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Abstract—The problem of studying when a given a fuzzy
relation can be characterized in terms of a fuzzy function is
revisited. Although several authors have published works on the
‘functionality’ of a fuzzy relation, we focus on a particular version
which, to the best of our knowledge, fits better for the definition
of adjunction between generalized fuzzy structures.

I. INTRODUCTION

The notion of adjunction (also called isotone Galois connec-
tion) is an algebraic tool which enables to establish bridges
between different research areas and has found a number
of applications, both theoretical and practical. The interested
reader can find more details for instance in [1], [2].

We continue our research line on the construction of ad-
junctions within different environments. To begin with, it is
worth to note that the well-known adjunction theorem by
Freyd, which characterises the existence of adjoint, does not
apply to any of the cases that we consider in that the theorem
is stated between homogeneous structures (both the domain
and the codomain have the same algebraic structure, either
a preordered set, a poset, a fuzzy order, etc), but we are
interested in knowing whether, given a mapping f from a
certain structured set A to an unstructured set B, it is possible
both to provide B with the corresponding algebraic structure
and to construct a mapping g which is the right adjoint to f
with respect to the newly defined structure.

Several results have been already obtained in this respect:
in [3], our underlying environment was that of crisp functions
between a poset (resp. preordered set) and an unstructured
set; then, in [4], the paradigm was shifted to the fuzzy case,
considering the corresponding problem in which the set A
has fuzzy preposet structure; and more recently, in [5], we
considered in addition fuzzy equivalence relations generalizing
the equality, both in A and in B.

In this work, we start to consider a further step of abstrac-
tion, since the fuzzy extensions given in [4] and [5] lack of
fuzziness precisely on the adjunction, namely, both mappings
f and g are crisp, and we would like to work with a really
fuzzy version of the notion of adjunction, in which f and g
are fuzzy functions.

The paper is structured as follows: in Section II, we intro-
duce the preliminary notions which will be needed thereafter;
then, in Section III we introduce the notion of completely
functional fuzzy relation together with an alternative charac-
terization; later, Section IV focuses on the morphisms and

partial functions in the sense of Gottwald and, once again, a
characterization result is presented; finally, Section V intro-
duces a new notion of fuzzy adjunction whose components
are indeed fuzzy functions.

II. PRELIMINARIES

The most usual underlying structure for considering fuzzy
extensions of Galois connections is that of complete residuated
lattice, L = (L,≤,>,⊥,⊗,→). As usual, supremum and
infimum will be denoted by ∨ and ∧ respectively, and we
will write α ↔ β as an abbreviation of (α → β) ∧ (β → α)
for α, β ∈ L.

An L-fuzzy set is a mapping from the universe set to the
membership values structure X : U → L where X(u) means
the degree in which u belongs to X . Given X and Y two L-
fuzzy sets, X is said to be included in Y , denoted as X ⊆ Y ,
if X(u) ≤ Y (u) for all u ∈ U .

An L-fuzzy binary relation between A and B is an L-fuzzy
subset of A×B, that is, a mapping µ : A×B → L. Given µ,
its domain and its image are defined as follows:
• dom(µ) = {a ∈ A | there exists b ∈ B such that
µ(a, b) = >}

• im(µ) = {b ∈ B | there exists a ∈ A such that
µ(a, b) = >}

An L-fuzzy binary relation on U is an L-fuzzy subset of
U × U , that is RU : U × U → L, and it is said to be:
• Reflexive if RU (a, a) = > for all a ∈ U .
• ⊗-Transitive if RU (a, b) ⊗ RU (b, c) ≤ RU (a, c) for all
a, b, c ∈ U .

• Symmetric if RU (a, b) = RU (b, a) for all a, b ∈ U .
From now on, when no confusion arises, we will omit the

prefix “L-”.
Definition 1: A fuzzy preposet is a pair A = 〈A, ρA〉 in

which ρA is a reflexive and ⊗-transitive fuzzy relation on A.
Definition 2: A fuzzy relation ≈ on A is said to be a:
• Fuzzy equivalence relation if ≈ is a reflexive, ⊗-transitive

and symmetric fuzzy relation on A.
• Fuzzy equality if ≈ is a fuzzy equivalence relation satis-

fying that ≈ (a, b) = > implies a = b, for all a, b ∈ A.
Notation 1: We will use the infix notation for a fuzzy

equivalence relation, that is: for ≈ : A × A → L a fuzzy
equivalence relation, we denote a1 ≈ a2 to refer to ≈(a1, a2).



