarrows \rangle$ is complete residuated lattice.

Proof. Firstly, \mathcal{L}_{ILF} is a complete lattice, by Lemma 1.

 $\langle \mathcal{L}_{ILF}, \boxtimes, \langle 1, 0 \rangle \rangle$ forms a commutative monoid. This is straightforward, by Lemma 3 and the definition of \boxtimes .

Finally, let us know prove that $\langle \boxtimes, \rightrightarrows \rangle$ is an adjoint pair on \mathcal{L}_{ILF} which, in our case, means the following:

$$\langle a_1 \otimes b_1, a_2 \oplus b_2 \rangle \leq \langle c_1, c_2 \rangle \Longleftrightarrow \langle a_1, a_2 \rangle \leq \langle (b_1 \to c_1) \land (\neg b_2 \to \neg c_2), \neg b_2 \otimes c_2 \rangle$$

 \Rightarrow : Let us assume that $\langle a_1 \otimes b_1, a_2 \oplus b_2 \rangle \leq \langle c_1, c_2 \rangle$. From the second component we have that $a_2 \oplus b_2 \geq c_2$ but $a_2 \oplus b_2$.

From the second component we have that $a_2 \oplus b_2 \ge c_2$ but $a_2 \oplus b_2 = \neg b_2 \rightarrow a_2 \ge c_2$, and that is equivalent to $a_2 \ge \neg b_2 \otimes c_2$.

From the first component we have $a_1 \otimes b_1 \leq c_1$, which is equivalent to $a_1 \leq b_1 \rightarrow c_1$. Moreover, using $\langle a_1, a_2 \rangle \in \mathcal{L}_{ILF}$ and the previous inequality, we obtain $a_1 \leq \neg a_2 \leq \neg(\neg b_2 \otimes c_2) = \neg \neg b_2 \oplus \neg c_2 = \neg b_2 \rightarrow \neg c_2$. Hence, $a_1 \leq (b_1 \rightarrow c_1) \land (\neg b_2 \rightarrow \neg c_2)$. As a result, we obtain

$$\langle a_1, a_2 \rangle \le \langle (b_1 \to c_1) \land (\neg b_2 \to \neg c_2), \neg b_2 \otimes c_2 \rangle$$

 $\Leftarrow: \text{ Conversely, let us assume that } \langle a_1, a_2 \rangle \leq \langle (b_1 \to c_1) \land (\neg b_2 \to \neg c_2), \neg b_2 \otimes c_2 \rangle.$ From the first component we obtain $a_1 \leq (b_1 \to c_1) \land (\neg b_2 \to \neg c_2) \leq b_1 \to c_1,$ which is equivalent to $a_1 \otimes b_1 \leq c_1.$

From the second component we have $a_2 \ge \neg b_2 \otimes c_2$, which is equivalent to $\neg b_2 \rightarrow a_2 = a_2 \oplus b_2 \ge c_2$. Hence

$$\langle a_1 \otimes b_1, a_2 \oplus b_2 \rangle \leq \langle c_1, c_2 \rangle.$$

4 Antitonic ILF Formal Concept Analysis

Theorem 1 is the key to build a consistent version of formal concept analysis interpreted on \mathcal{L}_{ILF} . To begin with, the notion of ILF-formal context is given as follows:

Definition 6. Let \mathcal{L} be a complete residuated lattice and \mathcal{L}_{ILF} be its associated lattice of ILF degrees. A triple $\langle B, A, r \rangle$, where $r: B \times A \to \mathcal{L}_{ILF}$, is said to be an ILF-formal context.

The definition of the concept-forming operators associated with an ILF-formal context is introduced in the standard way in terms of \Rightarrow .

Definition 7. Let \mathcal{L} be a complete residuated lattice and let \mathcal{L}_{ILF} be its associated lattice of ILF values. Given an ILF-formal context $\langle B, A, r \rangle$, we define a pair of mappings $\langle \uparrow\uparrow, \downarrow\downarrow \rangle$ between the intuitionistic \mathcal{L}_{ILF} -fuzzy powersets $\langle \mathcal{L}_{ILF}{}^B, \subseteq \rangle$ and $\langle \mathcal{L}_{ILF}{}^A, \subseteq \rangle$ as follows

a) $\uparrow\uparrow f(a) = \bigwedge_{b \in B} (f(b) \rightrightarrows r(b,a)), \text{ for all } f \in \mathcal{L}_{\mathrm{ILF}}^{B}$ b) $\downarrow\downarrow g(b) = \bigwedge_{a \in A} (g(a) \rightrightarrows r(b,a)), \text{ for all } g \in \mathcal{L}_{\mathrm{ILF}}^{A}.$

The pair of mappings $\langle \uparrow \uparrow, \downarrow \rangle$ are the concept forming operators for the IF-formal context $\langle B, A, r \rangle$.

