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Abstract—We propose a suitable generalization of the notion
of Galois connection whose components are fuzzy relations. We
prove that the construction embeds Yao’s notion of fuzzy Galois
connection as a particular case. Although the natural framework
for the proposed notion is that of fuzzy preposets, we also prove
that it behaves properly with respect to the formation of quotient
with respect to the fuzzy symmetric kernel relation.

I. INTRODUCTION

Since their inception, Galois connections have shown to be
an interesting tool both for theory and for applications [1], [2].
One particular research area on application is Formal Concept
Analysis (FCA) [3], since the main properties of the concept-
forming operators are consequences of their being part of a
Galois connection.

Successive generalizations of FCA to the fuzzy case, sug-
gested the introduction of different fuzzified versions of Galois
connection: to the best of our knowledge the first one was due
to Bělohlávek [4]; later, Georgescu and Popescu introduced
non-commutative versions [5], and Yao and Lu, a version
based on fuzzy posets [6]; and more abstract approaches were
given in [7]–[9].

An interesting problem in all the generalized notions of Ga-
lois connection is its actual construction, namely, the problem
of constructing the residual (aka right adjoint) mapping of a
given f : A → B. The straightforward answer is to apply a
suitable version of the well-known Freyd’s adjoint theorem,
which characterizes when such an residual exists when both
A and B have the same structure.

But what if A and B are differently structured?
If A has a richer structure than B, firstly the missing

structure on B has to be built, and only then the residual could
be constructed. This has been one of our preferred research
topics in the recent years, in which a number of results
have been obtained considering different underlying settings.
Namely, in [10] we worked with crisp functions between a
poset (resp. preordered set) and an unstructured set; later, in
[11] we entered in the fuzzy arena, considering the case in
which A is fuzzy preposet; then, in [12], we extended the
previous results by allowing fuzzy equivalence relations as an
adequate substitute to equality.

Before proceeding to further generalizations, a more ade-
quate notion of Galois connection should be considered since
the results in [11], [12] lack of fuzziness precisely on the
components of the Galois connection, which turned out to

be crisp functions. In [13] we started the search for a more
adequate notion involving fuzzy functions as components.

In this work we introduce the notion of relational fuzzy
Galois connection, in which the components of the connection
are not fuzzy functions but fuzzy relations satisfying certain
properties. We prove that the construction embeds Yao’s notion
of fuzzy Galois connection as a particular case. Although the
natural framework for the proposed notion is that of fuzzy pre-
posets, we also prove that it behaves properly with respect to
the formation of quotient with respect to the fuzzy symmetric
kernel relation, thus leading to a connection between fuzzy
posets.

II. PRELIMINARY DEFINITIONS

Given a complete residuated lattice L = (L,⊗,⇒), an L-
fuzzy set is a mapping from the universe set to the membership
values structure X : U → L where X(u) means the degree in
which u belongs to X . Given X and Y two L-fuzzy sets, X is
said to be included in Y , denoted as X ⊆ Y , if X(u) ≤ Y (u)
for all u ∈ U .

An L-fuzzy binary relation between A and B is an L-fuzzy
subset of A×B, i.e. a mapping µ : A×B → L and its domain
and its image are defined as follows:

dom(µ) ={a ∈ A | there exists b ∈ B with µ(a, b) = >}
im(µ) ={b ∈ B | there exists a ∈ A with µ(a, b) = >}

Moreover, µ is said to be total if dom(µ) = A and µ is said
to be surjective if im(µ) = B.

From now on, when no confusion arises, we will omit the
prefix “L-”.

The identity relation in a set A is denoted by idA, i.e.
idA : A × A → L where idA(a, b) = > if a = b, and
idA(a, b) = ⊥ otherwise. The composition of two fuzzy binary
relations µ : A × B → L and ν : B × C → L is defined as
ν◦µ : A×C → L where (ν◦µ)(a, c) =

∨
b∈B(µ(a, b)⊗ν(b, c))

for all a ∈ A and c ∈ C. In addition, the inverse of µ
is the fuzzy binary relation µ−1 : B × A → L such that
µ−1(b, a) = µ(a, b) for all a ∈ A and b ∈ B. It is trivial
that, if µ is total, idA ⊆ µ−1 ◦ µ, and, if µ is surjective,
idB ⊆ µ ◦ µ−1.

