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Abstract. Unlike monotone single-valued functions, multi-valued mappings may have none, one
or (possibly infinitely) many minimal fixed-points.

The contribution of this work is twofold. At first we overview and investigate about the existence
and computation of minimal fixed-points of multi-valued mappings, whose domain is a complete
lattice and whose range is its power set. Second, we show how these results are applied to a general
form of logic programs, where the truth space is a complete lattice. We show that a multi-valued
operator can be defined whose fixed-points are in one-to-one correspondence with the models of the
logic program.
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1. Introduction. It is well known that fixed-point theorems are useful in many
completely disparate and unrelated scientific branches and, thus, in computer sci-
ence. Among the main fixed-point results is the Tarski Theorem [48] (often called
Knaster-Tarski theorem) stating that the set of fixed-points of a monotone single-
valued function f : L → L, over a complete lattice 〈L,≤〉 is a complete lattice and
therefore has a least fixed-point.

The topic of this work is to overview and to investigate about the fixed-points
of multi-valued functions f : L → 2L (multi-valued functions are also called cor-
respondences, or set-valued functions in the literature). Such functions naturally
arise e.g., in the specification of the semantics of non-deterministic programming lan-
guages [7, 8, 11, 18, 32, 37, 38, 45], in game theory [6, 34, 46, 54] and disjunctive
logic programming [22, 28, 33, 43, 53], where these latter case motivated our work.
Informally, (i) in the first case the meaning of a non-deterministic1 program P may
be seen as a function p : S → 2S , where S is the set of states a program may assume.
The image of p is a finite non-empty set, as at a given step of a program execution,
due to a non-deterministic statement, more than one successive state is possible. The
semantics of a program is then related to the fixed-points of such functions (s ∈ p(s));
(ii) in the second case, a game is represented as a function g : S → 2S , where S is
the strategy space of the involved players and fixed-points (s ∈ g(s)) are related to
the so-called Nash equilibria of the game. The image of g is a non-empty (usually
finite) set, as at each step of the game, more than one incomparable strategic choice is
possible; and (iii) in the third case, models of disjunctive logic programs are related
to fixed-points (I ∈ TP(I)) of a function TP : L̂→ 2L̂, where L̂ is the set of interpre-
tations of a disjunctive logic program. Here, TP is a so-called immediate consequence
operator, which at each “step” provides a better approximation of the models of a
disjunctive logic program. The image of TP is a possibly empty, non-finite set as
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at each step of the model approximation computation, none, or potentially infinite
incomparable better approximations are possible.

We point out that, in all three cases, fixed-point computations may be seen
roughly as a tree, where a node is an element of the domain and the children of it are
the alternative (non-deterministic) choices provided by the image of the multi-valued
function.

Generally, multi-valued functions present the following fundamental challenge to
the ordinary fixed-point approach: unlike monotone single-valued functions, it is pos-
sible that none, one or (infinitely) many minimal fixed-points exist.

The contribution of this work is twofold:
• We provide conditions for the existence of fixed-points and minimal fixed-

points and show how to recursively obtain them in a slightly more general
setting as considered so far (such as the image of a multi-valed function may
be empty, see below). A summary of main findings in described in Table 3.1.
To the best of our knowledge, we have compared the results obtained with
respect to all related work using similar order-theoretic approaches; when a
reformulation or easier proof of a known result is presented, then appropriate
credit is given.

• The results are then applied to a general form of logic programs, encompass-
ing the disjunctive and many-valued extensions. The rules in such logic pro-
grams have the form g(B1, . . . , Bk)← f(A1, . . . , An), where f, g are arbitrary
computable functions over a complete lattice (which acts as the truth space)
and Bi and Aj are atoms. The form of the rules is sufficiently expressive to
generalize all approaches we are aware of in (monotone) many-valued logic
programming. The main difference of this application to e.g. semantics of
non-deterministic programming languages and game theory is that the image
of TP(I) may be empty or of infinite size, while in the former two cases both
p(s) and g(s) are non-empty and finite. We show that a multi-valued opera-
tor TP(I) can be defined whose fixed-points are in one-to-one correspondence
with the models of the logic program. The obtained relationship is novel, and
addresses some fundamental theoretical problems that have been neglected
so far in the logic programming literature. We conclude, by showing that
our results extend current well-known results for classical disjunctive logic
programs, where rules are of the form B1 ∨ . . . ∨Bk ← A1 ∧ . . . ∧An.

2. Preliminaries. We recall some basic definitions and notations:
With L = 〈L,≤〉, where ≤ is a partial order (x ≤ y may be read as “x approxi-

mates y”) over the non-empty set L, we denote a complete lattice, with join (meet)
operator ∨ (∧), least (greatest) element ⊥ (>).

Given S ⊆ L, with minS (maxS ) we denote the set of minimal (maximal)
elements in S and with

∧
S (

∨
S) the greatest lower bound (least upper bound) of

S. 2 A non-empty subset S of L is a sub-lattice of L if for any x, y of S, both x∨y and
x∧ y belong to S. A non-empty subset S of L is ∧-closed (∨-closed) if for any subset
U of S,

∧
x∈U x (

∨
x∈U x) belongs to S. Note that S is ∧-closed (∨-closed) iff S is a

complete meet semi-lattice (complete join semi-lattice). Furthermore, we say that S
is closed if S is both ∧-closed and ∨-closed, i.e. S is a complete sub-lattice of L. Given
two elements a, b ∈ L with a ≤ b, we denote by [a, b] the interval {x ∈ L | a ≤ x ≤ b}.
Clearly, L = 〈[a, b],≤〉 is a complete lattice as well. Finally, with L̄ = 〈L,≥〉 we

2We recall that
V
S =

V
s∈S s and

W
S =

W
s∈S s.
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denote the dual lattice of L = 〈L,≤〉, where x ≥ y iff y ≤ x. Of course, L̄ is a
complete lattice as well, where ≥ is the reversed order of ≤ and > (⊥) is the least
(greatest) element of L̄.

Two sets X and Y are equipollent iff there is a bijection from X to an Y . The
cardinality |X| of a set X is the least ordinal α such that there is a bijection between
X and α.

We use the notation (xα)α∈I , to denote a (possibly transfinite) non-empty se-
quence of elements xα ∈ L, where I is an ordinal. We say that the sequence is
increasing (decreasing) iff xα ≤ xα+1 (xα+1 ≤ xα), for all α ∈ I.

If there is an ordinal β ∈ I such that xβ = xα for all β ≤ α ∈ I, we say that
(xα)α∈I is eventually stationary or constant. A property we will frequently rely on is
the well known fact that:

Proposition 2.1. An increasing (decreasing) sequence (xα)α∈I of elements xα ∈
L with |I| > |L| has the property that there is an ordinal β ∈ I such that |β| ≤ |L|
and xβ = xα for all β ≤ α ∈ I (|S| is the cardinal of a set S).

For ease of presentation and by abuse of terminology, under the condition of Propo-
sition 2.1, we will say that the sequence (xα)α∈I converges to xβ .

A function f : L → L is monotone iff for all x, y ∈ L, x ≤ y implies f(x) ≤
f(y). f is inflationary iff for all x ∈ L, x ≤ f(x). A fixed-point of f is an element
x ∈ L such that f(x) = x. With Fix(f) we denote the set of fixed-points of f . f
is

∨
-preserving (

∧
-preserving) iff for all increasing (decreasing) sequences (xα)α∈I ,

f(
∨
α xα) =

∨
α f(xα) (f(

∧
α xα) =

∧
α f(xα)). f is limit preserving iff it is both∨

- and
∧

-preserving. It is easy to prove that
∨

- or
∧

-preserving functions are
monotone. However, a limit preserving (in particular a monotone) function needs not
be inflationary.

Example 1. Consider f : {0, 1} → {0, 1} with f(x) = 0,∀x ∈ {0, 1}, then f is
limit preserving and, thus, monotone, but 1 6≤ f(1) and, thus, f is not inflationary.

The Tarski theorem [48] establishes that a monotone function f : L→ L has a fixed-
point, the set of fixed-points of f is a complete lattice and, thus, f has a least and
a greatest fixed-point. The least (greatest) fixed-point can be obtained by transfinite
iteration of f over ⊥ (>). Furthermore, let Φ(f) = {x ∈ L : f(x) ≤ x}, Ψ(f) = {x ∈
L : x ≤ f(x)}, and, thus, > ∈ Φ(f), while ⊥ ∈ Ψ(f). Then the least fixed-point is∧

Φ(f), while the greatest fixed-point is
∨

Ψ(f). If f is inflationary then f has a
fixed-point (e.g., obtained by transfinite iteration of f over ⊥, also > ≤ f(>) = >),
and x ∈ Φ(f) iff x fixed-point of f . However, inflationary functions may not have a
least fixed-point.

Example 2. Consider L = [0, 1] and function f with f(0) = 1 and for x > 0,
f(x) = x. Then f is not monotone, is inflationary, all x > 0 are fixed-points,
Φ(f) = {x : x > 0},

∧
Φ(f) = 0 6∈ Φ(f), and 0 is not a fixed-point of f .

3. Multi-valued functions. Given L = 〈L,≤〉, a multi-valued function is a
function f : L → 2L (if for all x ∈ L, |f(x)| = 1 then f is single-valued). Note that
we do not require f(x) 6= ∅ for all x ∈ L. We say that x ∈ L is a fixed-point of f iff
x ∈ f(x). For instance,

Example 3. Let L = {0, 1, 2}. Consider f : L → 2L defined as f(0) = {0, 1, 2},
f(1) = {0, 1} and f(2) = {0}. Then 0 and 1 are fixed-points, whereas 2 is not a
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fixed-point.

Furthermore, we say that f is non-empty (resp. ∧-closed, ∨-closed) iff for all x ∈ L
we have that f(x) 6= ∅ (f(x) is resp. ∧-closed, ∨-closed).

In order to define the notion of (multi-valued) monotone function, as f(x) is now
a set of elements, we need to extend the partial order ≤ to sets of elements. There
are mainly three well-known pre-orders (reflexive, transitive but not antisymmetric),
namely the Smyth ordering, the Hoare ordering and the Egli-Milner ordering, which
have been proposed in the context of non-deterministic programming languages (see,
e.g. [1, 25]) 3:

X �S Y iff ∀y ∈ Y ∃x ∈ X s.t. x ≤ y (Smyth ordering) (3.1)
X �H Y iff ∀x ∈ X ∃y ∈ Y s.t. x ≤ y (Hoare ordering) (3.2)

X �EM Y iff X �S Y and X �H Y (Egli-Milner ordering) . (3.3)

These orderings may be read as follows: (i) X �S Y iff all y ∈ Y are approximated by
some x ∈ X, (ii) X �H Y iff all x ∈ X approximate some y ∈ Y ; and (iii) X �EM Y
iff all y ∈ Y are approximated by some x ∈ X and all x ∈ X approximate some y ∈ Y .

Clearly the Hoare order is equivalent to the Smyth order in the dual underlying
lattice. Indeed it is straightforward to show that:

Proposition 3.1. Let X,Y be two subsets of L. Then X �S Y in L iff Y �H X
in L̄.

As a consequence, many properties we state with respect to the Smyth-ordering
in L, have their dual with respect to the Hoare ordering in L̄.

f is Smyth-monotone, or simply S-monotone, iff for all x, y ∈ L, if x ≤ y then
f(x) �S f(y) holds. The notions of Hoare-monotone, or simply H-monotone, and Egli-
Milner-monotone, or simply EM-monotone, are defined similarly. By using Proposi-
tion 3.1, it is straightforward to prove that

Proposition 3.2. Let f : L → 2L be a multi-valued function. Then f is S-
monotone in L iff f is H-monotone in L̄.

We say that f is inflationary iff for all x, {x} �S f(x), i.e. all elements in f(x) are
greater or equal than x. Dually, we say that f is deflationary iff ∀x ∈ L, f(x) �H {x},
i.e. all elements in f(x) are smaller or equal than x. Of course, a deflationary function
is an inflationary function in the dual lattice L̄.

Proposition 3.3. Let f : L → 2L be a multi-valued function. Then f is defla-
tionary in L iff f is inflationary in L̄.

We next generalise the notion of limit preserving function to the multi-valued case.
A multi-valued function f : L → 2L is

∨
-preserving iff for all increasing sequences

(xα)α∈I ,

f(
∨
α

xα) = {y | there is (yα)α∈I s.t. yα ∈ f(xα) and y =
∨
α

yα} . (3.4)

3[37] describes another order, called the Plotkin order, which extends the Egli-Milner ordering.
However, we will not address it here.
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Dually, we say that f : L→ 2L is
∧

-preserving, iff for all decreasing sequences (xα)α∈I ,

f(
∧
α

xα) = {y | there is (yα)α∈I s.t. yα ∈ f(xα) and y =
∧
α

yα} . (3.5)

f is limit preserving iff it is both
∨

- and
∧

-preserving. For ease of presentation,
sometimes we use the notation

∨
α f(xα) (resp.

∧
α f(xα)) to denote the right hand

side of Equation (3.4) (resp. Equation (3.5)). Note that if for all x ∈ L, |f(x)| = 1
then the definition reduces to the usual one for single-valued functions.
Of course,

Proposition 3.4. Let f : L → 2L be a multi-valued function. Then f is
∧

-
preserving in L iff f is

∨
-preserving in L̄.

