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Abstract. Given a mapping f : A → B from a preordered set A into

an unstructured set B, we study the problem of defining a suitable pre-

ordering relation on B such that there exists a mapping g : B → A such

that the pair (f, g) forms an adjunction between preordered sets.

1 Introduction

Galois connections were introduced by Ore [30] in 1944 as a pair of antitone

mappings aimed at generalizing Birkhoff’s theory of polarities to the framework

of complete lattices. Later, in 1958, Kan [23] introduced the notion of pair of

adjoint functors in a categorical context. It is not surprising to find a plethora

of examples of adjunction in several disparate research areas, ranging from the

most theoretical to the most applied. It is remarkable to note that the impor-

tance of adjunctions quickly increased to an extent that, for instance, the inter-

est of category theorists moved from universal mapping properties and natural

transformations to adjointness.

When instantiating an adjunction to categories of ordered sets, it can be seen

that both constructions, adjunctions and Galois connections, are fairly similar

and, to some extent, are interdefinable: in some sense, an adjunction between A

and B is a Galois connection in which the order relation on B is reversed (this

leads to the use of the term isotone Galois connection which is exactly that of

adjunction between ordered structures).

Nowadays, one can often find publications concerning Galois connections,

both isotone and antitone, focused on either theoretical developments or theo-

retical applications [7,9,24]. Another term for adjunction, frequently used in the

context of ordered sets, is that of pair of residuated mappings [5].

Concerning applications to informatics, we can find a first survey [28] on

computer science applications published back in 1986. Of course, a number of
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more specific references on certain topics can be found, for instance, to pro-

gramming [29], data analysis [34], logic [12, 21]. It is specially remarkable that

the research topic of approximate reasoning using rough sets has benefitted spe-

cially from the use of the theory of Galois connections [13,20,31,32].

It is worth to recall that many recent works on Galois connections use them

in the framework of Formal Concept Analysis (FCA), either theoretically or

applicatively.This is not surprising, since the operators used to build concepts

form a Galois connection. In [33] one can find an extension of conceptualization

modes, [1] describes a general approach to fuzzy FCA, [6] studies two previ-

ously existing frameworks and proved them equivalent, [10] use them for solving

multi-adjoint relation equations, [27] provides new generalizations for FCA, [11]

relates FCA and possibility theory, [3] stress on the “duality” between isotone

and antitone Galois connections in showing a case of mutual reducibility of the

concept lattices generated by using each type of connection, etcetera.

Being able to define a Galois connection between two ordered structures is a

matter of major importance, and not only for FCA. For instance, [8] establishes

a Galois connection between valued constraint languages and sets of weighted

polymorphisms in order to develop an algebraic theory of complexity for valued

constraint languages.

Browsing the related literature, one can find several publications concerning

sufficient or necessary conditions for the existence of Galois connections between

ordered structures. The main results of this paper are related to the existence

and construction of the adjoint pair to a given mapping f , but in a more general

framework.

Our initial setting is to consider a mapping f : A→ B from a preordered set A

into an unstructured set B, and then characterize those situations in which the

set B can be preordered and an isotone mapping g : B → A can be built such

that the pair (f, g) is an adjunction. (Note that hereafter we will use exclusively

this term since is shorter than isotone Galois connection).

The structure of the paper is as follows: in Section 2, given f : A → B

we introduce the preliminary definitions, and recall the necessary and sufficient

conditions for the existence of a unique partial ordering on B and a mapping g

such that (f, g) is an adjunction; then, in Section 3 we study the existence of

preordering in B and the existence of g such that (f, g) is an adjunction between

preordered structures; at this point, the absence of antisymmetry makes that

both the statements and the proofs of the results to be much more involved.

Finally, in Section 5, we draw some conclusions and discuss future work.

2 Preliminary definitions and results

We assume basic knowledge of the properties and constructions related to a

partially ordered and preordered sets. Anyway, for the sake of self-completion,



we include below the formal definitions of the main concepts to be used in this

work.