Definition 3: For a fuzzy equivalence relation ≈ : A×A→
L, the equivalence class of an element a ∈ A is a fuzzy set
[a]≈ : A→ L defined by [a]≈(u) = (a ≈ u) for all u ∈ A.

Remark 1: Note that [x]≈ = [y]≈ if and only if (x ≈ y) =
>: on the one hand, if [x]≈ = [y]≈, then (x ≈ y) = [x]≈(y) =
[y]≈(y) = >, by reflexive property; conversely, if (x ≈ y) =
>, then [x]≈(u) = (x ≈ u) = (y ≈ x) ⊗ (x ≈ u) ≤ (y ≈
u) = [y]≈(u), for all u ∈ A.

Definition 4: Given a universe U , a fuzzy partition of U is
a family Π of fuzzy subsets of U such that

i) for all u ∈ U there exists A ∈ Π such that A(u) = >
ii) for all A ∈ Π there exists u ∈ U such that A(u) = >

iii) A(u)⊗B(u) ≤
∧
x∈U

A(x)↔ B(x), for all A,B ∈ Π and

u ∈ U
Notation 2: Similarly to definition 3, given µ : A×B → L,

for all a ∈ A we will consider the fuzzy sets µa : B → L
defined by µa(b) = µ(a, b).

Definition 5: A fuzzy structure A = 〈A,≈A〉 is a set A
endowed with a fuzzy equivalence relation ≈A.

From now on, for a fuzzy structure A, the underlying set
and the fuzzy equivalence relation are denoted by A and ≈A
respectively.

A number of different approaches to the notion of fuzzy
function can be found in the literature. The main problem
with the definition resides in that the fuzziness of the function
would imply that the function itself should be a fuzzy set (in
some sense). This difficulty can be overcome by means of
the use of suitable fuzzy equivalences in the domain and the
codomain of the function.

The first approach we will consider is that in which the
equality is substituted by fuzzy equivalence relations in both
the domain and the codomain, i.e., considering a compatible
mapping between fuzzy structures. This is a standard defini-
tion [6] for which we will use the term “morphism” (between
fuzzy structures) in order to simplify the statements of the
related results.

Definition 6: A morphism between two fuzzy structures A
and B is a mapping f : A → B which is compatible with
≈A and ≈B i.e. for all a1, a2 ∈ A the following inequality
holds (a1 ≈A a2) ≤ (f(a1) ≈B f(a2)). In this case, we write
f : A → B.

An alternative approach is given directly in terms of fuzzy
relations [7], [8]:

Definition 7: Let A = 〈A,≈A〉 and B = 〈B,≈B〉 be fuzzy
structures. A partial fuzzy function from A to B is a fuzzy
relation µ : A×B → L satisfying the following conditions:

(Ext1) µ(a1, b)⊗ (a1 ≈A a2) ≤ µ(a2, b) for all a1, a2 ∈ A
and b ∈ B.

(Ext2) µ(a, b1) ⊗ (b1 ≈B b2) ≤ µ(a, b2) for all a ∈ A and
b1, b2 ∈ B.

(Part) µ(a, b1) ⊗ µ(a, b2) ≤ (b1 ≈B b2) for all a ∈ A and
b1, b2 ∈ B

Moreover, µ is said to be a perfect fuzzy function whenever
the following condition holds:

(Tot) For all a ∈ A there exists b ∈ B satisfying that
µ(a, b) = >.

The two definitions above are closely related as follows:
Given a morphism f : 〈A,≈A〉 → 〈B,≈B〉 between fuzzy

structures, there exists a perfect fuzzy function µ : A×B → L
defined by µ(a, b) = (f(a) ≈B b) for all a ∈ A and b ∈ B
such that µ(a, f(a)) = >. On the other hand, given a perfect
fuzzy function µ : A×B → L, every mapping f : A → B
satisfying µ(a, f(a)) = > is a morphism between 〈A,≈A〉
and 〈B,≈B〉.

The following theorem states that, when ≈B is a fuzzy
equality, there exists a one-to-one correspondence between f ’s
and µ’s.

Theorem 1 (See [6, pg. 188]): Let ≈A be a fuzzy equiva-
lence on A and let ≈B be a fuzzy equality on B. There exists
a bijection between perfect fuzzy functions and morphisms.

III. FUZZY RELATIONS VS MORPHISMS BETWEEN FUZZY
STRUCTURES

In order to characterize which fuzzy relations do correspond
to any of the different definitions of a fuzzy function, given
a morphism f : (A,≈A) → (B,≈B), it is possible to define
a fuzzy relation µ : A × B → L by µ(a, b) = (f(a) ≈B b).
The problem that we consider in this section is the opposite:
given a fuzzy relation µ, we study when it is possible to define
a morphism f between fuzzy structures such that µ(a, b) =
(f(a) ≈B b).