We can prove that:

Proposition 3.5. Consider a multi-valued function f : L→ 2L.
1. If f is

∨
-preserving then f is S-monotone;

2. If f is
∧

-preserving then f is H-monotone;
3. If f is limit preserving, then f is EM-monotone.

Proof. Case 1. Let x1 ≤ x2 and f
∨

-preserving. Then for the increasing sequence
x1 ≤ x2, f(x2) = f(x1 ∨ x2) = {y : there are yi ∈ f(xi) s.t. y = y1 ∨ y2} = X. If
f(x2) = ∅ then trivially f(x1) �S f(x2) = ∅. If f(x1) = ∅ then by definition X = ∅
and, thus, f(x2) = ∅. Therefore, ∅ = f(x1) �S f(x2) = ∅. Otherwise assume
f(x1) and f(x2) non-empty. Therefore, as f is

∨
-preserving, for y ∈ f(x2) = X there

are yi ∈ f(xi) (i = 1, 2) such that y = y1 ∨ y2. In particular, y1 ≤ y. Therefore,
f(x1) �S f(x2) and, thus, f is S-monotone.

Case 2. The proof is dual to case 1 (see appendix, Proposition A.1).
Case 3. Straightforward, by case 1. and case 2.

Note that a
∧

-preserving function needs not be S-monotone and, similarly, a
∨

-
preserving function needs not be H-monotone and, thus, a EM-monotone function
needs not be limit preserving.

Example 4. Consider L = {0, 1} with 0 ≤ 1. Then the multi-valued function
f : L → 2L, f(0) = ∅, f(1) = {1} is

∧
-preserving, but not S-monotone, as 0 ≤ 1

and f(0) = ∅ 6�S f(1) = {1}. Similarly, the multi-valued function g : L → 2L,
g(0) = {0}, g(1) = ∅ is

∨
-preserving, but not H-monotone, as 0 ≤ 1 and g(0) =

{0} 6�H g(1) = ∅.

But, we can easily show that:

Proposition 3.6. Consider a multi-valued function f : L → 2L and x1 ≤ x2

with f(x1) 6= ∅ 6= f(x2).
1. If f is

∧
-preserving then f(x1) �S f(x2);

2. If f is
∨

-preserving then f(x1) �H f(x2);
Proof. Case 1. For the decreasing sequence x2 ≥ x1, as f is

∧
-preserving, f(x1) =

f(x2 ∧ x1) = {y : there are yi ∈ f(xi) s.t. y = y2 ∧ y1} = X. Now, for y ∈ f(x2)
choose a y′ ∈ f(x1) 6= ∅ and consider y′′ = y∧y′. Therefore, y′′ ∈ X = f(x1), y′′ ≤ y
and, thus, f(x1) �S f(x2).

Case 2. Like for case 1 (see appendix, Proposition A.2).

Example 1 can be adapted to multi-valued functions and prove that a limit preserving
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(in particular a S-monotone) function needs not be inflationary.

Example 5. Consider f : {0, 1} → 2{0,1} such that for all x ∈ {0, 1}, f(x) = {0},
then f is limit preserving and, thus, S-monotone, but {1} 6�S f(1) = {0}.

We next want to investigate about the existence of (minimal) fixed-points of multi-
valued functions. Similarly to the single-valued case, for f : L→ 2L, let us define

Φ(f) = {x ∈ L : f(x) �S {x}}
Ψ(f) = {x ∈ L : {x} �H f(x)} .

Note that, unlike the single-valued case, not necessarily > ∈ Φ(f) (i.e., if f(>) = ∅).
Similarly, ⊥ ∈ Ψ(f) iff f(⊥) 6= ∅. Also, if f(x) = ∅ then x 6∈ Φ(f), i.e. if x ∈ Φ(f)
then f(x) 6= ∅. Finally, note that if f(>) 6= ∅ then > ∈ Φ(f) (we will use these
straightforward facts often in the paper). Furthermore, note that Φ(f) is related
to the �S order, while Ψ(f) is related to �H . One might wonder why we did not
consider, for instance, ΦH(f) = {x | f(x) �H {x}}. As we will see later,

∧
Φ(f)

relates to the least fixed-point of f (if it exists), while
∨

Ψ(f) relates to the greatest
fixed-point of f . Example 6 shows that

∧
ΦH(f) is not related to the least fixed-point

of f .

Example 6. Consider L = {0, 1} and the multi-valued function f : L → 2L,
f(0) = {0, 1}, f(1) = {1}. Then f is EM-monotone, Fix(f) = {0, 1}, but ΦH(f) =
{x | f(x) �H {x}} = {1} and 1 =

∧
ΦH(f) is not the least fixed-point of f .

We can show that:

Proposition 3.7. Let f : L→ 2L be a multi-valued function.
1. If f is inflationary then x ∈ Φ(f) iff x fixed-point of f .
2. If f is deflationary then x ∈ Ψ(f) iff x fixed-point of f .

Proof. Case 1. Let x ∈ Φ(f). As f is inflationary, {x} �S f(x) �S {x} and, thus,
for x ∈ {x} there is y ∈ f(x) such that x ≤ y ≤ x, i.e. x = y ∈ f(x). Vice-versa, if
x ∈ f(x) then f(x) �S {x} and, thus, x ∈ Φ(f).

Case 2. Similar to case 1 (see appendix, Proposition A.3).

Note that Proposition 3.7 does not hold if a function is e.g. S-monotone, but not
inflationary.

Example 7. In Example 3, f is S-monotone, not inflationary with 2 ∈ Φ(f), but
2 6∈ f(2).

The following examples show that a multi-valued S-monotone function f : L → 2L

may have several minimal fixed-points or even no minimal fixed-point at all.

Example 8. Consider Belnap’s truth space FOUR [3], L = {⊥, f, t,>} with
f, t incomparable. Here, besides f for ‘false’ and t for ‘true’, ⊥ stands for ‘unknown’,
whereas > stands for inconsistency. ≤ is the so-called knowledge order. Consider the
multi-valued function g : L → 2L defined as g(⊥) = {f, t,>}, g(f) = {f,>}, g(t) =
{t,>} and g(>) = {>}. Then g is EM-monotone, inflationary and

∨
-preserving.

Furthermore, f ∈ g(f), t ∈ g(t) and > ∈ g(>), but ⊥ 6∈ g(⊥) and, thus, f, t and > are
fixed-points of g, while ⊥ is not. The minimal fixed-points are f and t. Note that not
for all x, g(x) has least element (e.g., g(⊥)). Additionally, note that Φ(g) = {f, t,>},∧

Φ(g) = ⊥ 6∈ Φ(g) and min Φ(g) = {f, t}. Therefore, unlike the single-valued case,∧
Φ(g) is not a fixed-point of g.

The four-element Belnap’s truth space FOUR was introduced as a very suitable
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setting for computerized reasoning; it has a bilattice structure, since two orderings
can be naturally defined and, as a result, it can be viewed as a class of truth values
that can accommodate incomplete and inconsistent information and in certain cases
default information.

Example 9. Let L = [0, 1]. Consider the multi-valued function f : L → 2L

defined as f(x) = {y | y > 0, y ≥ x)}. Then f is non-empty,
∨

-preserving and
inflationary. Furthermore, for all x > 0, x ∈ f(x), but 0 6∈ f(0) and, thus, all x > 0
are fixed-points of f , while 0 is not. Therefore, f has no minimal fixed-point. Also,
note that Φ(f) = {x | x > 0},

∧
Φ(f) = 0 6∈ Φ(f) and min Φ(f) = ∅. Like for

Example 8, 0 =
∧

Φ(f) is not a fixed-point of f , but now min Φ(f) = ∅. Also note,
that f(0) has not least element.

Similarly, for g(x) = {y | y < 1, y ≤ x}. Then g is non-empty,
∧

-preserving and
deflationary. Ψ(g) = {x | x < 1},

∨
Ψ(g) = 1 6∈ Ψ(g), max Ψ(g) = ∅ and 1 6∈ g(1).

Hence, g has no greatest fixed-point.
Likewise, h(x) = {y | 0 < y < 1}. Then h is non-empty and EM-monotone.

Φ(h) = {x | x > 0}, Ψ(h) = {x | x < 1}, and h has neither a least nor a greatest
fixed-point.

Like the single-valued case, a multi-valued inflationary function may not have a min-
imal fixed-point, even if f(x) has least element for all x ∈ L.

Example 10. Consider f : [0, 1] → 2[0,1], where f(0) = {1} and for x > 0,
f(x) = {x}. Then f is not S-monotone, but is inflationary. Also, f(x) has least
element for all x ∈ L. All x > 0 are fixed-points as x ∈ f(x), Φ(f) = {x | x > 0}
(in accordance with Proposition 3.7), and

∧
Φ(f) = 0, but 0 6∈ f(0). Note that

min Φ(f) = ∅.

However, we will show later in Proposition 3.10 that a multi-valued S-monotone func-
tion such that f(x) has least element for all x ∈ L, has indeed a least fixed-point.

We next show that if Φ(f) has minimals then a S-monotone or inflationary func-
tion f has minimal fixed-points.

Proposition 3.8. Let f : L→ 2L be a multi-valued function.
1. If f is a S-monotone or inflationary multi-valued function, and Φ(f) has

minimals then all y ∈ min Φ(f) are minimal fixed-points of f . In particular,
if x =

∧
Φ(f) ∈ Φ(f) then x is the least fixed-point of f ;

2. If f is a H-monotone or deflationary multi-valued function, and Ψ(f) has
maximals then all y ∈ max Ψ(f) are maximal fixed-points of f . In particular,
if x =

∨
Ψ(f) ∈ Ψ(f) then x is the greatest fixed-point of f .

Proof. Case 1. To begin with, let us show that any y ∈ min Φ(f) is a fixed-point
of f . As Φ(f) has minimals, min Φ(f) 6= ∅. So, let y ∈ min Φ(f). As ∅ 6= f(y) �S
{y}, thus, there is y′ ∈ f(y) such that y′ ≤ y. If f S-monotone, then f(y′) �S f(y)
and, thus, for y′ ∈ f(y) there is y′′ ∈ f(y′) such that y′′ ≤ y′. Therefore, f(y′) �S
{y′} and, thus, y′ ∈ Φ(f). But y ∈ min Φ(f), so it cannot be y′ < y. Therefore,
y = y′ ∈ f(y), i.e. y is a fixed-point of f . If f is inflationary, by Proposition 3.7, y is
a fixed-point of f .

Now, let us show that any y ∈ min Φ(f) is also a minimal fixed-point of f . So,
consider y ∈ min Φ(f) and, thus, y is a fixed-point of f . Now, consider another fixed-
point x ∈ f(x). Therefore, f(x) �S {x} and, thus, x ∈ Φ(f). But y ∈ min Φ(f) so it
cannot be x < y and, thus, y is a minimal fixed-point of f .

Finally, consider x =
∧

Φ(f). By hypothesis, x ∈ Φ(f) and x is least element
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of Φ(f). Hence, we know that x ∈ f(x). Let y ∈ f(y). Hence y ∈ Φ(f), and, thus,
x ≤ y. As a consequence, x is the least fixed-point of f .

Case 2. Similar to case 1 (see appendix, Proposition A.4).

Note that Φ(f) in Examples 3 and 8 has minimals, while Φ(f) in Example 9 does not.
The following proposition establishes a condition on a S-monotone function f

under which Φ(f) has minimals and, thus, minimal fixed-points.

Proposition 3.9. Let f : L→ 2L be a multi-valued function.
1. If f is a

∧
-preserving multi-valued function with Φ(f) 6= ∅ then Φ(f) has

minimals and, thus, minimal fixed-points;
2. If f is a

∨
-preserving multi-valued function with Ψ(f) 6= ∅ then Ψ(f) has

maximals and, thus, maximal fixed-points.
Proof. Case 1. By hypothesis Φ(f) 6= ∅. Let (xα)α∈I be a decreasing se-

quence of xα ∈ Φ(f) and let x̄ =
∧
α xα. As f is

∧
-preserving, by definition f(x̄) =

{y : there is (yα)α∈I s.t. yα ∈ f(xα) and y =
∧
α yα}. Now, for any α, xα+1 ≤ xα, by

Proposition 3.6 and, as xα ∈ Φ(f), f(xα+1) �S f(xα) �S {xα}. Therefore, for any xα
there is yα ∈ f(xα) and yα+1 ∈ f(xα+1) such that yα+1 ≤ yα ≤ xα. Note that if α is a
limit ordinal then, as xα ≤ xβ for all β < α, it follows that f(xα) �S f(xβ) �S {xβ}
and, thus, yα ≤ yβ ≤ xβ for all β < α. Therefore, there is a decreasing sequence
(yα)α∈I of elements yα ∈ f(xα) such that ȳ =

∧
α yα ≤

∧
α xα = x̄. By definition of

f(x̄), ȳ ∈ f(x̄) and, thus, f(x̄) �S {x̄}. Therefore x̄ ∈ Φ(f) and, thus, every decreas-
ing sequence has a lower bound in Φ(f). So, by Zorn’s lemma, Φ(f) has minimals,
which by Proposition 3.8 are also minimal fixed-points.