A fuzzy binary relation µ : A×A→ L is said to be:

• Reflexive if idA ⊆ µ.
• ⊗-Transitive if µ ◦ µ ⊆ µ.
• Symmetric if µ = µ−1.



• Antisymmetric if µ(a, b) = µ(b, a) = > implies a = b,
for all a, b ∈ A.

Definition 1: A fuzzy preposet is a pair A = 〈A, ρA〉 in
which ρA is a reflexive and ⊗-transitive fuzzy relation on A.
In addition, a fuzzy poset is a fuzzy preposet A = 〈A, ρA〉 in
which ρA is also antisymmetric.

Definition 2: A fuzzy relation ≈ on A is said to be a:
• Fuzzy equivalence relation if ≈ is a reflexive, ⊗-transitive

and symmetric fuzzy relation on A.
• Fuzzy equality if ≈ is a fuzzy equivalence relation satis-

fying that ≈(a, b) = > implies a = b, for all a, b ∈ A.
We will use the infix notation for a fuzzy equivalence

relation, that is: for ≈ : A × A → L a fuzzy equivalence
relation, we denote a1 ≈ a2 to refer to ≈(a1, a2).

Definition 3: Let ≈A and ≈B be fuzzy equivalence relations
on A and B respectively. A fuzzy relation µ : A×B → L is
said to be extensional if µ ◦ ≈A ⊆ µ and ≈B ◦ µ ⊆ µ.

That is, µ is extensional if (a1 ≈A a2)⊗µ(a2, b) ≤ µ(a1, b)
and µ(a, b1) ⊗ (b1 ≈B b2) ≤ µ(a, b2), for all a, a1, a2 ∈ A
and b, b1, b2 ∈ B.

III. RELATIONAL FUZZY GALOIS CONNECTIONS

In order to introduce the notion of relational fuzzy Galois
connection, it will be convenient to adopt, whenever possible,
a relational notation and, specifically, the properties will be
stated in terms of compositions of relations. For instance, the
usual notion of µ being antitone if µ(a1, b1) ⊗ ρA(a1, a2) ⊗
µ(a2, b2) ≤ ρB(b2, b1) for all a1, a2 ∈ A and b1, b2 ∈ B; and
ν being inflationary if ν(a1, a2) ≤ ρA(a1, a2) for all a1, a2 ∈
A, will be rephrased as follows:

Definition 4: Let 〈A, ρA〉 and 〈B, ρB〉 be fuzzy preposets.
• µ : A×B → L is said to be antitone if µ◦ρA◦µ−1 ⊆ ρ−1

B .
• ν : A×A→ L is said to be inflationary if ν ⊆ ρA.
The definition of relational fuzzy Galois connection requires

that the two involved relations are linked together in a certain
manner. This is formally introduced below:

Definition 5: Let µ : A × B → L and ν : B × A → L be
fuzzy relations. The pair (µ, ν) is said to be coupled if for all
a1 ∈ A and b1 ∈ B there exist a2 ∈ A and b2 ∈ B such that
µ(a1, b1)⊗ ν(b1, a2) = µ(a1, b1) and ν(b1, a1)⊗ µ(a1, b2) =
ν(b1, a1).

As a direct consequence of the previous definition, if the
pair (µ, ν) is coupled, then im(µ) ⊆ dom(ν) and im(ν) ⊆
dom(µ). In addition, it is straightforward that any pair of total
fuzzy relations µ : A×B → L and ν : B×A→ L are coupled.

Now we have all the notions required in order to introduce
the definition of relational fuzzy Galois connection in which
the role of left and right adjoints is played by fuzzy relations.

Definition 6: Let 〈A, ρA〉 and 〈B, ρB〉 be fuzzy preposets
and µ : A×B → L and ν : B×A→ L be fuzzy relations. The
pair (µ, ν) is said to be a relational fuzzy Galois connection
between 〈A, ρA〉 and 〈B, ρB〉 if µ and ν are antitone, the
compositions µ ◦ ν and ν ◦ µ are inflationary and the pair
(µ, ν) is coupled.

The following theorem extends the classical characterization
of Galois connections.