Theorem 2. Let \mathcal{L} be a complete residuated lattice and \mathcal{L}_{ILF} its associated lattice of intuitionistic degrees. Let $\langle B, A, r \rangle$ be an IF-formal context. Then $\langle \uparrow \uparrow, \downarrow \rangle$ forms a Galois connection between powersets $\langle \mathcal{L}_{\text{ILF}}^B, \subseteq \rangle$ and $\langle \mathcal{L}_{\text{ILF}}^A, \subseteq \rangle$. *Proof.* Follows from Theorem 1 and the standard construction on a complete residuated lattice (see, for instance, [3]).

The notion of concept in this framework follows the standard approach, and is defined as a fixpoint of the Galois connection from Theorem 2. Similarly, the set of concepts can be ordered by the suitable extension of the subset/superset hierarchy.

5 Conclusions and future work

An adjoint pair has been defined on the set of ILF values associated to a complete lattice \mathcal{L} and, as a result, an antitone Galois connection can be induced between the powersets of ILF sets. This result improves a previous attempt in which the Galois connection was only obtained under the assumption that the underlying context is indetermination-free (i.e. $\mu(x) + \nu(x) = 1$ in the standard terminology of IF sets).

As future work, we will study the possible existence of different (families of) adjoint pairs so that the multi-adjoint framework of [9] could also be extended to an ILF setting.

References

- K. Atanassov, "Intuitionistic fuzzy sets," Fuzzy Sets and Systems, vol. 20, pp. 87– 96, 1986.
- 2. —, Intuitionistic Fuzzy Sets: Theory and Applications. Physica- Verlag, 1999.
- 3. R. Bělohlávek, "Lattice generated by binary fuzzy relations (extended abstract)," in 4th Intl Conf on Fuzzy Sets Theory and Applications, 1998, p. 11.
- C. Cornelis and E. Kerre, "Inclusion measures in intuitionistic fuzzy sets," *Lecture Notes in Artificial Intelligence*, vol. 2711, pp. 345—356, 2003.
- T. Gerstenkorn and A. Tepavčević, "Lattice valued intuitionistic fuzzy sets," Central European Journal of Mathematics, vol. 2, no. 3, pp. 388–398, 2004.
- 6. P. Hájek, Metamathematics of Fuzzy Logic. Kluwer Academic, 1998.
- O. Krídlo and M. Ojeda-Aciego, "Extending Formal Concept Analysis using intuitionistic L-fuzzy sets," In IEEE Intl Conf on Fuzzy Systems (FUZZ-IEEE'17), 2017. To appear
- 8. —, "Towards intuitionistic L-fuzzy formal t-concepts.," In Joint 17th World Congress of Intl Fuzzy Systems Association and 9th Intl Conf on Soft Computing and Intelligent Systems (IFSA-SCIS'17), 2017. To appear
- J. Medina, M. Ojeda-Aciego, and J. Ruiz-Calviño, "Formal concept analysis via multi-adjoint concept lattices," *Fuzzy Sets and Systems*, vol. 160, no. 2, pp. 130–144, 2009.
- J. Pang, X. Zhang, and W. Xu, "Attribute reduction in intuitionistic fuzzy concept lattices," Abstract and Applied Analysis, 2013, article ID 271398. 12 pages.
- F. Xu, Z.-Y. Xing, and H.-D. Yin, "Attribute reductions and concept lattices in interval-valued intuitionistic fuzzy rough set theory: Construction and properties," *Journal of Intelligent and Fuzzy Systems*, vol. 30, no. 2, pp. 1231–1242, 2016.
- L. Zhou, "Formal concept analysis in intuitionistic fuzzy formal context," in Seventh International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2010), 2010, pp. 2012–2015.