Case 2. As for case 1 (see appendix, Proposition A.5).

The converse of Proposition 3.9 above is not true.

Example 11. Consider L = {0, 0.5, 1}, where f : L → 2L with f(0) = {0},
f(0.5) = {0.5}, and f(1) = {0, 1}. Then Φ(f) = L has minimals, but f is not S-
monotone: 0.5 ≤ 1 but f(0.5) 6�S f(1). Therefore, by Proposition 3.6, f cannot be∧

-preserving.

One might wonder whether a S-monotone f : L→ 2L such that for all x ∈ L, f(x) has
minimals implies that Φ(f) has minimals. This is not true as the following example
shows.

Example 12. Consider Y = {yα : α ∈ ω}, Y antichain, X = {xα : α ∈ ω},
xα+1 ≤ xα, x̄ =

∧
α xα, yα ≤ xα, each pair x̄, yα incomparable, L = {x̄} ∪X ∪ Y ∪

{⊥,>}, and f : L→ 2L with f(⊥) = Y , f(x̄) = Y , f(xα) = {xα}, f(yα) = {xα} and
f(>) = {>}. Then f S-monotone, for all x ∈ L, f(x) has minimals, Φ(f) = X ∪{>}
and (xα)α∈ω is a decreasing sequence of elements in Φ(f). As neither x̄ nor ⊥ is in
Φ(f), Φ(f) does not have minimals.

However, we can prove that:

Proposition 3.10. Let f : L→ 2L be a multi-valued function.
1. If f is S-monotone and for all x ∈ L, f(x) has least element then f has least

fixed-point;
2. If f is H-monotone and for all x ∈ L, f(x) has greatest element then f has

greatest fixed-point.
Proof. Case 1. As for all x ∈ L, f(x) has least element, by definition

∧
f(x) ∈

f(x) 6= ∅. Therefore, Φ(f) 6= ∅ as ∅ 6= f(>) �S {>}. Consider a =
∧
c∈Φ(f) c. If
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a ∈ Φ(f) then by Proposition 3.8, a is the least fixed-point of f . So, let us show
that a ∈ Φ(f). For c ∈ Φ(f) there is a xc ∈ f(c) such that xc ≤ c. As a ≤ c
and f is S-monotone, f(a) �S f(c) and, thus, for xc ∈ f(c) there is yc ∈ f(a)
such that yc ≤ xc ≤ c. Since f(a) has least element, there is y ∈ f(a) such that
y ≤

∧
c∈Φ(f) yc ≤

∧
c∈Φ(f) xc ≤

∧
c∈Φ(f) c = a. Hence, f(a) �S {a}, i.e. a ∈ Φ(f).

Case 2. As for case 1 (see appendix, Proposition A.6).

Note that if e.g. f(x) has a least element for all x ∈ L then this does not imply
necessarily that f is

∧
-preserving or

∨
-preserving.

Example 13. Consider Belnap’s truth space FOUR, L = {f, t,⊥,>}. Let
h(>) = {f}, h(t) = {⊥, f}, h(f) = {⊥, t}, h(⊥) = {⊥}. Then for all x ∈ L, h(x)
has least element. Consider the decreasing sequence (>, f). Then h(>∧ f) = h(f) =
{⊥, t}, while h(>) ∧ h(f) = {⊥} and, thus, h is not

∧
-preserving. Consider the

increasing sequence (f,>). Then h(f ∨>) = h(>) = {f}, while h(f)∨h(>) = {f,>}
and, thus, h is not

∨
-preserving.

The following example shows that e.g. a H-monotone function such that for all x ∈ L,
f(x) has least element, does not imply that f has least fixed-point.

Example 14. Consider the lattice FOUR as in Example 13. Let g(⊥) =
{t}, g(f) = {f, t,⊥}, g(t) = {f, t,⊥}, g(>) = {>}. g is H-monotone, but not S-
monotone. Furthermore, for all x ∈ L, g(x) has least element. As Fix(g) = {f, t,>},
g has no least fixed-point.

The following example shows that a H-monotone or S-monotone non-empty function
may not have a fixed-point at all.

Example 15. Consider L = [0, 1] and multi-valued function f , with f(x) =
{(x + 1)/2} for x < 1 and f(1) = {1 − 1/n | n = 1, 2, . . .}. Then f is H-monotone
without any fixed-point.

Similarly, let g(x) = {x/2} for x > 0 and g(0) = {1/n | n = 1, 2, . . .}. Then g is
S-monotone without any fixed-point.

Next, we describe properties about the structure of the set of fixed-points. The
following example shows that the meet of two fixed-points of a monotone multi-valued
function may not be a fixed-point and, thus, the set of fixed-points may not be a sub-
lattice.

Example 16. Consider L = {f, t,⊥,>, c}, where ⊥ ≤ c, c ≤ f ≤ > and
c ≤ t ≤ >. Let g(⊥) = {⊥}, g(c) = {⊥}, g(t) = {t}, g(f) = {f}, g(>) = {>}. Then
g is EM-monotone, limit preserving, deflationary, but not inflationary, and for all
x ∈ L, g(x) is a closed sub-lattice of L. However, Fix(g) = {⊥,>, f, t} is not a
sub-lattice of L, e.g. f, t ∈ Fix(f), but c = f ∧ t 6∈ Fix(f) (Fix(f) is even not a meet
semi-lattice).

However, we can show that:

Proposition 3.11. Let f : L → 2L be a S-monotone, non-empty and ∧-closed
multi-valued function. Then

1. Φ(f) is ∧-closed;
2. f has a least fixed-point.

Proof. Note that Φ(f) 6= ∅ as ∅ 6= f(>) �S {>}.
Point 1. Consider a subset S of Φ(f) and a =

∧
S. Let us show that a ∈ Φ(f).

We know that for each c ∈ S, f(c) �S {c} holds, i.e. there is xc ∈ f(c) such that
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xc ≤ c. But, f is S-monotone and, thus, from a ≤ c, f(a) �S f(c) �S {c} follows.
That is, there is yc ∈ f(a) such that yc ≤ xc ≤ c. Let y =

∧
c∈S yc. As f is ∧-closed,

y ∈ f(a) follows. Therefore, y =
∧
c∈S yc ≤

∧
c∈S c = a, f(a) �S {a} and, thus,

a ∈ Φ(f). Therefore, Φ(f) is ∧-closed.
Point 2. From point 1, Φ(f) has least element a and, thus, by Proposition 3.8, f

has a as least fixed-point.

Dually, we have

Proposition 3.12. Let f : L → 2L be a H-monotone, non-empty and ∨-closed
multi-valued function. Then

1. Ψ(f) is ∨-closed;
2. f has a greatest fixed-point.

Proof. Dual of proof of Proposition 3.11 (see appendix, Proposition A.7).

Clearly, from Proposition 3.11 and 3.12 we have immediately:

Proposition 3.13. Let f : L → 2L be a EM-monotone multi-valued function
such that for any x ∈ L, f(x) is non-empty closed sub-lattice of L. Then f has a least
fixed-point and a greatest fixed-point.

Also, it follows immediately from Proposition 3.7 that

Proposition 3.14. Let f : L→ 2L be a non-empty multi-valued function. Then
1. if f is S-monotone, inflationary and ∧-closed then Fix(f) is non-empty and
∧-closed, and, thus has a least element;

2. if f is H-monotone, deflationary and ∨-closed then Fix(f) is non-empty and
∨-closed and, thus has a greatest element.

Note that if f is both inflationary and deflationary then for all x ∈ L such that
f(x) 6= ∅, we can easily show that f(x) = {x}, i.e. f is a single-valued, constant, limit
preserving function and each such x is a fixed-point, and, thus, are not interesting.

We have seen in Proposition 3.14 that under rather strong conditions, we have a
rather strong structure on the set of fixed-points (e.g., the conjunction of two fixed-
points is a fixed-point). On the other hand, Example 16 shows that e.g. if we omit the
inflationary condition then Fix(f) is not ∧-closed (e.g., the conjunction of two fixed-
points needs not be a fixed-point) and, thus, Fix(f) cannot be a closed sub-lattice
of L.

The following proposition, due to [54] establishes that the set of fixed-points is a
complete lattice, though not a closed sub-lattice.

Proposition 3.15 (Zhou [54]). Let f : L→ 2L be a multi-valued function. If f
is EM-monotone and for any x ∈ L, f(x) is non-empty closed sub-lattice of L, then
Fix(f) is a non-empty complete lattice.

We next look at limit preserving functions and their impact to the set of fixed-points.
We first notice that

Proposition 3.16. Let f : L→ 2L be a multi-valued function. Then
1. if f is

∧
-preserving then f is ∧-closed;

2. if f is
∨

-preserving then f is ∨-closed;
3. if f is limit-preserving then for any x ∈ L, f(x) is a closed sub-lattice of L.

Proof. Point 1. Consider x ∈ L. If f(x) is empty then it is also ∧-closed.
Otherwise, consider any subset of f(x) in the form of a sequence (yα)α∈I of elements
yα ∈ f(x). We show that f(x) is ∧-closed by showing that y =

∧
α∈I yα ∈ f(x).
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So, consider the decreasing sequence (xα)α∈I , where x = xα, for all α ∈ I. By
construction, x =

∧
α∈I xα. As f is

∧
-preserving, we have that

f(x) = f(
∧
α xα)

= {z | there is (zα)α∈I s.t. zα ∈ f(xα) and z =
∧
α zα}

= {z | there is (zα)α∈I s.t. zα ∈ f(x) and z =
∧
α zα} .

Therefore, as for (yα)α∈I we have yα ∈ f(x), it follows that y =
∧
α∈I yα ∈

f(
∧
α xα) = f(x), which concludes.
The other points can be shown similarly.

Note that the converse in Proposition 3.16 does not hold. For instance, in Example 14,
the function g is such that for all x ∈ L, g(x) is a closed sub-lattice, but g is not

∧
-

preserving (as g is not S-monotone).
We already know from Proposition 3.9 that if f is

∧
-preserving and Φ(f) 6= ∅

(e.g. f(>) 6= ∅) then f has minimal fixed-points and, similarly, from Proposition 3.9
that if f is

∨
-preserving and Ψ(f) 6= ∅ (e.g. f(⊥) 6= ∅) then f has maximal fixed-

points. By further relying on Proposition 3.14 and 3.16, we have:

Proposition 3.17. Let f : L→ 2L be a non-empty multi-valued function. Then
1. if f is

∧
-preserving and inflationary then Fix(f) is non-empty, ∧-closed and,

thus has a least element;
2. if f is

∨
-preserving and deflationary then Fix(f) is non-empty, ∨-closed and,

thus has a greatest element;
3. if f is limit preserving then Fix(f) is a non-empty complete lattice.

Note that the condition for non-emptiness in the above proposition is mandatory as
e.g. a

∧
-preserving function f may not necessarily imply that f is non-empty, as the

example below shows. This example also shows that Proposition 3.17 does neither
subsume nor is in contrast with Proposition 3.8.

Example 17. Consider the lattice FOUR. Let g be multi-valued function on
L such that g(⊥) = ∅, g(>) = {>}, g(f) = {f}, and g(t) = {t}. It can be easily
verified that g is

∧
-preserving, deflationary, though Fix(g) = {f, t,>} and, thus, no

least fixed-point exists. g has two minimal fixed-points instead.

As already pointed out, we are more interested in cases in which f(x) may be empty
for some x ∈ L. The literature we are aware of does not report results in such
cases [6, 22, 34, 46, 54]. The following result (compare to Proposition 3.15), reveals
the structure of the set of fixed-points for limit-preserving functions under weaker
conditions than those in Proposition 3.17. It says that the set of fixed-points of
a limit-preserving function, if not empty, is a complete multilattice. A complete
multilattice [4, 30, 31] is a partially ordered set M = 〈M,≤〉, such that for every
subset X ⊆ M , the set of upper (resp. lower) bounds of X has minimal (resp.
maximal) elements, which are called multi-suprema (resp. multi-infima). The sets of
multi-suprema and multi-infima of a set X are denoted multsup(X) and multinf(X).

Proposition 3.18. Let f : L → 2L be a multi-valued function. If f is limit-
preserving and Fix(f) is non-empty then Fix(f) is a complete multilattice.

Proof. The proof is inspired on the one for Proposition 3.15.
Let us show that 〈Fix(f),≤〉 is a complete multilattice. By assumption, Fix(f)

is non-empty, by Proposition 3.5, f is EM-monotone, and by Proposition 3.16, for
any x ∈ L, f(x) is a closed sub-lattice of L. Let S ⊆ Fix(f). Let us show that the
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Table 3.1
Main results about Fix(f).

Prop.
V

-pr.
W

-pr. S-mo. H-mo. f(x) infl. defl. Φ(f) Ψ(f) F ix(f)
3.7 • 6= ∅ 6= ∅
3.7 • 6= ∅ 6= ∅
3.8 • min min
3.8 •

V V
3.8 • max max
3.8 •

W W
3.8 • min min
3.8 •

V V
3.8 • max max
3.8 •

W W
3.9 • 6= ∅ min
3.9 • 6= ∅ max
3.10 •

V V
3.10 •

W W
3.11 • 6= ∅,∧-cl.