Such a problem does not always have a solution even in the
crisp case (in which the fuzzy equivalences ≈ are replaced by
equivalence relations ≡) as the following examples show:

Example 1: Consider the relations µ1, µ2 : {a1, a2} ×
{b1, b2} → L, where L = (L,⊥,>, ·,→) is a non-trivial
residuated lattice, defined below:

µ1 b1 b2
a1 > >
a2 ⊥ ⊥

µ2 b1 b2
a1 > >
a2 ⊥ >

In neither of the previous examples it is possible to define a
mapping f : {a1, a2} → {b1, b2} and an equivalence relation
≡B on B such that µi(a, b) = (f(a) ≡B b): in a such case,
in one hand we have

⊥ = µ1(a2, f(a2)) = (f(a2) ≡ f(a2)) = >
which yields a contradiction; on the other hand, by transitive
property

(b1 ≡ f(a1))⊗ (f(a1) ≡ b2)⊗ (b2 ≡ f(a2)) ≤ (b1 ≡ f(a2))

but µ(a1, b1)⊗ µ(a1, b2)⊗ µ(a2, b2) = > and µ(a2, b1) = ⊥
which also implies a contradiction.

It is not difficult to observe that the previous examples failed
because the families {µi(a1), µi(a2)} do not form a partition
in B and, hence, no equivalence relation ≡B can be defined
on B such that µi(a, b) = (f(a) ≡B b) holds.

When considering the previous approach in the fuzzy set-
ting, it is natural to rephrase it in terms of fuzzy partitions.
Actually, we will see below that if the set of fuzzy sets given
by {µa}a∈A is a fuzzy partition, then there is a solution for



our problem and, hence, it is a sufficient condition. Before
proceeding with the formal result, we introduce the notion of
‘functionality’ of a fuzzy relation as follows:

Definition 8: Let µ ∈ LA×B be a fuzzy relation. We
say that µ is completely functional if there exist two fuzzy
structures A = 〈A,≈A〉 and B = 〈B,≈B〉 and a morphism
f : A → B such that µ(a, b) = (f(a) ≈B b) for all a ∈ A and
b ∈ B.

Now, we can state the sufficient condition stated above:

Proposition 1: Let µ ∈ LA×B be a fuzzy relation. If
{µa}a∈A is a fuzzy partition on B, then µ is completely
functional.

The following example shows that the condition in the above
proposition is not necessary.

Example 2: Let A = {a1, a2} and B = {b1, b2, b3, b4} be
two sets and let µ : A × B → [0, 1] be the following fuzzy
relation between A and B:

µ b1 b2 b3 b4
a1 1 0.1 1 0.8
a2 0.1 1 0.1 0.1

Let f : A → B be the mapping defined as f(a1) =
b1, f(a2) = b2 and the fuzzy equivalence in B given by

≈B b1 b2 b3 b4
b1 1 0.1 1 0.8
b2 0.1 1 0.1 0.1
b3 1 0.1 1 0.8
b4 0.8 0.1 0.8 1

Observe that µ(ai, bj) = (f(ai) ≈ bj) for all i ∈ {1, 2} and
j ∈ {1, 2, 3, 4}. However, the sets of fuzzy sets {µa1 , µa2} is
not a fuzzy partition on B since for b4 ∈ B neither µ(a1, b4) =
1 nor µ(a2, b4) = 1.

It is remarkable that the condition in Proposition 1 does not
impose any restriction with respect to the fuzzy structure A.
The following result clarifies this issue.

Lemma 1: A fuzzy relation µ ∈ LA×B is completely func-
tional if and only if there exist a fuzzy structure B = 〈B,≈B〉
and a morphism f : 〈A,=〉 → B such that µ(a, b) = (f(a) ≈B
b) for all a ∈ A and b ∈ B.

The main result in this section characterizes the fuzzy
relations which are completely functional.

Theorem 2: Let µ ∈ LA×B be a fuzzy relation. Then µ is
completely functional if and only if the following conditions
hold:

1) For each a1, a2 ∈ A and b1, b2 ∈ B the following
inequality holds

µ(a1, b1)⊗ µ(a2, b1)⊗ µ(a1, b2) ≤ µ(a2, b2) (1)

2) dom(µ) = A.