Definition 1. Given a partially ordered set A = (A,≤A), X ⊆ A, and a ∈ A.

– An element u is said to be an upper bound of X, if x ≤ u for all x ∈ X.

We write UB(X) to refer to the set of upper bounds of X.

– An element a is said to be the maximum of X, denoted maxX, if a ∈ X

and x ≤ a for all x ∈ X.

– The downset a↓ of a is defined as a↓ = {x ∈ A | x ≤A a}.
– The upset a↑ of a is defined as a↑ = {x ∈ A | x ≥A a}.

A mapping f : (A,≤A)→ (B,≤B) between partially ordered sets is said to be

– isotone if a1 ≤A a2 implies f(a1) ≤B f(a2), for all a1, a2 ∈ A.

– antitone if a1 ≤A a2 implies f(a2) ≤B f(a1), for all a1, a2 ∈ A.

In the particular case in which A = B,

– f is inflationary (also called extensive) if a ≤A f(a) for all a ∈ A.

– f is deflationary if f(a) ≤A a for all a ∈ A.

As we are including the necessary definitions for the development of the

construction of adjunctions, we state below the definition of adjunction we will

be working with.

Definition 2. Let A = (A,≤A) and B = (B,≤B) be posets, f : A → B and

g : B → A be two mappings. The pair (f, g) is said to be an adjunction between

A and B, denoted by (f, g) : A � B, whenever for all a ∈ A and b ∈ B we have

that

f(a) ≤B b if and only if a ≤A g(b)

The mapping f is called left adjoint and g is called right adjoint.

As we will not be working with partially ordered sets but with preordered

sets, some of the previous notions have to be adapted to this more general setting.

The definitions of downset (resp. upset) of an element in a preordered set,

and those of isotone, antitone, inflationary and deflationary mapping between

preordered sets are exactly the same as those given for posets.

The notion of maximum or minimum element of a subset of a preordered

set is defined as usual. Note, however, that due to the absence of antisymmetry,

these elements need not be unique. This is an important difference which justifies

the introduction of special terminology in this context.

Definition 3. Given a preordered set (A,≤A) and a subset X ⊆ A, an element

a ∈ A is said to be a p-maximum (resp., p-minimum ) of X if a ∈ X and x ≤A a

(resp., a ≤A x) for all x ∈ X. The set of p-maxima (resp., p-minima) of X will

be denoted as p-max(X) (resp., p-min(X)).



Notice that p-max(X) (resp., p-min(X)) need not be a singleton. In the event

that, say a, b ∈ p-max(X), then the two relations a ≤ b and b ≤ a hold. As this

situation will repeat several times, we introduce the equivalence relation ≈A in

any preordered set (A,≤A), defined as follows for a1, a2 ∈ A:

a1 ≈A a2 if and only if a1 ≤A a2 and a2 ≤A a1 (1)

The equivalence class of element a wrt an equivalence relation R will be written,

as usual, as [a]R. If there is no risk of ambiguity, the subscript will be omitted.

In this work we will assume a mapping f : A → B such that the original

set is preordered. In order to study the existence of adjoints in this framework,

we will need to use the previously defined relation ≈A, together with the kernel

relation ≡f , defined as a ≡f b if and only if f(a) = f(b).

The two relations above are used together in the definition of the p-kernel

relation defined below:

Definition 4. Let A = (A,≤A) be a preordered set, and f : A→ B a mapping.

The p-kernel relation ∼=A is the equivalence relation obtained as the transitive

closure of the union of the relations ≈A and ≡f .

It is well-known that the transitive closure in the definition above can be

described as follows: given a1, a2 ∈ A, we have that a1 ∼=A a2 if and only if there

exists a finite chain {xi}i∈{1,...,n} ⊆ A such that x1 = a1, xn = a2 and, for all

i ∈ {1, . . . , n− 1}, either xi ≡f xi+1 or xi ≈A xi+1.