V
3.12 • 6= ∅,∨-cl.

W
3.14 • 6= ∅,∧-cl. • 6= ∅,∧-cl.
3.14 • 6= ∅,∨-cl. • 6= ∅,∨-cl.
3.15 • • 6= ∅, sub-latt. 6= ∅, compl. latt.
3.17 • 6= ∅ • 6= ∅,∧-cl.
3.17 • 6= ∅ • 6= ∅,∨-cl.
3.17 • • 6= ∅ 6= ∅, compl. latt.
3.18 • • compl. multilatt.

set multsup(S) is non-empty in 〈Fix(f),≤〉. So, consider a =
∨
S =

∨
c∈S c and the

complete lattice B = 〈[a,>],≤〉. Let g be the multi-valued function from [a,>] to
2[a,>] defined by g(s) = f(s) ∩ [a,>] for all s ∈ [a,>]. Since both f and h, which
assigns to each s ∈ [a,>] the constant interval [a,>], are

∧
-preserving on S, it is not

difficult to check that g = f ∩ h is
∧

-preserving on [a,>].
Now, let’s show that Φ(g) 6= ∅. For c ∈ S, as c ≤ a and f is H-monotone,

f(c) �H f(a) follows. Hence, for c ∈ f(c) there is xc ∈ f(a) such that c ≤ xc.
Consider b =

∨
c∈S xc. Therefore, a =

∨
c∈S c ≤

∨
c∈S xc = b. We show now that

b ∈ f(a). Consider the sequence (a, a, . . . , a) of length |S|. As f is limit-preserving
and all xc ∈ f(a), we have that b =

∨
c∈S xc ∈ f(a ∨ a ∨ . . . ∨ a) = f(a), i.e. b ∈ f(a).

Now, consider s ∈ [a,>]. As a ≤ s and f is H-monotone, f(a) �H f(s) follows, i.e. for
b ∈ f(a) there is sb ∈ f(s) such that a ≤ b ≤ sb. It follows that g(s) = f(s)∩[a,>] 6= ∅
for all s ∈ [a,>]. In particular, g(>) 6= ∅ and, thus, g(>) �S {>}, i.e. > ∈ Φ(g) 6= ∅.

As a consequence, by Proposition 3.9, g has minimal fixed-points S′. Obviously,
as Fix(g) = Fix(f) ∩ [a,>], any a′ ∈ S′ is also a fixed-point of f with a ≤ a′. In
fact, a′ is a minimal fixed-point of f which is an upper bound of all elements of S; in
other words, a′ ∈ multsup(S) and a′ ∈ Fix(f), which concludes.

Similarly, it can be shown that multinf(S) is non-empty in 〈Fix(f),≤〉 and, thus,
we can conclude that 〈Fix(f),≤〉 is a complete multilattice.

Note that by Proposition 3.9, in Proposition 3.18 above, Φ(f) 6= ∅ guarantees that
Fix(f) is non-empty.

For convenience, Table 3.1 reports a summary of main results about Fix(f) re-
ported in this section. In the table min (max) means that the set contains minimals
(maximals), while

∧
(
∨

) means that the set contains least (greatest) element.
For completeness, Table 3.2 summarizes instead the impact of the multi-valued func-
tions in the examples on the set of fixed-points.

3.1. Orbits. We next describe how to obtain minimal fixed-points (if they exist)
of multi-valued functions f : L → 2L. An orbit 4 of f is a (possibly transfinite)

4The definition is a generalization of the usual iteration of f over ⊥ for single-valued functions.
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Table 3.2
Impact of multi-valued functions in the examples on Fix(f).

Ex.
V

-pr.
W

-pr. S-mo. H-mo. f(x) infl. defl. Φ(f) Ψ(f) F ix(f)

10
V

,
W

• 6= ∅,
6 ∃

V W W
,

6 ∃min

8 • • •
W

• ∃min,
6 ∃

V W W
,

∃min,
6 ∃

V
9 •

W
•

W
,

6 ∃min
W W

,
6 ∃min

9 •
V

•
V V

,
6 ∃max

V
,

6 ∃max

9 • •
6= ∅,
6 ∃min
6 ∃max

6= ∅,
6 ∃min
6 ∃max

6= ∅,
6 ∃min
6 ∃max

6= ∅,
6 ∃min
6 ∃max

14 . •
V ∃min

6 ∃
V compl. latt.

6 ∃minW
15 •

V W V
= ∅

15 •
W W V

= ∅

16 • • closed
sub.-latt. • compl.

latt.
V ∃

V
,

∃
W

,
¬∧-cl.

17 • • ∃minW ∃minW ∃min,W

sequence (xα)α∈I of elements xα ∈ L, with |I| > |L| and

x0 = ⊥
xα+1 ∈ f(xα)
xλ =

∨
α<λ xα, for limit ordinals λ .

Some comments are in order:

• due to the non-deterministic choice of xα+1, f may have many possible orbits;
• for the sake of this paper we consider the starting point of the orbit x0 =
⊥. However, this can be made more flexible by considering any x0 = a ∈
L as starting point. We consider x0 = ⊥ as we are interested in how to
obtain minimal fixed-points. Of course, a special and interesting alternative
case is x0 = > (in that case, we postulate that for limit ordinal λ, xλ =∧
α<λ xα), which relates to the computation of maximal fixed-points. We call

such sequences >-orbits;
• a sequence x0, x1, . . . , xα, where xβ+1 ∈ f(xβ) for β < α and f(xα) = ∅ is

not an orbit;
• for convenience, we require that the length |I| of an orbit is strictly greater

than |L|, so that, if the orbit is increasing (decreasing), we may apply Proposi-
tion 2.1, which guarantees then that the orbit becomes eventually stationary;

• if an orbit (xα)α∈I becomes stationary, i.e., there is β ∈ I such that |β| ≤ |L|
and xα = xβ for all β ≤ α ∈ I, then by construction xβ = xβ+1 ∈ f(xβ) and,
thus, xβ is a fixed-point of f ;

• as any increasing (decreasing) orbit converges to a fixed-point, it is clear that
if we can guarantee that such an orbit exists then also the existence of a
fixed-point is shown;

• of course, from an practical point of view, whenever we try to build an orbit,
we may stop as soon as we have xβ = xβ+1.

Example 18. Consider the lattice FOUR. Let g be multi-valued function such
that g(⊥) = {f, t}, g(f) = {f, t}, g(t) = {f, t}, g(>) = {>}. It can easily be verified
that g is S-monotone and Fix(g) = {f, t,>}. Then, for instance, we may have the
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following orbits:

o1 = (⊥, f, f, f, f)
o2 = (⊥, t, t, t, t, t)
o3 = (⊥, f, t, t, t)
o4 = (⊥, t, f, f, t)
o5 = (⊥, f, t, f, t, f, t) .

As already pointed out, unlike the single-valued case, Examples 9 and 18 show that
e.g. S-monotonicity does not guarantee the existence of a minimal fixed-point. Also, S-
monotonicity does not guarantee that an orbit (xα)α∈I becomes eventually stationary
(consider Example 3 and the orbit (0, 2, 0, 2, . . .)) or in Example 18 orbit o5. Note
also that in Example 18 no orbit converges to the fixed-point >.

Our main contribution in this context is the following:

Proposition 3.19. For a multi-valued function f ,
1. if f is inflationary then each orbit is increasing;
2. each increasing orbit converges to a fixed-point of f (if no fixed-point exists

then there is no orbit);
3. if f is S-monotone and inflationary then for any minimal fixed-point of f

there is an orbit converging to it.
Proof. Let (xα)α∈I be an orbit of f . Recall that for ordinal α then xα+1 ∈

f(xα) 6= ∅. As f is inflationary, {xα} �S f(xα). But, by definition of �S , for
xα+1 ∈ f(xα), xα ≤ xα+1. For a limit ordinal λ, xλ =

∨
α<λ xα, {xλ} �S f(xλ) 6= ∅

and, thus, there is xλ+1 ∈ f(xλ) such that xλ ≤ xλ+1.
For the second point, as (xα)α∈I is an increasing sequence and |I| > |L|, by

Proposition 2.1 there is an ordinal α such that xα = xα+1 ∈ f(xα). That is, xα is a
fixed-point of f .

Finally, for the third point, assume x̄ ∈ f(x̄) is a minimal fixed-point of f . Now,
let us show on (transfinite) induction on α that there is an increasing orbit (xα)α∈I
of f s.t. xα ≤ x̄ for all α.
α = 0. x0 = ⊥ ≤ x̄.
α successor ordinal. By induction, xα ≤ x̄. As f is S-monotone and inflationary,

{xα} �S f(xα) �S f(x̄). But, x̄ ∈ f(x̄), so we can choose xα+1 ∈ f(xα) s.t.
xα ≤ xα+1 ≤ x̄.

α limit ordinal. By induction, xβ ≤ x̄ holds for all β < α, which implies that
xα =

∨
β<α xβ ≤ x̄.

The sequence (xα)α∈I is increasing and, thus, by Proposition 2.1 there is an ordinal
α such that xα = xα+1 ∈ f(xα). So, xα is a fixed-point of f with xα ≤ x̄. As x̄ is a
minimal, xα = x̄.

Example 19. Consider the lattice FOUR. Let g be a multi-valued function such
that g(⊥) = {f, t}, g(f) = {f}, g(t) = {t}, g(>) = {>}. It can easily be verified that
g is S-monotone and inflationary and Fix(g) = {f, t,>}. Then, we may have the
following orbits:

o1 = (⊥, f, f, f, f)
o2 = (⊥, t, t, t, t, t) .
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Orbit o1 converges to the minimal fixed-point f , while o2 converges to the minimal
fixed-point t.

Of course, the dual of Proposition 3.19 holds as well.

Proposition 3.20. For a multi-valued function f ,
1. if f is deflationary then each >-orbit is decreasing;
2. each decreasing >-orbit converges to a fixed-point of f (if no fixed-point exists

then there is no orbit);
3. if f is H-monotone and deflationary then for any maximal fixed-point of f

there is a >-orbit converging to it.
Proof. The proof is dual to Proposition 3.19 (see appendix, Proposition A.8).

By a straightforward adaptation of the proof of Point 3 in Proposition 3.19, we can
show that:

Proposition 3.21. Let f be a H-monotone, non-empty multi-valued function,
such that for any increasing sequence (yα)α∈I there is y ∈ f(

∨
α∈I yα) such that yα ≤ y

for all α ∈ I. Then, there is an increasing orbit and, thus, a fixed-point of f .
Proof. Let us show on (transfinite) induction on α that there is an increasing orbit

(xα)α∈I of f and, thus, by Proposition 3.19, point 2., converging to a fixed-point of f .
α = 0. x0 = ⊥.
α successor ordinal. By induction, xα−1 ≤ xα and xα ∈ f(xα−1). As f is H-

monotone, we have f(xα−1) �H f(xα). So, for xα ∈ f(xα−1), there is xα+1 ∈
f(xα) s.t. xα ≤ xα+1.

α limit ordinal. Consider (xβ)β∈α. By hypothesis, there is xα+1 ∈ f(
∨
β∈α xβ) with

xβ ≤ xα+1 for all β < α and, thus, xα =
∨
β<α xβ ≤ xα+1.

Note that the condition on the limit is essential as Example 15 shows: (0, 0.5, 0.75, . . .)
is the increasing sequence that can be built, which converges to 1. But, there is no
x ∈ f(1) such that 1 ≤ x. The dual of Proposition 3.21 is:

Proposition 3.22 (Khamsi [22]). Let f be a S-monotone, non-empty multi-
valued function such that for any decreasing sequence (yα)α∈I there is y ∈ f(

∧
α∈I yα)

such that y ≤ yα for all α ∈ I. Then there is an decreasing >-orbit and, thus, a fixed-
point of f .

We recall that Proposition 3.22 is the main result described in [22] (see also [16]).
A closer look to the induction step in the previous proof of Point 3 of Proposi-

tion 3.19 reveals a useful practical case. Indeed, rather than choosing an arbitrary
xα+1 ∈ f(xα) s.t. xα+1 ≤ x̄ with xα ≤ xα+1, if min f(xα) is non-empty we may
choose an appropriate xα+1 ∈ min f(xα).

In the following, let (xα)α∈I be an orbit (>-orbit) of f . We say that (xα)α∈I is
an orbit (>-orbit) of minimals (maximals) of f iff xα+1 ∈ min f(xα) if min f(xα) 6= ∅
(xα+1 ∈ max f(xα) if max f(xα) 6= ∅). Hence,

Proposition 3.23. Consider a multi-valued function f : L→ 2L.
1. If f is inflationary and S-monotone, then for any minimal fixed-point of f

there is an orbit (xα)α∈I of minimals converging to it;
2. If f is deflationary and H-monotone, then for any maximal fixed-point of f

there is an >-orbit(xα)α∈I of maximals, converging to it.
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Similarly,

Proposition 3.24. Consider a multi-valued function f : L→ 2L.

1. If f : L → 2L is S-monotone and for all x ∈ L, f(x) has least element then
there is an orbit (xα)α∈I of least elements, i.e. xα+1 =

∧
f(xα), converging

to the least fixed-point of f ;
2. If f : L → 2L is H-monotone and for all x ∈ L, f(x) has greatest element

then there is a >-orbit (xα)α∈I of greatest elements, i.e. xα+1 =
∨
f(xα),

converging to the greatest fixed-point of f .