Theorem 1: Let 〈A, ρA〉 and 〈B, ρB〉 be fuzzy preposets
and µ : A × B → L and ν : B × A → L be fuzzy relations.
The pair (µ, ν) is a relational fuzzy Galois connection between
〈A, ρA〉 and 〈B, ρB〉 if and only if the pair (µ, ν) is coupled,
µ ◦ ρ−1

A ◦ ν ⊆ ρB and ν ◦ ρ−1
B ◦ µ ⊆ ρA.

Proof: Assume that (µ, ν) is a relational fuzzy Galois
connection between 〈A, ρA〉 and 〈B, ρB〉. By definition, the
pair (µ, ν) is coupled. We prove just ν ◦ ρ−1

B ◦ µ ⊆ ρA since
the other inclusion is proved similarly. Specifically, we prove
that for all a1, a2 ∈ A and b1, b2 ∈ B:

µ(a1, b1)⊗ ρB(b2, b1)⊗ ν(b2, a2) ≤ ρA(a1, a2)

By using the facts that the pair (µ, ν) is coupled, ν ◦ µ is
inflationary and ν is antitone, and transitivity of ρA, one has
that there exists a3 ∈ A such that:

µ(a1, b1)⊗ ρB(b2, b1)⊗ ν(b2, a2)

= µ(a1, b1)⊗ ν(b1, a3)⊗ ν(b1, a3)⊗ ρB(b2, b1)⊗ ν(b2, a2)

≤ (ν ◦ µ)(a1, a3)⊗ (ν ◦ ρB ◦ ν−1)(a2, a3)

≤ ρA(a1, a3)⊗ ρA(a3, a2) ≤ ρA(a1, a2)

Conversely, assume that the pair (µ, ν) is coupled, µ◦ρ−1
A ◦ν ⊆

ρB and ν ◦ ρ−1
B ◦ µ ⊆ ρA.

• The following sequence proves that ν ◦ µ is inflationary
by using reflexivity of ρB and the second inclusion:

ν ◦ µ = ν ◦ idB ◦ µ ⊆ ν ◦ ρ−1
B ◦ µ ⊆ ρA

• In order to prove the antitonicity of µ, first we prove that,
for all a1, a2 ∈ A and b ∈ B, there exists a3 ∈ A with

ρA(a1, a2)⊗ µ(a2, b) ≤ ν(b, a3)⊗ ρ−1
A (a3, a1) (1)

Since (µ, ν) is coupled, ν ◦ µ is inflationary and ρA is
transitive, one has:

ρA(a1, a2)⊗ µ(a2, b)

= ρA(a1, a2)⊗ µ(a2, b)⊗ ν(b, a3)⊗ ν(b, a3)

≤ ρA(a1, a2)⊗ ρA(a2, a3)⊗ ν(b, a3)

≤ ρA(a1, a3)⊗ ν(b, a3) = ν(b, a3)⊗ ρ−1
A (a3, a1)

Now, by using (1) and µ ◦ ρ−1
A ◦ ν ⊆ ρB , one has:

ρA(a1, a2)⊗ µ(a1, b1)⊗ µ(a2, b2)

≤ ν(b2, a3)⊗ ρ−1
A (a3, a1)⊗ µ(a1, b1)

≤ (µ ◦ ρ−1
A ◦ ν)(b2, b1) ≤ ρB(b2, b1)

• Analogously, it is proved that µ ◦ ν is inflationary and ν
is antitone.

Definition 7: Let 〈A, ρA〉 be a fuzzy preposet. The fuzzy
symmetric kernel relation ≈A : A×A→ L is defined by

(a1 ≈A a2) = ρA(a1, a2) ∧ ρA(a2, a1)

which turns out to be a fuzzy equivalence relation.
It is straightforward that ρA is extensional w.r.t. ≈A. The

following lemma goes beyond extensionality.
Lemma 1: Let 〈A, ρA〉 and 〈B, ρB〉 be fuzzy preposets and

µ : A×B → L.
1) ρA◦≈A = ≈A◦ρA = ρA and ρB◦≈B = ≈B◦ρB = ρB .
2) If µ is antitone, then µ ◦ µ−1 ⊆ ≈B .



Proof: From the definition of ≈A, and the facts that ρA
is reflexive and ⊗-transitive, and ≈A is reflexive, one has:
ρA ⊆ ρA ◦ idA ⊆ ρA ◦ ≈A ⊆ ρA ◦ ρA ⊆ ρA. The rest of the
equalities in item 1) are proved similarly.