Proof: Assume that µ ∈ LA×B is completely functional
and let f : 〈A,≈A〉 → 〈B,≈B〉 be a morphism such that
µ(a, b) = (f(a) ≈B b), for all a ∈ A, b ∈ B. Since ≈B

is transitive, for a1, a2 ∈ A and b1, b2 ∈ B:

µ(a1, b1)⊗ µ(a2, b1)⊗ µ(a1, b2)

= (f(a1) ≈B b1)⊗ (f(a2) ≈B b1)⊗ (f(a1) ≈B b2)

= (f(a2) ≈B b1)⊗ (b1 ≈B f(a1))⊗ (f(a1) ≈B b2)

≤ (f(a2) ≈B b2) = µ(a2, b2)

Moreover, for any a ∈ A, since ≈B is reflexive, µ(a, f(a)) =
(f(a) ≈B f(a)) = > which means that µa is normal and
a ∈ dom(µ).

Conversely, let µ ∈ LA×B be a fuzzy relation for which
Conditions 1. and 2. hold. Define a fuzzy binary relation ≈µ
on B as follows:

(b1 ≈µ b2) = (b1 = b2) ∨
∨
a∈A

(
µ(a, b1)⊗ µ(a, b2)

)
The relation satisfies the properties of reflexivity and symme-
try. For the ⊗-transitivity, given b1, b2, b3 ∈ B, by distributiv-
ity of ∨ with respect to ⊗, we have

(b1 ≈µ b2)⊗ (b2 ≈µ b3)

=
[
(b1 = b2)⊗ (b2 = b3)

]
∨

∨
[
(b1 = b2)⊗

∨
a∈A

(
µ(a, b2)⊗ µ(a, b3)

)]
∨
[
(b2 = b3)⊗

∨
a∈A

(
µ(a, b1)⊗ µ(a, b2)

)]
∨
[ ∨
a∈A

(
µ(a, b1)⊗ µ(a, b2)

)
⊗
∨
a∈A

(
µ(a, b2)⊗ µ(a, b3)

)]
The first three components of the supremum above are clearly
less than (b1 ≈µ b3), therefore we have just to prove the
inequality for the fourth component. By applying distributivity
once again we obtain∨

a∈A

(
µ(a, b1)⊗ µ(a, b2)

)
⊗
∨
a∈A

(
µ(a, b2)⊗ µ(a, b3)

)
=

=
∨
a∈A

∨
a′∈A

(
µ(a, b1)⊗ µ(a, b2)⊗ µ(a′, b2)⊗ µ(a′, b3)

)
(1)
≤
∨
a′∈A

(
µ(a′, b1)⊗ µ(a′, b3)

)
≤ (b1 ≈µ b3)

As a result, ≈µ is a fuzzy equivalence relation.
For a ∈ A, since µa is normal and by the axiom of choice,

it is possible to define f : A → B such that µ(a, f(a)) = >,
for each a ∈ A. Firstly, observe that f is a morphism between
〈A,=〉 and 〈B,≈µ〉 because ≈µ is reflexive.

Now, we have just to prove that µ(a, b) = (f(a) ≈µ b)
for all a ∈ A, b ∈ B. The equality trivially holds in the case
f(a) = b.

If f(a) 6= b we will prove the two inequalities. Firstly,

(f(a) ≈µ b) =
∨
a′∈A

(
µ(a′, f(a))⊗ µ(a′, b)

)
=
∨
a′∈A

(
µ(a′, f(a))⊗ µ(a′, b)⊗ µ(a, f(a))

)
(1)
≤
∨
a′∈A

µ(a, b) = µ(a, b)



Conversely

µ(a, b) = µ(a, f(a))⊗ (a, b)

≤
∨
a′∈A

(
µ(a′, f(a))⊗ µ(a′, b)

)
= (f(a) ≈µ b)

As a consequence of the previous result, it is not difficult to
prove that a fuzzy relation µ is completely functional if and
only if the family of fuzzy sets {µa}a∈A satisfies the second
and third conditions of fuzzy partition (see Definition 4). This
is reasonable in that the first condition of fuzzy partition would
imply that our underlying mapping f should be surjective,
which is more than what we are requiring.

Furthermore, the role of condition 2 in the previous theorem
is exclusively related to the fact that f is a total function
(defined on every element a ∈ A), and condition (1) is
the actual key of the ‘functionality’ of µ. This justifies the
introduction of the following definition

Definition 9: A fuzzy relation µ : A×B → L is said to be
functional if condition (1) is satisfied.

It is worth to remark that the transitivity for ≈µ in the
proof of Theorem 2 only depends on condition (1), hence it
is a fuzzy equivalence relation provided µ is functional (not
necessarily completely functional).