Proof. Point 1. From Proposition 3.10, we know that f has least fixed-point x̄.
Now, we proceed similarly as for Proposition 3.19, point 3. Let us show on (transfinite)
induction on α that there is an increasing orbit (xα)α∈I of f s.t. xα+1 =

∧
f(xα) (if

α ordinal), and xα ≤ x̄ for all α.

α = 0. x0 = ⊥ ≤ x̄.
α successor ordinal. By induction, xα−1 ≤ xα ≤ x̄ and xα =

∧
f(xα−1). As f

S-monotone, f(xα−1) �S f(xα) �S f(x̄). But, x̄ ∈ f(x̄), and, thus, there is
y1 ∈ f(xα) such that y1 ≤ x̄. Consider xα+1 =

∧
f(xα). As xα+1 ∈ f(xα),

xα+1 ≤ y1 ≤ x̄ follows. But then, for xα+1 ∈ f(xα) there is y2 ∈ f(xα−1)
such that y2 ≤ xα+1. Consider xα =

∧
f(xα−1). By induction xα ∈ f(xα−1)

and, thus, xα ≤ y2 ≤ xα+1 ≤ y1 ≤ x̄.
α limit ordinal. By induction, xβ ≤ xβ+1 ≤ x̄ holds for all β < α, which im-

plies that xα =
∨
β<α xβ =

∨
β<α xβ+1 ≤ x̄. As f S-monotone, f(xβ) �S

f(xα) �S f(x̄) for β < α. But, x̄ ∈ f(x̄), and, thus, there is y1 ∈ f(xα) such
that y1 ≤ x̄. Consider xα+1 =

∧
f(xα). As xα+1 ∈ f(xα), xα+1 ≤ y1 ≤ x̄ fol-

lows. Similarly, as f(xβ) �S f(xα), for xα+1 ∈ f(xα) and xβ+1 =
∧
f(xβ),

we have by induction xβ+1 ∈ f(xβ) and, thus, xβ+1 ≤ xα+1. Therefore,
xβ ≤ xβ+1 ≤ xα+1 ≤ x̄ and, thus, xα =

∨
β<α xβ =

∨
β<α xβ+1 ≤ xα+1 ≤ x̄.

The sequence (xα)α∈I is increasing and, thus, by Proposition 2.1 there is an ordinal
α such that xα = xα+1 ∈ f(xα). So, xα is a fixed-point of f with xα ≤ x̄. As x̄ is the
least fixed-point, xα = x̄.

Point 2. can be shown similarly.

Interestingly, f S-monotone and inflationary does not guarantee that Φ(f) has mini-
mals and, thus, a minimal fixed point may not exist (Example 9). However, we have:

Proposition 3.25. Let f be an inflationary,
∧

-preserving multi-valued function
such that Φ(f) 6= ∅.

• Then f has minimal fixed-points and there are orbits converging to them;
• If f is also

∨
-preserving, then ω steps are sufficient to reach a minimal fixed-

point.

Proof. The first item follows immediately from Proposition 3.7, Proposition 3.9
and Proposition 3.19. For the second item, consider an orbit (xα)α∈I converging to
a minimal fixed-point x̄ of f . Let us show that xω is a fixed-point of f . As f is
inflationary, the orbit is increasing. Then xω =

∨
α<ω xα. As f is

∨
-preserving we

have that f(xω) = f(
∨
α<ω xα) = {y : there is (yα)α<ω s.t. yα ∈ f(xα) and y =∨

α<ω yα}. For 0 ≤ α < ω, let yα = xα+1. Therefore, yα ∈ f(xα) and, thus,
xω = y =

∨
α<ω yα ∈ f(xω). That is, xω is a fixed-point of f and xω ≤ x̄ and, thus,
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xω = x̄.

Clearly, the dual of Proposition 3.25 holds as well.

Proposition 3.26. If a multi-valued function f is deflationary,
∨

-preserving
and Ψ(f) 6= ∅, then f has maximal fixed-points and there are >-orbits converging
to them. If f is also

∧
-preserving, then ω steps are sufficient to reach a maximal

fixed-point.

We conclude this part showing a strict relationship between S-monotone and infla-
tionary operators. For a multi-valued function f : L→ 2L, let us define

g(x) = x⊕ f(x) = {x ∨ y : y ∈ f(x)} . (3.6)

Note that if f(x) = ∅ then g(x) = ∅.

Proposition 3.27. For f : L → 2L, g(x) = x ⊕ f(x) is inflationary. Further-
more, if f is S-monotone, then

1. g is S-monotone;
2. x ∈ f(x) implies x ∈ g(x);
3. x ∈ g(x) implies f(x) �S {x};
4. if x is a minimal fixed point of g then x is a minimal fixed point of f .
5. if x is a minimal fixed point of f and f is also inflationary then x is a minimal

fixed point of g.
Proof. Consider f and g. If f(x) = ∅ then {x} �S g(x) = ∅. Otherwise, for

y ∈ g(x), x ≤ y. Therefore, {x} �S g(x) and, thus, g is inflationary. Now, suppose f
S-monotone. Point 1. Easy as g is a combination of S-monotone functions. Point 2.
If x ∈ f(x) then by definition of g, x = x ∨ x ∈ g(x). Point 3. If x ∈ g(x) then for
some y ∈ f(x), x = x∨ y. Therefore, y ≤ x and, thus, f(x) �S {x}. Point 4. Assume
x is a minimal fixed-point of g, i.e. x ∈ g(x) = x⊕ f(x). Therefore, there is y ∈ f(x)
such that y ≤ x. As f is S-monotone, f(y) �S f(x). That is, there is z ∈ f(y) such
that z ≤ y and, thus, y = y ∨ z. Therefore, y ∈ g(y). As x is minimal and y ≤ x,
y = x follows and, thus, x ∈ f(x). To prove that x is a minimal fixed-point of f ,
assume there is y ≤ x such that y ∈ f(y). By Point 2., y ∈ g(y) and, thus, as x is a
minimal fixed-point of g, y = x follows; Point 5. Assume x is a minimal fixed-point of
f . By Point 2. x ∈ g(x). To prove that x is a minimal fixed-point of g, assume there
is y ≤ x such that y ∈ g(y). Then by Point 3. f(y) �S {y} and, thus, y ∈ Φ(f). By
Proposition 3.7, y ∈ f(y), and, thus, as x is a minimal fixed-point of f , y = x follows.

We note that the inflationary condition in Point 5. in Proposition 3.27 is necessary.

Example 20. Consider L = {0} ∪ {1/n : n = 1, 2, . . . } and the multi-valued
mapping f : L→ 2L defined as follows:

f(0) = {1/n : n = 1, 2, . . . }
f(1/n) = {1} ∪ {1/(n+ k) : k = 1, 2, . . . }

f is S-monotone, but not inflationary ({1/n} 6�S f(1/n)), and that 1 is its only
fixed-point. However, the function g(x) = x⊕ f(x) has the following definition

g(0) = {1/n : n = 1, 2, . . . }
g(1/n) = {1, 1/n} ,
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which has infinitely many fixed points and no one is minimal.

Of course, Proposition 3.27 has its dual as well. Let

h(x) = x⊗ f(x) = {x ∧ y : y ∈ f(x)} . (3.7)

Proposition 3.28. For f : L → 2L, h(x) = x ⊗ f(x) is deflationary. Further-
more, if f is H-monotone, then

1. h is H-monotone;
2. x ∈ f(x) implies x ∈ h(x);
3. x ∈ h(x) implies {x} �H f(x);
4. if x is a maximal fixed point of h then x is a maximal fixed point of f .
5. if x is a maximal fixed point of f and f is also deflationary then x is a

maximal fixed point of h.
Proof. The proof is dual to Proposition 3.27 (see appendix, Proposition A.9).

We report here some other related results known in the literature. For instance, [46]
(which relies on [34]) gives a condition for the existence of a least fixed-point.

Proposition 3.29 (Stouti [46]). Let f : L → 2L be a multi-valued function,
where L = 〈L,�〉 is a complete partial order (cpo) with ⊥, i.e. any non-empty chain
in L has a supremum in L, and ⊥ ∈ L. Assume that for any x ∈ L, f(x) is non-empty
and that for any x, y ∈ L with x < y, then for every a ∈ f(x) and b ∈ f(y), we have
that a ≤ b. 5

1. Then f has a least fixed-point;
2. If there is a ∈ L such that for all b ∈ f(a) we have a ≤ b then f has a least

fixed-point in the subset {a ∈ L | a ≤ x}.

For completeness, we recall that [34] states that:

Proposition 3.30 (Orey [34]). Let f : L→ 2L be a multi-valued function, where
L = 〈L,�〉 is a complete partial order (cpo) with ⊥, i.e. any non-empty chain in L
has a supremum in L, and ⊥ ∈ L. Assume that for any x ∈ L, f(x) is non-empty
and that for any x, y ∈ L with x < y, then for every a ∈ f(x) and b ∈ f(y), we have
that a ≤ b. If there is a ∈ L such that {a} �S f(a) then f has a fixed-point.

The above proposition relies on the fact that under its condition we have that {a} �S
f(a) �S f2(a) �S . . ., which allows us to build an increasing and, thus, eventually
stationary orbit.

We conclude this section by extending ≤ to Ln point-wise: for (x1, . . . , xn) ∈ Ln
and (y1, . . . , yn) ∈ Ln, we say that (x1, . . . , xn) ≤ (y1, . . . , yn) iff for all i, xi ≤ yi. For
x,y ∈ Ln, x ∧ y and x ∨ y are defined point-wise, i.e. x ∧ y = (x1 ∧ y1, . . . , xn ∧ yn)
and x ∨ y = (x1 ∨ y1, . . . , xn ∨ yn). Since L = 〈L,≤〉 is a complete lattice, so is
Ln = 〈Ln,≤〉. All definitions and properties of single-valued functions and multi-
valued functions over the domain L of L can be extended to Ln as well.

4. Generalized logic programs. We apply now the results developed so far
to a general form of logic programs. Consider a complete lattice L = 〈L,≤〉, which
will act as our truth-value set. Formulae will have a degree of truth in L. Let F
be a family of computable n-ary functions f : Ln → L, called (logical) connectors 6.

5Hence, this is a strictly stronger monotonicity condition than the EM-monotonicity.
6With computable we mean that the result of f is computable in a finite amount of time.
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Connectors will be used to build logical formulae from logical atoms. For instance, the
join (disjunction function) ∨ and the meet (conjunction function) ∧ are connectors.
f(x, y) = max(0, x + y − 1) is also a connector over [0, 1]2. Connectors have not
necessarily to be monotone functions. Let V be a set of variable symbols and A be
a set of atomic formulae P (t1, . . . , tm), where P is an m-ary predicate symbol and
all ti are terms. A term is defined inductively, as usual, as being either a variable, a
constant or the application of a logical function symbol to terms [27].

A formula is either an atom A or an expression of the form f(A1, . . . , An), where f
is an n-ary connector and each Ai is an atom. For ease of presentation, the connectors
∧ and ∨ are used in infix notation. The intuition behind a formula f(A1, . . . , An) is
that the truth degree of the formula is given by evaluating the truth degree of each
Ai and then to apply f to these degrees to obtain the final degree. Of course, the
function f may well be the composition of functions, f1 ◦ . . . ◦ fn. For instance, over
[0, 1], min(A(x, y), B(y, z)) · max(¬R(z), 0.7) + G(x) is a formula. In this case, the
truth of the formula is determined from the truth of the atoms A(x, y), B(y, z), R(z)
and G(x) by applying the specified arithmetic functions. Truth degrees in L may
appear in formulae (like 0.7 above).

A logic program P is a set of rules ψ ← ϕ, where ψ and ϕ are formulae, i.e. rules
are of the form

g(B1, . . . , Bk)← f(A1, . . . , An) ,

where f, g are connectors and Bi and Aj are atoms. Free variables in a rule are
understood to be universally quantified. For instance, over [0, 1]

max(A(x), B(x))← 0.7 ·max(0, A(x, y) +B(y, z)− 1)

is a rule. The intuition is that the truth of either A(x) or B(x) is at least the
truth degree of the body. We point out that the form of the rules is sufficiently
expressive to encompass all approaches we are aware of to monotone many-valued
logic programming 7. So far, in many-valued logic programming rules are either of
the “deterministic” formB ← f(A1, . . . , An) or of the formB1∨. . .∨Bk ← A1∧. . .∧An
(see, e.g. [47]).

In the following, with P∗ we denote the ground instantiation of P. If there is no
constant in P then we consider some constant, say c to form ground terms. Note that
|P∗| may be not finite, but is countable. If we restrict a term to be either a variable
or a constant then |P∗| is finite.

We next consider the usual notion of interpretation and generalise the notion of
satisfiability (see, e.g. [47]) to our setting. An interpretation is a mapping I from
ground atoms to members of L. For a ground atom A, I(A) indicates the degree of
truth to which A is true under I. An interpretation I is extended from atoms to
non-atomic formulae in the usual way:

1. for b ∈ L, I(b) = b;
2. I(f(A1, . . . , An)) = f(I(A1), . . . , I(An)) .