Assume now that µ is antitone. Then

µ ◦ µ−1 = µ ◦ idA ◦ µ−1 ⊆ µ ◦ ρA ◦ µ−1 ⊆ ρB−1

On the other hand, it is easy to prove that (µ ◦ µ−1)−1 =
µ◦µ−1 and, thus, (µ◦µ−1)−1 = µ◦µ−1 ⊆ ρB−1. Therefore,
µ ◦ µ−1 ⊆ ρB−1 ∧ ρB = ≈B .

It is well-known that, for classical Galois connections (f, g),
one has f◦g◦f = f and g◦f◦g = g. In the following theorem,
and its two corollaries, we explore what is the behavior of the
analogous compositions in the framework of relational fuzzy
Galois connections.

Theorem 2: Let (µ, ν) be a relational fuzzy Galois connec-
tion between 〈A, ρA〉 and 〈B, ρB〉. Then µ◦ν ◦µ◦µ−1 ⊆ ≈B

and ν ◦ µ ◦ ν ◦ ν−1 ⊆ ≈A.
Proof: We only prove the first inclusion because the

second one is analogous. Firstly, since ν ◦ µ is inflationary
and µ is antitone, one has:

(µ ◦ ν ◦ µ ◦ µ−1)(b1, b2) ≤ (µ ◦ ρA ◦ µ−1)(b1, b2)

≤ ρ−1
B (b1, b2) = ρB(b2, b1)

On the other hand, since µ ◦ ν is inflationary and Lemma 1,
one has:

(µ ◦ ν ◦ µ ◦ µ−1)(b1, b2) ≤ (ρB ◦ µ ◦ µ−1)(b1, b2)

≤ (ρB ◦ ≈B)(b1, b2)

≤ ρB(b1, b2)

Therefore, (µ ◦ ν ◦ µ ◦ µ−1)(b1, b2) ≤ (b1 ≈B b2).
Corollary 1: Let (µ, ν) be a relational fuzzy Galois connec-

tion between 〈A, ρA〉 and 〈B, ρB〉. The following conditions
hold for all a, a1, a2 ∈ A and b, b1, b2 ∈ B,

1) µ(a, b1)⊗ (µ ◦ ν ◦ µ)(a, b2) ≤ (b1 ≈B b2).
2) ν(b, a1)⊗ (ν ◦ µ ◦ ν)(b, a2) ≤ (a1 ≈A a2).

Proof: Item 1) is a consequence of the fact that

µ(a, b1)⊗ (µ ◦ ν ◦ µ)(a, b2) ≤ (µ ◦ ν ◦ µ ◦ µ−1)(b1, b2)

Item 2) is analogous.
Corollary 2: Let (µ, ν) be a relational fuzzy Galois con-

nection between 〈A, ρA〉 and 〈B, ρB〉. For all a1, a2 ∈ A and
b1, b2 ∈ B, the following conditions hold:

1) If b1 ∈ im(µ) then (µ ◦ ν)(b1, b2) ≤ (b1 ≈B b2).
2) If a1 ∈ im(ν) then (ν ◦ µ)(a1, a2) ≤ (a1 ≈A a2).

Proof: We prove item 1) and item 2) is proved anal-
ogously. If b1 ∈ im(µ) then (µ ◦ µ−1)(b1, b1) = > and
(µ ◦ ν)(b1, b2) = (µ ◦ µ−1)(b1, b1) ⊗ (µ ◦ ν)(b1, b2) ≤
(µ ◦ ν ◦ µ ◦ µ−1)(b1, b2) ≤ (b1 ≈B b2).

IV. RELATIONAL FUZZY GALOIS CONNECTIONS BETWEEN
FUZZY POSETS

In this section we will study some additional properties
of relational fuzzy Galois connections when the underlying
structures are fuzzy posets. Note that, a fuzzy poset is a fuzzy
preposet 〈A, ρA〉 in which (a1 ≈A a2) = > implies a1 = a2

for all a1, a2 ∈ A, i.e. the fuzzy symmetric kernel relation ≈A

is a fuzzy equality.
Proposition 1: Let (µ, ν) be a relational fuzzy Galois

connection between the fuzzy posets 〈A, ρA〉 and 〈B, ρB〉.
1) For all a ∈ A there exists at most one b ∈ B such that

µ(a, b) = >. In addition, (µ ◦ ν ◦ µ)(a, y) = > if and
only if y = b.