The following theorem [17] states different equivalent characterizations of

the notion of adjunction between preordered sets that will be used in the main

construction of the right adjoint. As expected, the general structure of the def-

initions is preserved, but those concerning the actual definition of the adjoints

have to be modified by using the notions of p-maximum and p-minimum.

Theorem 1. Let A = (A,≤A),B = (B,≤B) be two preordered sets, and f : A→
B and g : B→ A be two mappings. The following statements are equivalent:

1. (f, g) : A � B.

2. f and g are isotone maps, and g ◦f is inflationary map, f ◦g is deflationary

map.

3. f(a)↑ = g−1(a↑) for all a ∈ A.

4. g(b)↓ = f−1(b↓) for all b ∈ B.

5. f is isotone and g(b) ∈ p-max f−1(b↓) for all b ∈ B.

6. g is isotone and f(a) ∈ p-min g−1(a↑) for each a ∈ A.

Once again, the absence of antisymmetry leads to slight modifications of

some well-known properties of adjunctions, as that stated in the result below

and its corollary.



Theorem 2. Let A = (A,≤),B = (B,≤) be two preordered sets, and f : A→ B

and g : B → A be two mappings. If (f, g) : A � B then, (f ◦ g ◦ f)(a) ≈B f(a)

for all a ∈ A, and (g ◦ f ◦ g)(b) ≈A g(b) for all b ∈ B.

Corollary 1. Let A = (A,≤A),B = (B,≤B) be two preordered sets, and f : A→
B and g : B → A be two mappings. If (f, g) : A � B then, (g ◦ f ◦ g ◦ f)(a) ≈A
(g ◦ f)(a) for all a ∈ A, and (f ◦ g ◦ f ◦ g)(b) ≈B (f ◦ g)(b) for all b ∈ B.

The following definition recalls the notion of Hoare ordering between sub-

sets of a preordered set, and then introduces an alternative statement in the

subsequent lemma.

Definition 5. Let (A,≤) be a preordered set, and consider X,Y ⊆ A.

– We will denote by vH the Hoare relation, X vH Y if and only if, for all

x ∈ X, there exists y ∈ Y such that x ≤ y.

– We define X v Y if and only if there exist x ∈ X and y ∈ Y such that

x ≤ y.

Lemma 1. Let (A,≤) be a preordered set, and consider X,Y ⊆ A such that

p-min(X) 6= ∅ and p-min(Y ) 6= ∅. The following statements are equivalent:

1. p-min(X) vH p-min(Y )

2. p-min(X) v p-min(Y )

3. For all x ∈ p-min(X) and for all y ∈ p-min(Y ), x ≤ y.

Proof. The implications 1)⇒ 2) and 3)⇒ 1) are straightforward. Let us prove,

2) ⇒ 3). For this, consider any x ∈ p-min(X) and y ∈ p-min(Y ). Using the

hypothesis and x ∈ p-min(X), we have that, there exists y1 ∈ p-min(Y ) such

that x ≤ y1. Since y1 ∈ p-min(Y ), we have that y1 ≤ y for all y ∈ Y . Therefore,

x ≤ y for all x ∈ p-min(X) and y ∈ p-min(Y ). �

We finish this preliminary section by stating the characterization theorem of

existence of a suitable partial ordering on B so that a right adjoint exists. The

core of this work is to develop a generalized version of the theorem below:

Theorem 3 ( [18]). Given a poset (A,≤A) and a map f : A→ B, let ≡f be the

kernel relation. Then, there exists an ordering ≤B in B and a map g : B → A

such that (f, g) : A � B if and only if

1. There exists max([a]) for all a ∈ A.

2. For all a1, a2 ∈ A, a1 ≤A a2 implies max([a1]) ≤A max([a2]).



Roughly speaking, the proof of the previous theorem is done by using the

canonical decomposition theorem via the quotient set Af wrt the kernel relation,

and building right adjoints to any of the arrows in the path.