An interpretation I satisfies (is a model of) a ground rule ψ ← ϕ ∈ P∗, denoted
I |= ψ ← ϕ iff I(ϕ) ≤ I(ψ). Essentially, we postulate that the consequent ψ of rule
(implication) is at least as true as the antecedent ϕ. We further say that I satisfies

7Also note that any classical first order clause A1 ∨ . . .∨Ak ∨¬B1 ∨ . . .¬Bn (with k+ n > 0) is
a rule of the form A1 ∨ . . . ∨ Ak ← B1 ∧ . . . ∧ Bn. If k = 0 we use ⊥ in the left hand side, while if
n = 0 we use > in the right hand side.
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(is a model of) a logic program P, denoted I |= P, iff I satisfies all ground rules in
P∗. Given an interpretation I, with P[I] we denote the set of ground rules of P∗ in
which the body has been evaluated by means of I, i.e.

P[I] = {ψ ← I(ϕ) : ψ ← ϕ ∈ P∗} .

It is easily verified that I |= P iff I |= P[I].
Given two interpretations I, J , we define I ≤ J point-wise, i.e. I ≤ J iff for

all ground atoms I(A) ≤ J(A). It is easily verified that the set of interpretations,
denoted L̂, forms a complete lattice as well, i.e. 〈L̂,≤〉 is a complete lattice, with least
element I⊥ (mapping all atoms to ⊥) and greatest element I> (mapping all atoms to
>). If L is countable then so is L̂. If L is finite and a term is either a variable or a
constant, then L̂ is finite as well.

It is worth noting that I ≤ J does not necessarily imply that I(ψ) ≤ J(ψ) for a
formula ψ. However, as one may expect, if the functions involved in ψ are monotone
then from I ≤ J , I(ψ) ≤ J(ψ) follows.

Proposition 4.1. Let I, J be two interpretations such that I ≤ J . If ψ is a
formula involving monotone functions f ∈ F then I(ψ) ≤ J(ψ).

Proof. The proof is on the structure of ψ. Assume ψ is an atomic formula A.
Then by definition of I ≤ J , I(A) ≤ J(A). If ψ = f(A1, . . . , An) then using induction
on Ai and the fact that f is monotone we have that

I(f(A1, . . . , An)) = f(I(A1), . . . , I(An))
≤ f(J(A1), . . . , J(An))
= J(f(A1, . . . , An)) ,

which concludes.

Note that the connectors ∧,∨ are monotone. More generally, let us define the evalu-
ation function

e(I, ψ) = I(ψ) .

Then the above proposition establishes that the function e(I, ψ) is monotone in I if all
the connectors in ψ are monotone., i.e. if I ≤ J then e(I, ψ) ≤ e(J, ψ). Similarly, we
can show that if all the connectors in ψ are

∨
-preserving (

∧
-preserving) then e(I, ψ)

is
∨

-preserving (
∧

-preserving) in I.

Proposition 4.2. If all the connectors in ψ are
∨

-preserving (
∧

-preserving)
then e(I, ψ) is

∨
- preserving (

∧
-preserving) in I.

Proof. Let us prove the case
∧

-preserving. The other case is similar. Consider a
decreasing sequence of interpretations (Iα)α∈I . We have to show that e(

∧
α Iα, ψ) =∧

α e(Iα, ψ). That is, (
∧
α Iα)(ψ) =

∧
α Iα(ψ). Let Ī be the interpretation Ī =∧

α Iα. The proof is on the structure of ψ. Assume ψ is an atomic formula A.
Then by definition, e(Ī , A) = Ī(A) = (

∧
α Iα)(A) =

∧
α Iα(A) =

∧
α e(Iα, A). If

ψ = f(A1, . . . , An) then using induction on Ai and the fact that f
∧

-preserving we
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have that

e(Ī , f(A1, . . . , An)) = Ī(f(A1, . . . , An))
= f(Ī(A1), . . . , Ī(An))
= f(e(Ī , A1), . . . , e(Ī , An))

= f(
∧
α

e(Iα, A1), . . . ,
∧
α

e(Iα, An))

=
∧
α

f(e(Iα, A1), . . . , e(Iα, An))

=
∧
α

f(Iα(A1), . . . , Iα(An))

=
∧
α

Iα(f(A1, . . . , An))

=
∧
α

e(Iα, f(A1, . . . , An)) ,

which concludes.

Useful to note is that:

Proposition 4.3. ∨ (∧) is
∨

-preserving (
∧

-preserving).
Proof. Let us show that ∨ is

∨
-preserving. Indeed, for all increasing sequences

(〈xα, yα〉)α∈I , we have that

∨(
_
α

〈xα, yα〉) = ∨(〈
_
α

xα,
_
α

yα〉)

= (
_
α

xα) ∨ (
_
α

yα) =
_
α

(xα ∨ yα)

=
_
α

∨(xα, yα) .

In a similar way, ∧ is
∧

-preserving.

In general, ∨ (∧) is not
∧

- (
∨

-) preserving.

Example 21 ([5]). Let us show that the meet function is not
∨

-preserving in
general. Consider the complete lattice obtained from the set of closed subsets of the
unit disk, the meet defined as set-intersection and the join defined as the topological
closure of set-union (closure is needed here because arbitrary union of closed sets need
not be closed). This definition provides a complete distributive lattice structure. Now,
for all n ∈ N, define xn,1 = a = the unit circle, i.e. the points 〈x, y〉 satisfying x2+y2 =
1, and define xn,2 = the disk of radius 1 − 1/n, that is, the points 〈x, y〉 satisfying
x2 + y2 ≤ 1− 1/n. The sequence (〈xn,1, xn,2〉)n∈N is an increasing sequence.

∨
n xn,2

turns out to be the whole unit disk, therefore (
∨
n xn,1) ∧ (

∨
n xn,2) = a ∧ (

∨
n xn,2)

is the unit circle. On the other hand, xn,1 ∧ xn,2 = a ∧ xn,2 is the empty set (which
is a closed subset), hence

∨
n(xn,1 ∧ xn,2) =

∨
n(a ∧ xn,2) is the empty set. As a

consequence, (
∨
n xn,1) ∧ (

∨
n xn,2) 6=

∨
n(xn,1 ∧ xn,2) and, thus, the meet function ∧

is not
∨

-preserving.

However, it can easily be shown that ∨ (∧) is
∧

- (
∨

-) preserving if L = 〈L,≤〉 is
finite, i.e. |L| ∈ N. From a practical point of view this is a limitation we can live with,
especially taking into account that computers have finite resources. In particular,
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this includes also the case of the rational numbers in [0, 1] under a given fixed decimal
precision p (e.g. p = 2) and the Boolean lattice over {0, 1}.

Proposition 4.4. If L = 〈L,≤〉 is finite, then ∨ and ∧ are limit preserving.

Note that Proposition 4.4 can be extended to any finite n-ary meet (join) function.
Furthermore, Proposition 4.4 holds also for any infinite n-ary meet (join) function, as
for a finite lattice, an infinite meet (join) is equivalent to a finite meet (join). Indeed,
only finitely many values can appear in the infinite meet (join). Another useful and
special case is when L = 〈[0, 1],≤〉, as it is used in fuzzy logic programming (see,
e.g. [49]).

Proposition 4.5. ∨ and ∧ are limit preserving on [0, 1]× [0, 1].

4.1. Fixed-point characterization of logic programs. The aim of this sec-
tion is to extend the usual fixed-point characterization of classical logic programs [27]
to the case of generalized logic programs. So, let P be a logic program. Consider
L = 〈L,≤〉 and the related complete lattice of interpretations 〈L̂,≤〉. We next de-
fine a multi-valued function over L̂ whose set of fixed-points coincides with the set of
models of P.

The multi-valued immediate consequence operator mapping interpretations into
sets of interpretations, TP : L̂→ 2L̂, is defined as

TP(I) = {J : J |= P[I], I ≤ J} .

Note that either TP(I>) = ∅ or TP(I>) = {I>}. Also note that unlike the single-
valued case, not necessarily TP(I) 6= ∅.

Example 22. For any interpretation I and for P = {A∨B ← >, ⊥ ← A, ⊥ ←
B }, TP(I) = ∅ holds.

However, note that for the specific case of rules of the form (no Ai, Bj is neither >
nor ⊥ and k ≥ 1)

A1 ∨ . . . ∨Ak ← f(B1, . . . , Bn) ,

it is easily verified that for any I, I> ∈ TP(I) 6= ∅, in particular TP(I>) = {I>}.
Also, note that TP(I) may not be countable.

Example 23. Consider L = [0, 1] and P with rule A ← 0. Then for any
interpretation I 6= I>, TP(I) = {J | I ≤ J and J(A) ≥ 0.3} holds. Hence, TP(I) is
not countable.

The TP function has the desired property that models of logic programs are fixed-
points and vice-versa.

Proposition 4.6. I |= P iff I ∈ TP(I).
Proof. I |= P iff I |= P[I] iff I ∈ TP(I).

Example 24. Over L = 〈{0, 1},≤〉, consider P = {A ← 1 − B}, and I(A) =
0, I(B) = 1. Then

TP(I) = {J | J |= P[I], I ≤ J}
= {J | J |= A← 0, I ≤ J}
= {J | I ≤ J}
= {I, I ′} .
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where I ′(A) = I ′(B) = 1. Note that I ∈ TP(I) and I is a model of P. Note also that
the truth combination function f(x) = 1− x in rule A← 1−B is not monotone.

Hence determining models of a logic program is equivalent to investigate the fixed-
points of the multi-valued function TP .

In the following, we will determine which properties of Section 3 about multi-
valued functions apply to TP and which are specific of TP only. To start with, as by
definition J ∈ TP(I) implies I ≤ J we have immediately:

Proposition 4.7. TP is inflationary.

Furthermore, we also can show that:

Proposition 4.8. If all connector functions in the body ϕ of rules ψ ← ϕ ∈ P
are

∨
-preserving then TP is

∨
-preserving and, thus, S-monotone.

Proof. Let (Iα)α∈I be an increasing sequence of interpretations. Let Ī =
∨
α Iα.

We have to show that TP(Ī) = {J : there is (Jα)α∈I s.t. Jα ∈ TP(Iα) and J =∨
α Jα} (=

∨
α TP(Iα)). So, let J ∈ TP(Ī). Then J |= P[Ī] and Ī ≤ J and,

thus, Iα ≤ J . Then, using Proposition 4.2, for all ground rules ψ ← ϕ ∈ P∗,
Iα(ϕ) ≤

∨
α Iα(ϕ) = Ī(ϕ) ≤ J(ψ). Therefore, J |= P[Iα] and, thus, J ∈ TP(Iα).

Hence, J ∈
∨
α TP(Iα). Vice-versa, let J ∈

∨
α TP(Iα). Thus J =

∨
α Jα with

Jα ∈ TP(Iα). It follows that Iα ≤ Jα ≤ J and Jα |= P [Iα]. Then, using Proposi-
tion 4.2, for all ground rules ψ ← ϕ ∈ P∗, Ī(ϕ) =

∨
α Iα(ϕ) ≤

∨
α Jα(ψ) = J(ψ) and,

thus, J |= P[Ī]. As Ī =
∨
α Iα ≤

∨
α Jα = J , J ∈ TP(Ī) follows. S-monotonicity

follows from Proposition 3.5.

The analogue of Proposition 4.8 does not hold for
∧

-preserving connector functions.

Example 25. Consider L = [0, 1], a ≥ 1, the function f(x) = 1/(a+1−x) and the
logic program P = { 1

a+1 ← f(A)}. Consider a decreasing sequence of interpretations
In(A) = 1/n, n ∈ N. Then Ī(A) =

∧
α Iα(A) = I⊥(A) = 0. The function f is

monotone, more precisely,
∧

-preserving, with maximum value 1
a and minimum value

1
a+1 . Furthermore, f(I1(A)) = 1

a , while f(Ī(A)) = 1
a+1 and f(In(A)) = 1

a+1−1/n >
1
a+1 . Therefore, TP(Ī) = {J : J interpretation}. On the other hand, TP(In) = ∅
and, thus 8,

∧
n TP(In) = ∅. Therefore, TP(

∧
n In) 6⊆

∧
n TP(In), i.e. TP is not

∧
-

preserving.

Let us define

GP(I) = {J ∨ I : J |= P[I]} . (4.1)

Then it is easily verified that TP(I) ⊆ GP(I) (from I ≤ J , J ∨ I = J). On the
other hand, for J ∈ GP(I), J = J ′ ∨ I, J ′ |= P[I], J ′ ≤ J and I ≤ J . If all
connector functions in the head of rules in P are monotone then for all ground rules
ψ ← ϕ ∈ P∗, (using Proposition 4.1) I(ϕ) ≤ J ′(ψ) ≤ J(ψ). Therefore, J ∈ TP(I),
i.e. GP(I) ⊆ TP(I). Therefore:

Proposition 4.9. For any interpretation I, TP(I) ⊆ GP(I). If all connector
functions in the head of rules in P are monotone, then TP(I) = GP(I).

Monotonicity is a necessary condition to guarantee equivalence among TP andGP .