2) For all b ∈ B there exists at most one a ∈ A such that
ν(b, a) = >. In addition, (ν ◦ µ ◦ ν)(b, x) = > if and
only if x = a.

Proof: Suppose that there exist b1, b2 ∈ B such that
> = µ(a, b1) = µ(a, b2). From µ(a, b1) = >, since (µ, ν)
is coupled, we have that there exists y ∈ B such that
(µ ◦ ν ◦ µ)(a, y) = > and, by Corollary 1,

> = (µ ◦ ν ◦ µ)(a, y)

= (µ ◦ ν ◦ µ)(a, y)⊗ µ(a, b1) ≤ (y ≈B b1)

and, by antisymmetry of ρB , we obtain y = b1. The same
reasoning leads to

> = (µ ◦ ν ◦ µ)(a, b1)⊗ µ(a, b2) ≤ (b1 ≈B b2)

By antisymmetry of ρB , we have b1 = b2.
The proof of item 2) is similar.
Proposition 2: Let (µ, ν) be a relational fuzzy Galois

connection between the fuzzy posets 〈A, ρA〉 and 〈B, ρB〉.
For all a1, a2 ∈ A and b1, b2 ∈ B, the following conditions
hold:

1) If b1 ∈ im(µ), then (µ ◦ ν)(b1, b2) = > iff b1 = b2.
2) If a1 ∈ im(ν), then (ν ◦ µ)(a1, a2) = > iff a1 = a2.

Proof: Assume b1 ∈ im(µ) and (µ◦ν)(b1, b2) = >. Then
by Corollary 2, one has (b1 ≈B b2) = > and hence b1 = b2.

Conversely, if b1 ∈ im(µ), there exists a1 ∈ A such that
µ(a1, b1) = >. Since (µ, ν) is coupled, there exist a2 ∈ A
and y ∈ B such that ν(b1, a2) = µ(a2, y) = >. Therefore,
(µ◦ν ◦µ)(a1, y) = >. Now, by Proposition 1, b1 = y. Finally,
> = ν(b1, a2)⊗ µ(a2, b1) ≤ (µ ◦ ν)(b1, b1).

Let us see now that our definition embeds that given by Yao
[6]. For this, we have to recall some notions:

Given a fuzzy relation µ, we denote µ> its >-cut, ie.,

µ> = {(a, b) ∈ A×B | µ(a, b) = >}
which is a crisp binary relation. Thus, as a consequence of
Proposition 1, if (µ, ν) is a relational fuzzy Galois connection
between the fuzzy posets 〈A, ρA〉 and 〈B, ρB〉, then:

• (a, b1), (a, b2) ∈ µ> implies b1 = b2.
• (b, a1), (b, a2) ∈ ν> implies a1 = a2.

Then, µ> and ν> are partial functions whose domains are
dom(µ) and dom(ν), respectively. Moreover, since the pair
(µ, ν) is coupled, we have also im(µ) ⊆ dom(ν) and im(ν) ⊆
dom(µ) and, then, both partial functions can be composed.

Obviously, if µ and ν are total fuzzy relations, then µ> and
ν> are functions.

Hereafter, we will use prefix notation when dealing with µ>

and ν> .



The following result recovers the definition of fuzzy Galois
connection given by Yao [6] in terms of relational fuzzy Galois
connections.

Proposition 3: Let (µ, ν) be a relational fuzzy Galois
connection between the fuzzy posets 〈A, ρA〉 and 〈B, ρB〉.
Then, for all a ∈ dom(µ) and b ∈ dom(ν), one has

ρA(a, ν>(b)) = ρB(b, µ>(a))

Proof: Consider a ∈ dom(µ) and b ∈ dom(ν), i.e.
µ(a, µ>(a)) = > and ν(b, ν>(b)) = >. Then, by Theorem 1,

ρA(a, ν>(b)) = ν(b, ν>(b))⊗ ρ−1
A (ν>(b), a)⊗ µ(a, µ>(a))

≤ ρB(b, µ>(a))

ρB(b, µ>(a)) = µ(a, µ>(a))⊗ ρ−1
B (µ>(a), b)⊗ ν(b, ν>(b))

≤ ρA(a, ν>(b))

Thus ρA(a, ν>(b)) = ρB(b, µ>(a)).