A B

Af f(A)

f

π

g=max◦ϕ−1◦jm

jmmax

ϕ

ϕ−1

i

The tricky part of the proof was to extend the ordering on f(A) to the whole

set B so that it is still compatible with the existence of right adjoint jm, obviously

when f is not surjective. The underlying idea here is related to the definition of

an order-embedding of the image into the codomain set; more generally, the idea

is to extend a partial ordering defined just on a subset of a set to the whole set.

Definition 6. Given a subset X ⊆ B, and a fixed element m ∈ X, any pre-

ordering ≤X in X can be extended to a preordering ≤m on B, defined as the

reflexive and transitive closure of the relation ≤X ∪{(m, y) | y /∈ X}.

Note that the relation above can be described as, for all x, y ∈ B, x ≤m y if and

only if some of the following holds:

(a) x, y ∈ X and x ≤X y
(b) x ∈ X, y /∈ X and x ≤X m
(c) x, y /∈ X and x = y

3 Building adjunctions between preordered sets

Given a mapping f : A→ B from a preordered set A = (A,≤) to an unstructured

set B, our first goal is to find sufficient conditions to define a suitable preordering

on B such that a right adjoint exists. Notice that there is much more than a

mere adaptation of the result for posets.

Lemma 2. Let A = (A,≤A) be a preordered set and f : A → B a surjective

map. Let S ⊆
⋃
a∈A p-max[a]∼=A

such that the following conditions hold:

– p-min(UB[a]∼=A
∩ S) 6= ∅, for all a ∈ A.

– If a1 ≤A a2, then p-min(UB[a1]∼=A
∩ S) v p-min(UB[a2]∼=A

∩ S).

Then, there exists a preorder ≤B in B and a map g such that (f, g) : A � B.

Proof. The definition of the preorder ≤B in B, given b1, b2 ∈ B, is as follows:

b1 ≤B b2 if and only if there exist a1 ∈ f−1(b1) and a2 ∈ f−1(b2) such that

p-min(UB[a1]∼=A
∩ S) v p-min(UB[a2]∼=A

∩ S).

Let us prove that it is a preordering:



Reflexivity: By the first hypothesis, we have that p-min(UB[a]∼=A
∩ S) 6= ∅.

Now, trivially, p-min(UB[a]∼=A
∩ S) v p-min(UB[a]∼=A

∩ S) holds for any

a ∈ f−1(b). Therefore, b ≤B b for any b ∈ B.

Transitivity: Assume b1 ≤B b2 and b2 ≤B b3.

From b1 ≤B b2, there exist ai ∈ f−1(bi), and ci ∈ p-min(UB[ai]∼=A
∩ S) for

i = 1, 2 such that c1 ≤A c2.

From b2 ≤B b3, there exist a′i ∈ f−1(bi), and c′i ∈ p-min(UB[a′i]∼=A
∩ S) for

i = 2, 3 such that c′2 ≤A c′3.

As a2, a
′
2 ∈ f−1(b2), we have that [a2]∼=A

= [a′2]∼=A
, which implies that

c2 ≈ c′2. Therefore, c1 ≤A c2 ≈A c′2 ≤A c′3 and, as a result, b1 ≤B b3.

In order to define g : B → A, firstly notice that, as f is onto, given b ∈ B

there exists xb ∈ A with f(xb) = b. By hypothesis, p-min(UB[xb]∼=A
∩ S) 6= ∅

for all b ∈ B and, therefore, there exists a choice function. Any of these functions

can be used to define g, in such a manner that g(b) ∈ p-min(UB[xb]∼=A
∩ S).

To finish the proof, we have just to check that (f, g) : (A,≤A) � (B,≤B).