Example 26. Over L = 〈{0, 1},≤〉, consider the logic program P = {¬A← A}.

8Recall that
V
n TP (In) is a shorthand for the right hand side of Equation (3.5).
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The negation function ¬x = 1−x is obviously not monotone. Consider I(A) = 1 and
J ′(A) = 0. Then, J ′ |= P[I] and, thus, J = I ∨ J ′ = I> ∈ GP(I), but J 6∈ TP(I).

A closer analysis shows that we can write GP similarly to Equation (3.6). Indeed,
let FP be the multi-valued function

FP(I) = {J : J |= P[I]} .

Then, it can easily verified that

GP(I) = I ⊕ FP(I) .

We can show that:

Proposition 4.10. If all connector functions in the body ϕ of rules ψ ← ϕ ∈ P
are monotone then FP is a multi-valued S-monotone operator.

Proof. Consider interpretations I, J s.t. I ≤ J . Let us show that FP(I) �S FP(J).
If FP(J) = ∅ then obviously FP(I) �S FP(J). Otherwise, assume FP(J) 6= ∅. Let
J ′ ∈ FP(J) and, thus, by definition J ′ |= P[J ], i.e for all ground rules ψ ← ϕ ∈
P∗, J(ϕ) ≤ J ′(ψ). But, I ≤ J and, using Proposition 4.1, I(ϕ) ≤ J(ϕ) ≤ J ′(ψ).
Therefore, J ′ |= P[I] and, thus, J ′ ∈ FP(I), which concludes.

Note that the proof of the proposition above shows in fact that if I ≤ J then
FP(J) ⊆ FP(I) and, thus, FP(I) �S FP(J).

Now, taking into account Propositions 3.27, 4.7, 4.9 the following analogue of
Proposition 3.27 can be obtained:

Proposition 4.11. GP is inflationary. Furthermore, if all connector functions
in P are monotone then (i) TP = GP ; (ii) TP is S-monotone; (iii) I ∈ FP(I) implies
I ∈ TP(I); (iv) I ∈ TP(I) implies FP(I) ≤ {I}; (v) for any interpretation I, I
minimal fixed point of FP iff I minimal fixed point of TP .

By relying on Proposition 4.6, 3.7 and Proposition 3.19 we have that

Proposition 4.12. Let P be a logic program. Then
1. Φ(TP) 6= ∅ iff P has a model.
2. Each orbit of TP is increasing and converges to a model of P.
3. If I is a minimal model of P and all connector functions in P are monotone,

then there is an orbit converging to I.

Unlike the general case, for TP we can even be more precise and reach any model.

Proposition 4.13. If I is a model of P and all connector functions in P are
monotone, then there is an orbit converging to I.

Proof. We show that if I |= P then there is an orbit converging to I. By
Proposition 4.6, I ∈ TP(I). The proof is similar as for Point 3. in Proposition 3.19.
We know that each orbit of TP converges to a model of P. As in Proposition 3.19, we
can show on induction on α that there is an orbit (Iα)α∈I of elements Iα+1 ∈ TP(Iα)
with I0 = I⊥, such that Iα ≤ I for all α. Therefore, the orbit converges to a model
Iᾱ of P, where Iᾱ = Iᾱ+1, Iᾱ ≤ I. By Proposition 4.6, Iᾱ ∈ TP(Iᾱ). Now, let us
show that I ∈ TP(Iᾱ). Indeed, from Iᾱ |= P and I |= P, for all ψ ← ϕ ∈ P∗, from
Iᾱ ≤ I, using Proposition 4.1, we have Iᾱ(ϕ) ≤ I(ϕ) ≤ I(ψ). Therefore, I ∈ TP(Iᾱ)
and, thus, the sequence I0 = ⊥, . . . , Iᾱ, I, I, . . . is an orbit converging to I.

Example 27. Consider the logic program over the Boolean lattice on {0, 1},
P = {(a∨b← 1), (c← a), (a∧c∧d← b)}. The unique minimal model is Ī(a, b, c, d) =
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〈1, 0, 1, 0〉. The following are two orbits p1, p2 of TP :

p1 = 〈0, 0, 0, 0〉 → 〈1, 0, 0, 0〉 → 〈1, 0, 1, 0〉 → 〈1, 0, 1, 0〉 .
p2 = 〈0, 0, 0, 0〉 → 〈0, 1, 0, 0〉 → 〈1, 1, 1, 1〉 → 〈1, 1, 1, 1〉 .

Both 〈1, 0, 1, 0〉 and 〈1, 1, 1, 1〉 are fixed-points, i.e. models and p1 reaches the minimal
one.

Note that the previous two propositions allow us also to decide, if the lattice is finite,
whether a logic program does not have a model. Indeed, it suffices to try to build
an orbit, starting with I⊥ and systematically use all alternatives (which are finite) at
each step. If no orbit can be built, no model exists.

As for the general case (see Example 9), TP may not have minimal fixed-points.

Example 28. Consider the logic program P = {f(A) ← 1}, where f(x) = 1 if
x > 0 and f(0) = 0. Then I |= P iff I(A) > 0, and no minimal model exists.

The following example shows that if a connector function is not
∧

-preserving then
there is a decreasing sequence of models not converging to a model.

Example 29. Consider L = [0, 1] and the connector function f such that f(0) =
0 and for x > 0, f(x) = 1. Now, consider the logic program P = {A ∨ f(B) ← 1}.
Then the decreasing sequence (In)n∈N of interpretations In, where In(A) = 0 and
In(B) = 1/n is a decreasing sequence of models of P converging to the interpretation
I(A) = 0, I(B) = 0, which however is not a model of P. Note: f is not

∧
-preserving.

Also note that P has a minimal model I(A) = 1 and I(B) = 0, despite the fact that
the connector function f is not

∧
-preserving.

We next want to establish a proposition like Proposition 3.9, guaranteeing the
existence of minimal fixed points.

Proposition 4.14. If all connector functions in P are
∧

-preserving and P has
models then Φ(TP) has minimals.

Proof. As P has models, models are fixed-points of TP (Proposition 4.6), and
TP is inflationary, by Proposition 3.7, Φ(TP) 6= ∅. So, let (Iα)α∈I be a decreasing
sequence of interpretations in Φ(TP) and let I =

∧
α Iα. Again, by Zorn’s Lemma it

suffices to show that I ∈ Φ(TP).
By Proposition 4.11 and Proposition 3.7, Iα ∈ TP(Iα), i.e. Iα are fixed-points.

Now, let us show that I ∈ TP(I). From Iα ∈ TP(Iα), and ψ ← ϕ ∈ P∗, Iα(ϕ) ≤ Iα(ψ)
holds. Therefore, by Proposition 4.2: I(ϕ) = (

∧
α Iα)(ϕ) =

∧
α Iα(ϕ) ≤

∧
α Iα(ψ) =

(
∧
α Iα)(ψ) = I(ψ). As a consequence, I |= P[I] and, thus, I ∈ TP(I). Therefore,

I ∈ Φ(TP), which concludes.

We note that, by Proposition 3.19, if TP(I>) 6= ∅ then, as TP inflationary, P has a
model. Then, by Proposition 3.8 and Proposition 4.6 it follows directly that

Proposition 4.15. If all connector functions in P are
∧

-preserving and P has
models, then TP has minimal fixed-points and, thus, P has minimal models.

The analogue of Proposition 3.25 is:

Proposition 4.16. If P has models and all connector functions in P are
∧

-
preserving then P has minimal models and there are orbits converging to them. If all
connector functions in P are also

∨
-preserving, then ω steps are sufficient to reach a

minimal model.
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4.2. The case of classical logic programs. We conclude this part by applying
our results to classical logic programs [27, 28, 33]. As already pointed out, any classical
first order clause A1 ∨ . . .∨Ak ∨¬B1 ∨ . . .¬Bn (with k+ n > 0) is a rule of the form

A1 ∨ . . . ∨Ak ← B1 ∧ . . . ∧Bn . (4.2)

If k = 0 we use ⊥ in the left hand side, while if n = 0 we use > in the right hand side.
The truth space is L = {0, 1}. Note that usually in disjunctive logic programs k ≥ 1
is assumed and no Ai, Bj is neither > nor ⊥. This slight difference has an impact on
the set of models of a disjunctive logic program, as we show next.

Example 30. Consider the truth space is L = {0, 1} and consider P with rules

⊥ ← A

A← > .

The former rule states that A should be false, while the latter states that A should be
true. Of course, TP(I) = ∅, for any interpretation I and, thus, TP has no fixed-point,
thus, P has no model.

On the other hand, if we assume that k ≥ 1 and that no Ai, Bj is neither > nor ⊥,
as usual for disjunctive logic programs, as L is finite, by Proposition 4.4, ∨ and ∧ are
limit preserving. Furthermore, it is easily verified that for any I, I> ∈ TP(I) 6= ∅,
in particular TP(I>) = {I>}, TP is

∨
-preserving (thus, S-monotone), and, as TP

inflationary, P has a model. By Propositions 4.16 and 3.23 we have immediately the
well-known fact [28, 33]:

Proposition 4.17. Any classical disjunctive logic program P has minimal models
and there are orbits (of length ω) of minimals converging to them.

Finally, let us further restrict logic programs to the case where the head contains one
atom only (i.e., k = 1). That is, rules are of the usual deterministic form

A← B1 ∧ . . . ∧Bn . (4.3)

Then, for any I, TP(I) has least element.

Proposition 4.18. For any classical deterministic logic program P and inter-
pretation I, TP(I) has least element.

Proof. Consider J̄ =
∧
TP(I). Let us show that J̄ ∈ TP(I). As for all J ∈ TP(I)

we have I ≤ J , it follows that I ≤
∧
J∈TP(I) J = J̄ . Now, consider A ← I(ϕ) with

A← ϕ ∈ P∗. Then by Proposition 4.2, as for all J ∈ TP(I), I(ϕ) ≤ J(A) holds,

I(ϕ) ≤
∧

J∈TP(I)

J(A) =
∧

J∈TP(I)

e(J,A) = e(
∧

J∈TP(I)

, A) = e(J̄ , A) = J̄(A)

and, thus, J̄ |= P[I]. As a consequence, J̄ ∈ TP(I).

Now, using Propositions 3.10, 3.24 and 4.17 we have immediately the well-known
fact [27]:

Proposition 4.19. Any classical deterministic logic program P has least model
and there is an orbit (of length ω) of least elements converging to it.

If terms are restricted to be either variables or constants, then for disjunctive logic
programs the set of minimal models is finite (as there are finitely many interpreta-



ON FIXED-POINTS OF MULTI-VALUED FUNCTIONS ON COMPLETE LATTICES 27

tions). For both Proposition 4.17 as well as for Proposition 4.19 the length of the
orbits are finite.

5. Conclusions and related work. We have provided conditions for the ex-
istence of fixed-points, minimal and maximal fixed-points of multi-valued functions
over complete lattices, and have shown how to obtain them. Our main contribution
establishes that an inflationary, S-monotone multi-valued function with Φ(f) 6= ∅ has
minimal fixed-points, each orbit converges to a fixed-point and for each minimal fixed-
point an orbit converging to it exists. We have also shown that (see Table 3.1) the set
of fixed-points of a limit-preserving multi-valued function is a complete multilattice.
We also reported the results of related work we are aware of.

We then applied our results to a general form of logic programs, where the truth
space is a complete lattice. We have shown that a multi-valued operator can be
defined whose fixed-points are in one-to-one correspondence with the models of the
logic program.

Related work. To the best of our knowledge, the fixed-point theory over complete
lattices is mainly single-valued oriented. Nonetheless, [6, 14, 15, 16, 20, 21, 22, 34,
46, 54], establish a version of the Knaster-Tarski Theorem, though requiring f(x)
always non-empty and some other conditions. [20, 21, 22, 14, 15, 16, 17, 39] also
investigate the case where metric spaces or Banach spaces are considered in place of
complete lattices, and then use the well-known contraction principle (see also [24, 42])
or continuity to guarantee the existence of a fixed-point (if f(x) always non-empty, of
course). They also apply then some of their results to disjunctive logic programs (with
non-monotone negation). Close in spirit, using mainly Banach spaces, topological
spaces and metric spaces in place of complete lattices, are works of the mathematical
society such as [2, 10, 19, 23, 26, 41, 35, 36, 44, 50, 51]. We point out that these works
do not cover our results. As our initial objective was to study generalized many-valued
logic programs, our analysis tried to parallel the usual ones made for single-valued
functions over complete lattices.

The research area of semantics for non-deterministic programming languages
(e.g. [8, 37, 38, 45] instead does not address multi-valued functions directly, but rather
“lift” a multi-valued function f : D → 2D to a function g : P∗(D) → P∗(D), where
P∗(D) is a rather complicated and appropriately ordered subset of the powerset of D
(so-called power domains [1, 37, 45]) and then applies usual fixed-point theory. Here,
D is a so-called domain, i.e. a complete partial ordered set with some additional con-
straints [1]. As in all order cases, f(x) is assumed to be non-empty and finite. This
constraint is related to the application of non-deterministic programming languages
(as indeed, at each step of a program execution, there is at least one next state and
there are at most finitely many possible non-deterministic alternatives).