It is worth noting that if µ and ν are total, then (µ> , ν>) is
a fuzzy Galois connection between the fuzzy posets 〈A, ρA〉
and 〈B, ρB〉 in the sense of Yao. Conversely, any fuzzy Galois
connection (in Yao’s sense) define a relational fuzzy Galois
connection.

Proposition 4: Let (f, g) be a fuzzy Galois connection
between two fuzzy posets 〈A, ρA〉 and 〈B, ρB〉 in Yao’s
sense. The pair (µ, ν), where µ(a, b) = (f(a) ≈B b) and
ν(b, a) = (g(b) ≈A a), is a relational fuzzy Galois connection.

Proof: Since f and g are mappings, the relations µ and ν
are total and (µ, ν) is coupled. By Theorem 1, we must prove
µ ◦ ρ−1

A ◦ ν ⊆ ρB and ν ◦ ρ−1
B ◦ µ ⊆ ρA. From Lemma 1

and the fact that ρA(a, g(b)) = ρB(b, f(a)) for all a ∈ A and
b ∈ B, we have that

(µ ◦ ρ−1
A ◦ ν)(b1, b2) =

=
∨

a1,a2∈A

(
ν(b1, a1)⊗ ρA(a2, a1)⊗ µ(a2, b2)

)
=

∨
a1,a2∈A

(
(g(b1) ≈A a1)⊗ ρA(a2, a1)⊗ (f(a2) ≈B b2)

)
=
∨

a2∈A

(
ρA(a2, g(b1))⊗ (f(a2) ≈B b2)

)
=
∨

a2∈A

(
ρB(b1, f(a2))⊗ (f(a2) ≈B b2)

)
≤ (ρB ◦ ≈B)(b1, b2) = ρB(b1, b2)

The other inclusion is similarly proved.

The following example shows that the relation between
fuzzy Galois connections in Yao’s sense and relational fuzzy
Galois connections is not a bijection. Specifically, it is possible
to find different relational fuzzy Galois connections between
fuzzy posets with the same >-cuts.

Example 1: Consider the underlying truth-values set L to
be the real unit interval with its residuated lattice structure
induced by the Łukasiewicz t-norm.

Consider the following fuzzy posets 〈A, ρA〉 and 〈B, ρB〉
where A = {a1, a2, a3}, B = {b1, b2, b3} and the fuzzy

relations ρA and ρB given below:
ρA a1 a2 a3

a1 1 1 1
a2 0.5 1 1
a3 0 0.5 1

ρB b1 b2 b3
b1 1 0.5 0
b2 1 1 1
b3 1 0.5 1

The fuzzy equivalence relations induced by ρA and ρB are
given below:
≈A a1 a2 a3

a1 1 0.5 0
a2 0.5 1 0.5
a3 0 0.5 1

≈B b1 b2 b3
b1 1 0.5 0
b2 0.5 1 0.5
b3 0 0.5 1

Consider also the mappings f : A → B defined by f(a1) =
f(a2) = b1 and f(a3) = b2 and g : B → A given by g(b1) =
g(b3) = a2 and g(b2) = a3. The pair (f, g) is a fuzzy Galois
connection in Yao’s sense, i.e.

ρA(a, g(b)) = ρB(b, f(a)), for all a ∈ A, b ∈ B
Moreover, we can obtain a relational fuzzy Galois connection
by considering the construction given in Proposition 4. That
is, considering the pair of fuzzy relations µ : A×B → L and
ν : B ×A→ L defined by the following tables:

µ b1 b2 b3
a1 1 0.5 0
a2 1 0.5 0
a3 0.5 1 0.5

ν a1 a2 a3

b1 0.5 1 0.5
b2 0 0.5 1
b3 0.5 1 0.5

It is just a matter of computation to check that (µ, ν) is
a relational fuzzy Galois connection between 〈A, ρA〉 and
〈B, ρB〉.