Assume f(a) ≤B b, then there exist a1 ∈ f−1(f(a)), a2 ∈ f−1(b), c1 ∈
p-min(UB[a1]∼=A

∩S) and c2 ∈ p-min(UB[a2]∼=A
∩S) with c1 ≤A c2; as [a1]∼=A

=

[a]∼=A
, and c1 ∈ UB[a1], we also have a ≤A c1. By definition, we have that g(b) ∈

p-min(UB[x]∼=A
∩S) for x ∈ f−1(b), then [a2]∼=A

= [x]∼=A
, and p-min(UB[a2]∼=A

∩
S) = p-min(UB[x]∼=A

∩ S). Thus, c2 ≈ g(b) and, as a ≤A c1 ≤A c2, then

a ≤A g(b).

Assuming now that a ≤A g(b), let us prove f(a) ≤B b. For this, consider a ∈
f−1(f(a)) and x ∈ f−1(b) where x is the element in f−1(b) used in the definition

of g(b), and let us prove that p-min(UB[a]∼=A
∩ S) v p-min(UB[x]∼=A

∩ S). For

this, it is enough to see that for all z ∈ p-min(UB[a]∼=A
∩ S) the inequality

z ≤A g(b) holds, since obviously g(b) ∈ p-min(UB[x]∼=A
∩ S).

Fixed z ∈ p-min(UB[a]∼=A
∩ S), firstly consider that from g(b) ∈ S, using

the hypothesis on S, we have that g(b) ∈ p-max[g(b)]∼=A
, which means that

g(b) ∈ UB[g(b)]∼=A
as well; that is, g(b) ∈ (UB[g(b)]∼=A

∩ S). On the other

hand, from a ≤A g(b) and the second hypothesis we have p-min(UB[a]∼=A
∩

S) v p-min(UB[g(b)]∼=A
∩ S). By Lemma 1, we have that z ≤A t for all t ∈

p-min(UB[g(b)]∼=A
∩ S). Since, obviously t ≤A g(b), we obtain z ≤A g(b). �

The following lemma gets rid of the condition of f being surjective, and will

be used in the proof of the main theorem of this work, stated as Theorem 4.

Lemma 3. Consider (A,≤A) a preordered set, B a set, and f : A → B. Then,

there exist both a preorder ≤B and an adjunction (f, g) : (A,≤A) � (B,≤B) if

and only if there exist a preorder ≤f(A) and an adjunction (f, g′) : (A,≤A) �
(f(A),≤f(A)).

Proof. The direct implication is trivial, by considering ≤f(A) and g′ as the re-

strictions to f(A) of ≤B and g, respectively.



Conversely, consider the adjunction (f, g′) : (A,≤A) � (f(A),≤f(A)), fix m ∈
f(A), and choose ≤B to be its associated preorder, as introduced in Definition 6.

It is just a matter of straightforward computation to check that we have an

adjunction (f, g) : (A,≤A) � (B,≤B) where g is the extension of g′ defined as

follows:

g(x) =

{
g′(x) if x ∈ f(A)

g′(m) if x /∈ f(A)

�

The corresponding version of Theorem 3 is a twofold extension of the state-

ment of Lemma 2 in that, firstly, the mapping f need not be onto and, secondly,

gives a necessary and sufficient condition for the existence of adjunction.

Theorem 4. Given any preordered set A = (A,≤A) and a mapping f : A→ B,

there exists a preorder B = (B,≤B) and g : B → A such that (f, g) : A � B if

and only if there exists S ⊆
⋃
a∈A

p-max[a]∼=A
such that

1. p-min(UB[a]∼=A
∩ S) 6= ∅, for all a ∈ A.

2. If a1 ≤A a2, then p-min(UB[a1]∼=A
∩ S) v p-min(UB[a2]∼=A

∩ S).

Proof. Assume the existence of the preordering in B and the mapping g such

that (f, g) : A � B, and let us prove the three properties in the statement.