Concerning the application of multi-valued functions to logic programming, to the
best of our knowledge, no work considers such general rules. Related to our approach
are [14, 15, 16, 20, 21, 22] in which classical disjunctive logic programs has been
considered with non-monotone negation. We did not consider non-monotonic negation
so far, as an appropriate semantics (for generalized non-monotone many-valued logic
programs) has still to be developed. We also point to works such as [13, 40, 52, 53]
in which disjunctive logic programs are studied from a domain-theoretic (i.e. Smyth
powerdomain) point of view. One feature of these works is that using an appropriate
domain, as in the case of non-determinsitic programming languages, the concept of
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multi-valued function is avoided by representing “disjunctive states” 9 (again, the
image of a multi-valued function is assumed to be non-empty and finite). On the
other hand, we follow a direct approach, which requires less formal and abstract
theory and is likely amenable to less formal audience as well.

We envisage several directions for future research. The fixed-point theory of multi-
valued functions is interesting per se (there are many options worth to be investigated,
like using some other sets in place of complete lattices, like complete partial orders,
domains, Banach spaces, metric spaces, topological spaces or some specific sets such
as [0, 1], etc., which have mainly been considered by mathematicians—see also [12]).
On the other hand, related to general logic programs, besides considering special
cases for connectors in the head and body, it would be interesting to generalize the
stable model semantics for classical disjunctive logic programs [9] to our case. More
generally, we would like to bring the theory on fixed-points of multi-valued functions
to the attention of the knowledge representation and reasoning community, where
multi-valued functions may be applied to several problems and logic-based languages
for knowledge representation.

Disclaimer. The authors of this work apologize both with the authors and with
the readers for all the relevant works and results which are not cited here, which we
are unaware of.
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Appendix A. Some other proofs.

Proposition A.1. Consider a multi-valued function f : L → 2L. If f is
∧

-
preserving then f is H-monotone;

Proof. Consider x1 ≤ x2. Then for the decreasing sequence x2 ≥ x1, f(x1) =
f(x2 ∧ x1) = {y : there are yi ∈ f(xi) s.t. y = y2 ∧ y1} = X. If f(x1) = ∅ then
trivially ∅ = f(x1) �H f(x2). If f(x2) = ∅ then by definition X = ∅ and, thus,
f(x1) = ∅. Therefore, ∅ = f(x1) �H f(x2) = ∅. Otherwise assume f(x1) and f(x2)
non-empty. Therefore, as f is

∧
-preserving, for y ∈ f(x1) = X there are yi ∈ f(xi)

(i = 1, 2) such that y = y2 ∧ y1. In particular, y ≤ y2. Therefore, f(x1) �H f(x2)
and, thus, f is H-monotone.

Proposition A.2. Consider a multi-valued function f : L → 2L and x1 ≤ x2

with f(x1) 6= ∅ 6= f(x2). If f is
∨

-preserving then f(x1) �H f(x2).
Proof. For the increasing sequence x1 ≤ x2, as f is

∨
-preserving, f(x2) = f(x1 ∨

x2) = {y : there are yi ∈ f(xi) s.t. y = y2 ∨ y1} = X. Now, for y ∈ f(x1) choose a
y′ ∈ f(x2) 6= ∅ and consider y′′ = y ∨ y′. Therefore, y′′ ∈ X = f(x2), y ≤ y′′ and,
thus, f(x1) �H f(x2).

Proposition A.3. Let f : L→ 2L be a multi-valued function. If f is deflationary
then x ∈ Ψ(f) iff x fixed-point of f .

Proof. Case 2. Let x ∈ Ψ(f). As f is deflationary, {x} �H f(x) �H {x} and,
thus, for x ∈ {x} there is y ∈ f(x) such that x ≤ y ≤ x, i.e. x = y ∈ f(x). Vice-versa,
if x ∈ f(x) then {x} �H f(x) and, thus, x ∈ Ψ(f).

Proposition A.4. Let f : L → 2L be a multi-valued function. If f is a H-
monotone or deflationary multi-valued function, and Ψ(f) has maximals then all y ∈
max Ψ(f) are maximal fixed-points of f . In particular, if x =

∨
Ψ(f) ∈ Ψ(f) then x

is greatest fixed-point of f .
Proof. As Ψ(f) has maximals, max Ψ(f) 6= ∅. So, let y ∈ max Ψ(f). Therefore,

{y} �H f(y) 6= ∅ and, thus, there is y′ ∈ f(y) such that y ≤ y′. If f H-monotone,
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then f(y) �H f(y′) and, thus, for y′ ∈ f(y) there is y′′ ∈ f(y′) such that y′ ≤ y′′.
Therefore, {y′} �H f(y′) and, thus, y′ ∈ Ψ(f). But y ∈ max Ψ(f), so it cannot be
y < y′. Therefore, y = y′ ∈ f(y), i.e. y is a fixed-point of f . If f is deflationary,
by Proposition 3.7, y is a fixed-point of f . Now, assume x ∈ f(x). Therefore,
{x} �H f(x) and, thus, x ∈ Ψ(f). But y ∈ max Ψ(f) so it cannot be y < x and,
thus, y is a maximal fixed-point of f . Finally, consider x =

∨
Ψ(f). By hypothesis,

x ∈ Ψ(f) and x is greatest element of Ψ(f). Hence, we know that x ∈ f(x). Let
y ∈ f(y). Hence y ∈ Ψ(f), and, thus, y ≤ x. As a consequence, x is the greatest
fixed-point of f .

Proposition A.5. Let f : L → 2L be a multi-valued function. If f is a
∨

-
preserving multi-valued function with Ψ(f) 6= ∅ then Ψ(f) has maximals and, thus,
maximal fixed-points.

Proof. By hypothesis Ψ(f) 6= ∅. Let (xα)α∈I be a increasing sequence of xα ∈
Ψ(f) and let x̄ =

∨
α xα. As f is

∨
-preserving, by definition f(x̄) = {y : there is (yα)α∈I

s.t. yα ∈ f(xα) and y =
∨
α yα}.

Now, for any α, xα ≤ xα+1, by Proposition 3.6 and, as xα ∈ Ψ(f), {xα} �H
f(xα) �H f(xα+1). Therefore, for any xα there is yα ∈ f(xα) and yα+1 ∈ f(xα+1)
such that xα ≤ yα ≤ yα+1.

Note that if α is a limit ordinal then, as xβ ≤ xα for all β < α, it follows that
{xβ} �H f(xβ) �H f(xα) and, thus, xβ ≤ yβ ≤ yα for all β < α. Therefore, there is a
increasing sequence (yα)α∈I of elements yα ∈ f(xα) such that x̄ =

∨
α xα ≤

∨
α yα =

ȳ. By definition of f(x̄), ȳ ∈ f(x̄) and, thus, {x̄} �H f(x̄). Therefore x̄ ∈ Ψ(f) and,
thus, every increasing sequence has an upper bound in Ψ(f). So, by Zorn’s lemma,
Ψ(f) has maximals, which by Proposition 3.8 are also maximal fixed-points.

Proposition A.6. Let f : L→ 2L be a multi-valued function. If f is H-monotone
multi-valued function and for all x ∈ L, f(x) has greatest element then f has greatest
fixed-point.

Proof. As for all x ∈ L, f(x) has greatest element, by definition
∨
f(x) ∈ f(x) 6=

∅. Therefore, Ψ(f) 6= ∅ as {⊥} �H f(⊥). Consider a =
∨
c∈Ψ(f) c. If a ∈ Ψ(f)

then by Proposition 3.8, a is the greatest fixed-point of f . So, let us show that
a ∈ Ψ(f). For c ∈ Ψ(f) there is a xc ∈ f(c) such that c ≤ xc. As c ≤ a and
f is H-monotone, f(c) �H f(a) and, thus, for xc ∈ f(c) there is yc ∈ f(a) such
that c ≤ xc ≤ yc. Since f(a) has greatest element, there is y ∈ f(a) such that
a =

∧
c∈Ψ(f) c ≤

∧
c∈Ψ(f) xc ≤

∧
c∈Ψ(f) yc ≤ y. Hence, {a} �H f(a), i.e. a ∈ Ψ(f).

Proposition A.7. Let f : L → 2L be a H-monotone, non-empty and ∨-closed
multi-valued function. Then

1. Ψ(f) is ∨-closed;
2. f has a greatest fixed-point.

Proof. Note that Ψ(f) 6= ∅ as {⊥} �H f(>) 6= ∅.
Point 1. Consider a subset S of Ψ(f) and a =

∨
S. Let us show that a ∈ Ψ(f).

We know that for each c ∈ S, {c} �H f(c) holds, i.e. there is xc ∈ f(c) such that
c ≤ xc. But, f is H-monotone and, thus, from c ≤ a, {c} �H f(c) �H f(a) follows.
That is, there is yc ∈ f(a) such that c ≤ xc ≤ yc. Let y =

∨
c∈S yc. As f is ∨-closed,

y ∈ f(a) follows. Therefore, a =
∨
c∈S c ≤

∨
c∈S yc = y, {a} �H f(a) and, thus,

a ∈ Ψ(f). Therefore, Ψ(f) is ∨-closed.
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Point 2. From point 1, Ψ(f) has greatest element a and, thus, by Proposition 3.8,
f has a as greatest fixed-point.

Proposition A.8. For a multi-valued function f ,
1. if f is deflationary then each >-orbit is decreasing;
2. each decreasing >-orbit converges to a fixed-point of f (if no fixed-point exists

then there is no orbit);
3. if f is H-monotone and deflationary then for any maximal fixed-point of f

there is a >-orbit converging to it.
Proof. Let (xα)α∈I be an orbit of f . Recall that for ordinal α then xα+1 ∈

f(xα) 6= ∅. As f is deflationary, f(xα) �H {xα}. But, by definition of �H , for
xα+1 ∈ f(xα), xα+1 ≤ xα. For a limit ordinal λ, xλ =

∨
α<λ xα, ∅ 6= f(xλ) �H {xλ}

and, thus, there is xλ+1 ∈ f(xλ) such that xλ+1 ≤ xλ.
For the second point, as (xα)α∈I is a decreasing sequence and |I| > |L|, by

Proposition 2.1 there is an ordinal α such that xα = xα+1 ∈ f(xα). That is, xα is a
fixed-point of f .

Finally, for the third point, assume x̄ ∈ f(x̄) is a maximal fixed-point of f . Now,
let us show on (transfinite) induction on α that there is a decreasing orbit (xα)α∈I of
f s.t. x̄ ≤ xα for all α.
α = 0. x̄ ≤ > = x0.
α successor ordinal. By induction, x̄ ≤ xα. As f is H-monotone and deflationary,

f(x̄) �H f(xα) �H {xα}. But, x̄ ∈ f(x̄), so we can choose xα+1 ∈ f(xα) s.t.
x̄ ≤ xα+1 ≤ xα.

α limit ordinal. By induction, x̄ ≤ xβ holds for all β < α, which implies that
x̄ ≤

∨
β<α xβ = xα.

The sequence (xα)α∈I is decreasing and, thus, by Proposition 2.1 there is an ordinal
α such that xα = xα+1 ∈ f(xα). So, xα is a fixed-point of f with x̄ ≤ xα. As x̄ is
maximal, xα = x̄.

Proposition A.9. For f : L→ 2L, h(x) = x⊗f(x) is deflationary. Furthermore,
if f is H-monotone, then

1. h is H-monotone;
2. x ∈ f(x) implies x ∈ h(x);
3. x ∈ h(x) implies {x} �H f(x);
4. if x is a maximal fixed point of h then x is a maximal fixed point of f .
5. if x is a maximal fixed point of f and f is also deflationary then x is a

maximal fixed point of h.
Proof. Consider f and h. If f(x) = ∅ then ∅ = h(x) �H {x}. Otherwise, for

y ∈ h(x), y ≤ x. Therefore, h(x) �H {x} and, thus, h is deflationary. Now, suppose
f H-monotone. Point 1. Easy: h is a combination of H-monotone functions. Point 2.
If x ∈ f(x) then by definition of h, x = x ∧ x ∈ h(x). Point 3. If x ∈ h(x) then for
some y ∈ f(x), x = x∧y. Therefore, x ≤ y and, thus, {x} �H f(x). Point 4. Assume
x is a maximal fixed-point of h, i.e. x ∈ h(x) = x⊗ f(x). Therefore, there is y ∈ f(x)
such that x ≤ y. As f is H-monotone, f(x) �H f(y). That is, there is z ∈ f(y) such
that y ≤ z and, thus, y = y ∧ z. Therefore, y ∈ h(y). As x is maximal and x ≤ y,
y = x follows and, thus, x ∈ f(x). To prove that x is a maximal fixed-point of f ,
assume there is x ≤ y such that y ∈ f(y). By Point 2., y ∈ h(y) and, thus, as x is a
maximal fixed-point of h, y = x follows; Point 5. Assume x is a maximal fixed-point
of f . By Point 2. x ∈ h(x). To prove that x is a maximal fixed-point of h, assume
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there is x ≤ y such that y ∈ h(y). Then by Point 3. {y} �H f(y) and, thus, y ∈ Ψ(f).
By Proposition 3.7, y ∈ f(y), and, thus, as x is a maximal fixed-point of f , y = x
follows.