Nevertheless, it is not the only relational fuzzy Galois
connection whose >-cuts are f and g. Thus, for instance,
consider the fuzzy relation µ′ : A × B → L given by the
following table:

µ′ b1 b2 b3
a1 1 0.1 0
a2 1 0.5 0
a3 0.5 1 0.5

The pair (µ′, ν) is also a relational fuzzy Galois connection
between 〈A, ρA〉 and 〈B, ρB〉 and µ> = µ′

>
.

V. RELATIONAL FUZZY GALOIS CONNECTIONS BY MEANS
OF QUOTIENT CONSTRUCTION

In this section, we study the behavior of the relational
fuzzy Galois connections with respect to the construction of
the quotient set modulo the fuzzy symmetric kernel relation.
Firstly, let us recall some previous notions.

For a fuzzy equivalence relation ≈ : A × A → L, the
corresponding quotient set is Ā = {ā | a ∈ A} where ā is
the equivalence class of a, i.e the fuzzy set ā : A→ L defined
by ā(u) = (a ≈ u) for all u ∈ A.

Note that a = b if and only if (a ≈ b) = >: on the one
hand, if a = b, then (a ≈ b) = a(b) = b(b) = >, by reflexive
property; on the other hand, if (a ≈ b) = >, then a(u) =
(a ≈ u) = (b ≈ a) ⊗ (a ≈ u) ≤ (b ≈ u) = b(u), for all
u ∈ A.



In addition, given two fuzzy equivalence relations ≈A and
≈B in A and B respectively, any fuzzy relation µ : A×B → L
induces a fuzzy relation in their quotient sets µ̄ : Ā× B̄ → L
defined as µ̄(ā, b̄) = (≈B ◦µ ◦≈A)(a, b). It is straightforward
to check that µ is well-defined, i.e. ā1 = ā2 and b̄1 = b̄2 imply
µ̄(ā1, b̄1) = µ̄(ā2, b̄2).

The following proposition shows how a fuzzy preorder
relation ρA : A × A → L induces a fuzzy poset structure on
the quotient set Ā.

Proposition 5: Let 〈A, ρA〉 be a fuzzy preposet, ≈A its
symmetric kernel relation, and A and ρA as defined above.
Then

1) ρ̄Ā(a1, a2) = ρA(a1, a2) for all a1, a2 ∈ A.
2) 〈A, ρA〉 is a fuzzy poset.

Proof: By Lemma 1, one has

ρ̄Ā(a1, a2) = (≈A ◦ ρA ◦ ≈A)(a1, a2) = ρA(a1, a2)

and, therefore, ρ̄Ā is reflexive and ⊗-transitive. Finally, it
is trivial that ρA is antisymmetric because ρA(a1, a2) =
ρA(a2, a1) = > implies (a1 ≈A a2) = > and hence ā1 = ā2.

Now, we can see that totality and antitonicity is inherited
by µ.

Lemma 2: Let µ : A×B → L be a fuzzy relation between
fuzzy preposets 〈A, ρA〉 and 〈B, ρB〉. Then,

1) If µ is a total fuzzy relation, then so is µ.
2) If µ is antitone, then µ is antitone as well.

Proof: The first item is trivial because µ(a, b) = >
implies µ(a, b) = >.

Assume now that µ is antitone: µ ◦ ρA ◦ µ−1 ⊆ ρ−1
B . Then,

by Proposition 5 and Lemma 1, one has

µ ◦ ρA ◦ µ−1 = ≈B ◦ µ ◦ ≈A ◦ ρA ◦ ≈A ◦ µ−1 ◦ ≈B

= ≈B ◦ µ ◦ ρA ◦ µ−1 ◦ ≈B

⊆ ≈B ◦ ρ−1
B ◦ ≈B = ρB

−1

Therefore, µ is antitone.
We conclude this section with the following theorem that

describes how the quotient construction transforms any rela-
tional fuzzy Galois connection between fuzzy preposets into
another one between fuzzy posets. Then, an example illustrates
this construction.

Theorem 3: Let (µ, ν) be a relational fuzzy Galois connec-
tion between fuzzy preposets 〈A, ρA〉 and 〈B, ρB〉. If µ and
ν are total, then (µ, ν) is a relational fuzzy Galois connection
between the fuzzy posets 〈A, ρA〉 and 〈B, ρB〉.