Define S = g(f(A)), consider g(f(a)) ∈ S, and let us show that g(f(a)) ∈
p-max[g(f(a))]∼=A

. Consider x ∈ [g(f(a))]∼=A
, by a straightforward induction

argument we obtain f(x) ≈B f(g(f(a))); now, using f(g(f(a))) ≈B f(a) we

have f(x) ≈B f(a). Since f(x) ≤B f(a), by using the adjunction, we obtain

x ≤A g(f(a)), hence g(f(a)) ∈ p-max[g(f(a))]∼=A
.

For property 1, we will check that g(f(a)) ∈ p-min(UB[a]∼=A
∩ S). To begin

with, by definition g(f(a)) ∈ S; then, we will prove that g(f(a)) ∈ UB[a]∼=A
.

Given x ∈ [a]∼=A
we have to prove x ≤A g(f(a)); the argument follows by

induction on the length of the chain connecting x and a

– For n = 0, we have a ≤A g(f(a)) by properties of adjunction.

– Assume the result is true for any chain of length n, and consider a ∼=A a2 ∼=A

. . . an ∼=A x, then, by induction hypothesis, an ≤A g(f(a)). Now, as an ∼=A x,

there are two possibilities:

• an ≈A x and, trivially x ≤A g(f(a)).

• f(an) = f(x), using the properties of adjunction twice we firstly obtain

f(x) ≤A f(g(f(a))) and, then, x ≤A g(f(g(f(a)))) ≈A g(f(a)).

We have just proved that g(f(a)) ∈ UB[a]∼=A
∩S, the remaining point is to prove

that it is a p-minimum element. Consider x ∈ UB[a]∼=A
∩ S; then z ≤A x for all

z ∈ [a]∼=A
and, by definition of S, x = g(f(a1)). Particularly, for z = a we have



that, a ≤A g(f(a1)), by properties of adjunction, g(f(a)) ≤A g(f(g(f(a1)))) ≈A
g(f(a1)) = x, i.e. g(f(a)) ≤A x.

For Property 2, assume a1 ≤A a2, by adjunction, f and g are isotone maps,

then g(f(a1)) ≤A g(f(a2)). From this, we directly obtain p-min(UB[a1]∼=A
∩S) v

p-min(UB[a2]∼=A
∩ S) since we just proved above that for all a ∈ A g(f(a)) ∈

p-min(UB[a]∼=A
∩ S).

Conversely, if we assume properties 1 and 2, then by Lemma 2 and Lemma 3,

there exist a preorder B = (B,≤B) and a map g such that (f, g) : A � B. �

4 On the uniqueness of right adjoints and the inherited

ordered structure in the codomains

The unicity of the right adjoint between posets is well-known. Specifically, given

two posets A = (A,≤A) and B = (B,≤B) and a mapping f : A → B, if there

exists g : B → A such that the pair (f, g) is an adjunction, then it is unique.

This behavior was further analyzed in [18], where the uniqueness property

was extended, in the case of surjective mappings, not only to the right adjoint,

but also to the ordering relation in the codomain: namely, there exists just one

partial ordering on the codomain B such that a right adjoint exists, that is, given

a surjective mapping f from a poset A to an unstructured set B, we introduced

necessary and sufficient conditions to ensure the existence of an ordering ≤B in

B and a mapping g : B → A such that (f, g) is an adjunction. Moreover, both

≤B and g are uniquely determined by ≤A and f .

Contrariwise to the partially ordered case, given two preordered sets A =

(A,≤A) and B = (B,≤B) and a mapping f : A→ B, the unicity of the mapping

g : B → A satisfying (f, g) : A � B, when it exists, cannot be guaranteed. How-

ever, it is well known that if g1 and g2 are right adjoints, then g1(b) ≈A g2(b) for

all b ∈ B, and one usually says that the right adjoint is essentially unique. This

scenario is much more similar to what occurs in category theory: if one functor

F has two right adjoints G and G′, then G and G′ are naturally isomorphic.

However, and this is the interesting part, the unicity cannot be extended to

the case in which the codomain is unstructured. In this section we introduce

several examples supporting this statement.