Definition 10: Given a functional fuzzy relation µ, the
fuzzy equivalence relation ≈µ defined for b1, b2 ∈ B by

(b1 ≈µ b2) = (b1 = b2) ∨
∨
a∈A

(
µ(a, b1)⊗ µ(a, b2)

)
will be called the fuzzy equivalence induced by µ on B.

Note that, if b1 ∈ im(µ), then (b1 ≈µ b2) = µ(a1, b2) for
any a1 ∈ A such that f(a1) = b1 (or, equivalently, µ(a1, b1) =
>). For the proof, we have to consider just the case in which
b1 6= b2, hence

(b1 ≈µ b2) =
∨
a∈A

(
µ(a, b1)⊗ µ(a, b2)

)
=
∨
a∈A

(
µ(a, b1)⊗ µ(a, b2)⊗ µ(a1, b1)

)
(1)
≤
∨
a∈A

µ(a1, b2) = µ(a1, b2)

For the other inequality

µ(a1, b2) = µ(a1, b1)⊗ µ(a1, b2)

≤
∨
a∈A

(
µ(a, b1)⊗ µ(a, b2)

)
= (b1 ≈µ b2)

By symmetry of the construction, if b2 ∈ im(µ), then (b1 ≈µ
b2) = µ(a2, b1) for any a2 ∈ A such that f(a2) = b2. In fact,
≈µ is the least fuzzy equivalence relation satisfying the two
previous equalities, therefore we have the following result:

Proposition 2: Given a completely functional fuzzy relation
µ, the fuzzy equivalence relation induced by µ on B, ≈µ, is

the transitive closure of the fuzzy relation

(b1 ∼=B b2) =



µ(a1, b2) if there exists a1 ∈ A
such that µ(a1, b1) = > ;

µ(a2, b1) if there exists a2 ∈ A
such that µ(a2, b2) = > ;

> if b1 = b2 ;
⊥ otherwise.

Furthermore, the fuzzy equivalence relation ≈µ is the least
one on B which enables to define µ in terms of a morphism
between fuzzy structures. Formally,

Proposition 3: Given a completely functional fuzzy relation
µ : A × B → L, then for any possible morphism between
fuzzy structures f : 〈A,≈A〉 → 〈B,≈B〉 satisfying µ(a, b) =
(f(a) ≈B b), we have that ≈B includes ≈µ.

IV. FUZZY RELATIONS VS PERFECT AND PARTIAL FUZZY
FUNCTIONS

We are interested now in studying the link between a
fuzzy relation and another suitable notion of fuzzy function,
namely, the perfect and the partial fuzzy functions introduced
by Gottwald.

To begin with, we obtain that the notion of complete
functionality of a fuzzy relation given in the previous section
coincides, in some sense, with the existence of a perfect func-
tion between suitable fuzzy structures. The formal statement
is the following:

Theorem 3: A fuzzy relation µ ∈ LA×B is completely
functional if and only if there exist two fuzzy equivalence
relations ≈A on A and ≈B on B such that µ is a perfect
fuzzy function between 〈A,≈A〉 and 〈B,≈B〉.

Proof: Let us assume that µ is completely functional,
then there exists a fuzzy equivalence relation ≈B on B and
a mapping f : A → B such that µ(a, b) = (f(a) ≈B b); and
let us prove that µ is a perfect fuzzy function between 〈A,=〉
and 〈B,≈B〉.

We have to check that all the conditions in Definition 7
hold:

(Ext1) Trivial, since µ(a1, b)⊗ (a1 = a2) ≤ µ(a2, b).
(Ext2) By hypothesis and ⊗-transitivity of ≈B

µ(a, b1)⊗ (b1 ≈B b2) = (f(a) ≈B b1)⊗ (b1 ≈B b2)

≤ (f(a) ≈B b2) = µ(a, b2).

(Part) By hypothesis, and symmetry and ⊗-transitivity of
≈B
µ(a, b1)⊗ µ(a, b2) = (f(a) ≈B b1)⊗ (f(a) ≈B b2)

= (b1 ≈B f(a))⊗ (f(a) ≈B b2)

≤ (b1 ≈B b2).

(Tot) Directly by Theorem 2 (item 1).
Conversely, let us assume that µ is a perfect fuzzy function

between two fuzzy structures 〈A,≈A〉 and 〈B,≈B〉, and let us
prove that µ is functional, in fact, we will show the conditions
in Theorem 2.

To begin with, condition (Tot) implies that µa is normal for
all a ∈ A; therefore the second condition holds.