Proof: If µ and ν are total, Lemma 2 ensures that µ and
ν are total as well, and therefore (µ, ν) is coupled. Thus, by
Theorem 1, it is sufficient to prove µ ◦ ρA−1 ◦ ν ⊆ ρB and
ν ◦ ρB−1 ◦ µ ⊆ ρA.

µ ◦ ρA−1 ◦ ν = ≈B ◦ µ ◦ ≈A ◦ ρ−1
A ◦ ≈A ◦ ν ◦ ≈B

= ≈B ◦ µ ◦ ρ−1
A ◦ ν ◦ ≈B

⊆ ≈B ◦ ρB ◦ ≈B = ρB

The proof of ν ◦ ρB−1 ◦ µ ⊆ ρA is analogous.

Example 2: Consider the underlying truth-values set L to
be the real unit interval with its residuated lattice structure
induced by the Łukasiewicz t-norm.

Consider the following fuzzy preposets 〈A, ρA〉 and 〈B, ρB〉
where A = {a1, a2, a3, a4}, B = {b1, b2, b3, b4} and the fuzzy
relations ρA and ρB given below:

ρA a1 a2 a3 a4

a1 1 1 1 1
a2 0.2 1 1 1
a3 0.2 1 1 1
a4 0 0.1 0.1 1

ρB b1 b2 b3 b4
b1 1 1 1 0.1
b2 1 1 1 0.1
b3 1 1 1 0.1
b4 1 1 1 1

The pair of fuzzy relations µ : A×B → L and ν : B×A→ L
given by the following tables constitutes a relational fuzzy
Galois connection between 〈A, ρA〉 and 〈B, ρB〉.

µ b1 b2 b3 b4
a1 1 0.1 0.1 0
a2 1 0.1 0.1 0
a3 0.1 1 0.1 0
a4 0 0 0 1

ν a1 a2 a3 a4

b1 0 1 0.4 0
b2 0 0.1 1 0.1
b3 0 1 0.1 0.1
b4 0 0 0 1

The fuzzy equivalence relations induced by ρA and ρB are
given below:
≈A a1 a2 a3 a4

a1 1 0.2 0.2 0
a2 0.2 1 1 0.1
a3 0.2 1 1 0.1
a4 0 0.1 0.1 1

≈B b1 b2 b3 b4
b1 1 1 1 0.1
b2 1 1 1 0.1
b3 1 1 1 0.1
b4 0.1 0.1 0.1 1

Then, the equivalence classes are the following:

a1 ={a1/1, a2/0.2, a3/0.2}
a2 = a3 ={a1/0.2, a2/1, a3/1, a4/0.1}

a4 ={a2/0.1, a3/0.1, a4/1}
b1 = b2 = b3 ={b1/1, b2/1, b3/1, b4/0.1}

b4 ={b1/0.1, b2/0.1, b3/0.1, b4/1}
The quotient relations are:

ρA a1 a2 a4

a1 1 1 1
a2 0.2 1 1
a4 0 0.1 1

ρB b1 b4
b1 1 0.1

b4 1 1

The pair of fuzzy relations µ : A×B → L and ν : B×A→ L
given by the following tables constitutes a relational fuzzy
Galois connection between the fuzzy posets 〈A, ρA〉 and
〈B, ρB〉.

µ b1 b4
a1 1 0
a2 1 0
a4 0 1

ν a1 a2 a4

b1 0 1 0

b4 0 0 1

VI. CONCLUSIONS AND FURTHER WORK

We have introduced the notion of relational fuzzy Galois
connection, in which the components of the connection are
not fuzzy functions but fuzzy relations satisfying certain
properties, among which the novelty is that the pair of relations
forming the connection should be coupled. We have also



proven that the provided construction naturally embeds Yao’s
notion of fuzzy Galois connection as a particular case.

Although the basic framework for the proposed notion of
relational fuzzy Galois connection is that of fuzzy preposets,
we have shown that it behaves properly with respect to the
formation of quotient over the fuzzy symmetric kernel relation,
thus, leading to connections between fuzzy posets.

As future work, we are planning to continue the line
initiated in [11], [12] and attempt the construction of the
residual, in the sense of relational fuzzy Galois connections,
to a given mapping between differently structured domain and
codomain, as stated in the introduction of this work.
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