Examples Let A = {a, b, c, d}, B = {o, p, q} be two sets and f : A→ B defined

as f(a) = f(c) = p, f(b) = o and f(d) = q. Consider (A,≤A) ordered by

a ≤A b ≤A c ≤A d. We have [a]∼=A
= [c]∼=A

= {a, c}, [b]∼=A
= {b} and [d]∼=A

= {d}
and

⋃
x∈A p-max[x]∼=A

= {b, c, d}.



a

b

c

d

o

p

q

(A,≤A) B

Notice that f is surjective, and does not fulfill the conditions in Theorem 3,

specifically the second one. Thus, there does not exist any partial ordering re-

lation in B for which some g : B → A would be a right adjoint to f . Notice,

however, that if we relax the requirement to be an adjunction between preordered

sets, then there exist a preordering (actually more than one) which generates a

right adjoint to f . Some examples are worked out below to illustrate the previous

situation.

Example 1. Consider B = (B,≤B) preordered with o ≈B p, o ≤B q and p ≤B q,

and the mapping g : B → A defined as g(o) = g(p) = c and g(q) = d.

a

b

c

d

q

o≈ p

(A,≤A) (B,≤B)

To begin with, we have that S = gf(A) = {c, d} is a subset of
⋃
x∈A

p-max[x]∼=A

and, then, check the two conditions in Theorem 4.

It is not difficult to check that p-min(UB[x]∼=A
∩ S) 6= ∅ for all x ∈ A.

Specifically, we have

p-min(UB[a]∼=A
∩ S) = p-min(UB[b]∼=A

∩ S) = p-min(UB[c]∼=A
∩ S) = {c, d}

and

p-min(UB[d]∼=A
∩ S) = {d}

Finally, with the previous computation, it is straightforward to check that if

a1 ≤A a2 then p-min(UB[a1]∼=A
∩ S) v p-min(UB[a2]∼=A

∩ S).

As a result, the pair (f, g) is an adjunction between A and B. �



Example 2. Now, consider B′ = (B,≤′B) preordered by o ≈′B p and p ≈′B q, and

the mapping g′ : B → A defined as g′(o) = g′(p) = g′(q) = d.

a

b

c

d

o≈ p≈ q(A,≤A) (B,≤′B)

Again we will check the conditions in Theorem 4.

In this case, S = g′f(A) = {d} which is a subset of
⋃
x∈A p-max[x]∼=A

=

{b, c, d}. The first condition holds since p-min(UB[a]∼=A
∩S) = p-min(UB[b]∼=A

∩
S) = p-min(UB[c]∼=A

∩S) = p-min(UB[d]∼=A
∩S) = {d}. As all the previous sets

coincide, the second condition follows trivially.

As a result, the pair (f, g′) is an adjunction between the preorders A and B′.
�

5 Conclusions

Given a mapping f : A→ B from a preordered set A into an unstructured set B,

we have obtained necessary and sufficient conditions which allow us for defining

a suitable preordering relation on B such that there exists mapping g : B → A

such that the pair of mappings (f, g) forms an adjunction between preordered

sets.

Whereas the results in the partially ordered case followed more or less the

intuition of what should be expected (Theorem 3), the description of the condi-

tions on the preordered case is much more involved (Theorem 4). A first piece

of future work should be to consider alternative approaches to this problem in

order to obtain, if possible, a simpler alternative characterization.

Concerning potential applications of the present work, let us recall that the

Galois connections used in FCA are given between the Boole algebras of the

powersets of objects and the powerset of attributes. There exist several gen-

eralizations in FCA which weaken the structure on which a Galois connection

is defined: for instance, in fuzzy FCA the residuated structure of the powerset

of fuzzy sets is used. In [16], a general approach called pattern structures was

proposed, which allows for extending FCA techniques to arbitrary partially or-

dered data descriptions. Using pattern structures, one can compute taxonomies,



ontologies, implications, implication bases, association rules, concept-based (or

JSM-) hypotheses in the same way it is done with standard concept lattices [26].