For condition (1), given a1, a2 ∈ A and b1, b2 ∈ B, by
(Part) and (Ext2) we have that

µ(a1, b1)⊗ µ(a2, b1)⊗ µ(a1, b2) ≤ µ(a2, b1)⊗ (b1 ≈B b2)

≤ µ(a2, b2)

As stated above, condition (1) somehow encodes the ‘func-
tionality’ of a fuzzy relation µ, since if the first condition is
missing (dom(µ) 6= A but still dom(µ) 6= ∅) then we still
retain ‘partial functionality’. The formal development of this
idea is given in the rest of this section.

Theorem 4: Given a fuzzy relation µ : A × B → L, the
following conditions are equivalent:

1) µ is functional.
2) µ is a partial fuzzy function from 〈A,≈A〉 to 〈B,≈B〉

for certain ≈A and ≈B .
3) µ−1 is a partial fuzzy function from 〈B,≈B〉 to 〈A,≈A〉

for certain ≈A and ≈B .
4) µ and µ−1 are partial fuzzy functions between 〈A,≈A〉

and 〈B,≈B〉 for certain ≈A and ≈B .
The previous result can be rephrased as well in terms

of morphisms provided that we restrict our attention to
the domain of µ. In fact, we have a two-directional inter-
pretation in which it is possible to define two morphisms
f : 〈dom(µ),≈µ−1〉 → 〈B,≈µ〉 and g : 〈im(µ),≈µ〉 →
〈A,≈µ−1〉 satisfying(

f(a) ≈µ b
)

= µ(a, b) =
(
a ≈µ−1 g(b)

)
(2)

for all a ∈ dom(µ) and b ∈ im(µ).
It is remarkable that equations (2) can be read as the

properties required for the pair (f, g) to be a Galois connec-
tion between dom(µ) and im(µ). Indeed, the fact that the
underlying relations are fuzzy equivalences and, in particular,
fuzzy preorders, implies that (f, g) is actually an adjunction,
co-adjunction, and a (left) and right-Galois connection [2] and,
hence, one has(

(f ◦ g)(b) ≈µ b
)

= > and
(
(g ◦ f)(a) ≈µ−1 a

)
= >

Contrariwise to the behaviour of the crisp descriptions in
the previous section, the following example shows that, when
neither dom(µ) = A nor im(µ) = B, the crisp descriptions
associated to a fuzzy relation µ do not allow, in general, to
reconstruct µ.

Example 3: Let L be an arbitrary complete residuated lat-
tice. Consider as well the fuzzy relation µ : {a, b}×{c, d} → L
defined as follows for some fixed elements α, β, γ ∈ L:

µ c d
a > β
b α γ

It is a matter of straight computation to check that the fuzzy
relation µ is functional if and only if the following inequalities
hold:

1) µ(a, c)⊗ µ(b, c)⊗ µ(a, d) = >⊗ α⊗ β ≤ γ = µ(b, d).
2) µ(a, d)⊗ µ(b, d)⊗ µ(a, c) = β ⊗ γ ⊗> ≤ α = µ(b, c).
3) µ(b, c)⊗ µ(a, c)⊗ µ(b, d) = α⊗>⊗ γ ≤ β = µ(a, d).
As a result µ is functional if and only if α⊗β ≤ γ ≤ α↔ β,

which is a not very restrictive condition in that there are lots
of particular examples satisfying them.

The fuzzy equivalences induced by µ are the following ones:
≈µ c d
c > β
d β >

≈µ−1 a b
a > α
b α >

Since dom(µ) = {a} and im(µ) = {c}, we have that the
crisp descriptions associated to µ must be defined by f(a) = c
and g(c) = a.

Now, by equations (2), it is not possible to reconstruct the
value of µ(b, d) since b /∈ dom(µ) and d /∈ im(µ).

V. FUZZY RELATIONS AND FUZZY ADJUNCTIONS

In this section, we introduce a novel definition of fuzzy
adjunction in which the role of left and right adjoints is played
by arbitrary fuzzy relations.

Definition 11: Let 〈A, ρA〉 and 〈B, ρB〉 be fuzzy preposets
and µ : A×B → L and ν : B×A→ L be fuzzy relations. The
pair (µ, ν) is said to be a fuzzy adjunction between 〈A, ρA〉
and 〈B, ρB〉 if the following conditions hold:

(Ad1) For all a1 ∈ A and b1 ∈ B there exist a2 ∈ A and
b2 ∈ B such that µ(a1, b1) ≤ µ(a1, b1)⊗ ν(b1, a2) and
ν(b1, a1) ≤ ν(b1, a1)⊗ µ(a1, b2).

(Ad2) For all a1, a2 ∈ A and b1, b2 ∈ B, one has
i) ρA(a1, a2)⊗ µ(a1, b1)⊗ ν(b2, a2) ≤ ρB(b1, b2).

ii) ρB(b1, b2)⊗ µ(a1, b1)⊗ ν(b2, a2) ≤ ρA(a1, a2).
This definition is coherent in some sense with our previous

approaches about adjunctions in a fuzzy setting.
Definition 12 ([9]): Let ≈A be a fuzzy equivalence relation

on A. A fuzzy binary relation ρA : A×A→ L is said to be
(i) ≈A-reflexive if (a1 ≈A a2) ≤ ρA(a1, a2) for all a1, a2 ∈

A.
(ii) ⊗-≈A-antisymmetric if ρA(a1, a2) ⊗ ρA(a2, a1) ≤

(a1 ≈A a2) for all a1, a2 ∈ A.
Definition 13: Given a fuzzy structure A = 〈A,≈A〉, the

pair A = 〈A, ρA〉 will be called a ⊗-≈A- fuzzy preordered
structure or simply fuzzy preordered structure (when there is
no risk of confusion), if ρA is a fuzzy relation that is ≈A-
reflexive, ⊗-≈A-antisymmetric and ⊗-transitive.

Definition 14: [5] Let A and B be two fuzzy preordered
structures. Given two morphisms f : A → B and g : B → A,
the pair (f, g) is said to be an adjunction between A and B
(briefly, (f, g) : A � B) if ρA(a, g(b)) = ρB(f(a), b) for all
a ∈ A and b ∈ B.

Proposition 4: Let A and B be two fuzzy preordered struc-
tures and let µ : A×B → L and ν : B×A→ L be completely
functional fuzzy relations for which there exist morphisms
f : A → B and g : B → A such that µ(a, b) = (f(a) ≈B b)
and ν(b, a) = (g(b) ≈A a) for all a ∈ A and b ∈ B.

The pair (µ, ν) is a fuzzy adjunction between 〈A, ρA〉 and
〈B, ρB〉 if and only if (f, g) is an adjunction between the
fuzzy preordered structures 〈A,≈A, ρA〉 and 〈B,≈B , ρB〉.

From the previous definition, the following proposition can
be obtained straightforwardly.



Proposition 5: Let 〈A, ρA〉 and 〈B, ρB〉 be fuzzy preposets
and µ : A×B → L and ν : B ×A→ L be fuzzy relations.

1) If µ and ν are total (i.e. dom(µ) = A and dom(ν) = B),
the pair (µ, ν) satisfies the condition (Ad1).

2) If the pair (µ, ν) satisfies the condition (Ad1) then, for
all a1 ∈ A and b1 ∈ B, there exists a2 ∈ A such that
µ(a1, b1) = µ(a1, b1)⊗ ν(b1, a2)⊗ ν(b1, a2).

3) If the pair (µ, ν) satisfies the condition (Ad1) then, for
all a1 ∈ A and b1 ∈ B, there exists b2 ∈ B such that
ν(b1, a1) = ν(b1, a1)⊗ µ(a1, b2)⊗ µ(a1, b2).

In order to study the properties of fuzzy adjunctions, we
need to introduce some preliminary definitions, inspired on
the similar ones already given for morphisms.

Definition 15: Let 〈A, ρA〉 and 〈B, ρB〉 be fuzzy preposets.
A fuzzy relation µ : A × B → L is said to be isotone
if ρA(a1, a2) ⊗ µ(a1, b1) ⊗ µ(a2, b2) ≤ ρB(b1, b2) for all
a1, a2 ∈ A and b1, b2 ∈ B.

Proposition 6: Let A and B be two fuzzy preordered struc-
tures and let µ : A×B → L be a completely functional fuzzy
relation for which there exists a morphism f : A → B such
that µ(a, b) = (f(a) ≈B b) for all a ∈ A and b ∈ B. The
relation µ is isotone if and only if the morphism f is isotone
(i.e. ρA(a1, a2) ≤ ρB(f(a1), f(a2)))

Definition 16: Let 〈A, ρA〉 be a fuzzy preposet. A fuzzy
relation µ : A×A→ L is said to be:

• inflationary if µ(a1, a2) ≤ ρA(a1, a2) for all a1, a2 ∈ A.
• deflationary if µ(a1, a2) ≤ ρA(a2, a1) for all a1, a2 ∈ A.