In this generalization, instead of associating each object with the set of at-

tributes it satisfies, a pattern is given, which can be either a graph, or a sequence

or an interval, and the semantics of these patterns can be different in each case.

For instance, [15] represents scenarios of conflict between human agents, or [22]

use gene expression data. These sets of patterns are provided with a partial

ordering relation such as “being a subgraph of ” or “being a subchain of ”.

The results obtained in this work are aimed at not only extending these re-

sults to sets in which there is a preordering previously defined but, more specif-

ically, to the problem of knowledge discovery on the existing structure between

the patterns. The scenario in which this work could be applied is as follows:

we start from a set of objects each one related to the set of patterns it satisfies,

ignoring whether there exists some (pre-)ordering relation between patterns, but

assuming that the semantics of the problem guarantees the existence of a Galois

connection between them, the goal would be to obtain as much information as

possible about the relation existing in the set of patterns.

To finish with the future work, it is remarkable the number of papers on

fuzzy Galois connections have been written since its introduction in [2]; consider

for instance [4,14,19,25] for some recent ones. As future work in the short term,

we would like to extend the results in this work to the fuzzy case, for instance

to the framework of fuzzy posets and fuzzy preorders, and study the potential

relationship to other approaches based on generalized structures.
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4. R. Bělohlávek. and P. Osička. Triadic fuzzy Galois connections as ordinary con-

nections. In IEEE Intl Conf on Fuzzy Systems, 2012.

5. T.S. Blyth. Lattices and Ordered Algebraic Structures. Springer, 2005.
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Generating isotone Galois connections on an unstructured codomain. In Proc.

of Information Processing and Management of Uncertainty in Knowledge-based

Systems (IPMU), 2014. To appear.

19. L.Guo, G.-Q. Zhang, and Q. Li. Fuzzy closure systems on L-ordered sets. Mathe-

matical Logic Quarterly, 57(3):281–291, 2011.

20. J. Järvinen. Pawlak’s information systems in terms of Galois connections and

functional dependencies. Fundamenta Informaticae, 75:315–330, 2007.

21. J. Järvinen, M. Kondo, and J. Kortelainen. Logics from Galois connections. Int.

J. Approx. Reasoning, 49(3):595–606, 2008.

22. M. Kaytoue, S.O. Kuznetsov, A. Napoli, and S. Duplessis Mining gene expression

data with pattern structures in formal concept analysis. Information Sciences

181(10), 1989–2001, 2011.

23. D. M. Kan. Adjoint functors. Transactions of the American Mathematical Society,

87(2):294–329, 1958.

24. S. Kerkhoff. A general Galois theory for operations and relations in arbitrary

categories. Algebra Universalis, 68(3):325–352, 2012.

25. J. Konecny. Isotone fuzzy Galois connections with hedges. Information Sciences,

181(10):1804–1817, 2011.

26. S.O. Kuznetsov. Fitting Pattern Structures to Knowledge Discovery in Big Data.

Lect. Notes in Computer Science, 7880: 254–266, 2013.

27. J. Medina. Multi-adjoint property-oriented and object-oriented concept lattices.

Information Sciences, 190:95–106, 2012.

28. A. Melton, D. A. Schmidt, and G. E. Strecker. Galois connections and computer

science applications. Lect. Notes in Computer Science, 240:299–312, 1986.



29. S.-C. Mu and J. N. Oliveira. Programming from Galois connections. The Journal

of Logic and Algebraic Programming, 81(6):680–704, 2012.

30. Ø. Ore. Galois connections. Transactions of the American Mathematical Society

55:493–513, 1944.

31. J. Poelmans, D.I. Ignatov, S.O. Kuznetsov and G. Dedene. Fuzzy and rough formal

concept analysis: a survey. Intl Journal of General Systems 43(2):105–134, 2014.
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