Proposition 7: Let A be a fuzzy preordered structure and
let µ : A × A → L be a completely functional fuzzy relation
for which there exists a morphism f : A → A such that
µ(a1, a2) = (f(a1) ≈B a2) for all a1, a2 ∈ A. The relation µ
is inflationary (deflationary, resp.) if and only if the morphism
f is inflationary (i.e. ρA(a1, f(a1)) = >) (deflationary, resp.).

The following theorem gives a first characterization of fuzzy
adjunctions, which resembles the classical behavior of crisp
adjunctions.

Theorem 5: Let 〈A, ρA〉 and 〈B, ρB〉 be fuzzy preposets
and µ : A × B → L and ν : B × A → L be fuzzy relations
such that the pair (µ, ν) satisfies the condition (Ad1). Then,
(µ, ν) is a fuzzy adjunction if and only if µ and ν are isotone,
ν ◦ µ is inflationary and µ ◦ ν is deflationary.

Proof: Consider that (µ, ν) is a fuzzy adjunction between
〈A, ρA〉 and 〈B, ρB〉.

• The following sequence proves that ν ◦ µ is inflationary
by using reflexivity of ρB and the condition (Ad2):

(ν ◦ µ)(a1, a2) =
∨
b∈B

µ(a1, b)⊗ ν(b, a2)

=
∨
b∈B

ρB(b, b)⊗ µ(a1, b)⊗ ν(b, a2)

≤ ρA(a1, a2)

• Now, we similarly prove that µ ◦ ν is deflationary:

(µ ◦ ν)(b1, b2) =
∨
a∈A

ν(b1, a)⊗ µ(a, b2)

=
∨
a∈A

ρA(a, a)⊗ ν(b1, a)⊗ µ(a, b2)

≤ ρB(b2, b1)

• In order to prove the isotonicity of µ, first we prove that,
for all a1, a2 ∈ A and b ∈ B, there exists a3 ∈ A with

ρA(a1, a2)⊗ µ(a2, b) ≤ ρA(a1, a3)⊗ ν(b, a3) (3)

By Proposition 5, the fact that ν ◦ µ is inflationary and
transitivity of ρA, one has:

ρA(a1, a2)⊗ µ(a2, b)

= ρA(a1, a2)⊗ µ(a2, b)⊗ ν(b, a3)⊗ ν(b, a3)

≤ ρA(a1, a2)⊗ ρA(a2, a3)⊗ ν(b, a3)

≤ ρA(a1, a3)⊗ ν(b, a3)

Now, by using (3) and the condition (Ad2), one has:

ρA(a1, a2)⊗ µ(a1, b1)⊗ µ(a2, b2)

≤ ρA(a1, a3)⊗ µ(a1, b1)⊗ ν(b2, a3)

≤ ρB(b1, b2)

• The proof for the isotonicity of ν is analogous.
Contrariwise, assume that (µ, ν) satisfies the condition (Ad1),
µ and ν are isotone, ν ◦ µ is inflationary and µ ◦ ν is
deflationary. First, we prove item b) in condition (Ad2) by
using Proposition 5, the facts that ν ◦ µ is inflationary and ν
is isotone, and transitivity of ρA:

ρB(b1, b2)⊗ µ(a1, b1)⊗ ν(b2, a2)

= ρB(b1, b2)⊗ µ(a1, b1)⊗ ν(b1, a3)⊗ ν(b1, a3)⊗ ν(b2, a2)

≤ ρB(b1, b2)⊗ ρA(a1, a3)⊗ ν(b1, a3)⊗ ν(b2, a2)

≤ ρA(a1, a3)⊗ ρA(a3, a2) ≤ ρA(a1, a2)

Item a) in condition (Ad2) is analogously proved.
Corollary 1: Let (µ, ν) be a fuzzy adjunction between

〈A, ρA〉 and 〈B, ρB〉. The following conditions hold:
1) µ(a, b1) ⊗ (µ ◦ ν ◦ µ)(a, b2) ≤ ρB(b1, b2) ∧ ρB(b2, b1)

for all a ∈ A and b1, b2 ∈ B.
2) ν(b, a1) ⊗ (ν ◦ µ ◦ ν)(b, a2) ≤ ρA(a1, a2) ∧ ρA(a2, a1)

for all a1, a2 ∈ A and b ∈ B.
3) For all a1 ∈ A and b ∈ B there exists a2 ∈ A such that

µ(a1, b) ≤ ρA(a1, a2).
4) For all a ∈ A and b1 ∈ B there exists b2 ∈ B such that

ν(b1, a) ≤ ρB(b2, b1).

VI. RELATED APPROACHES

There are several papers dealing with different notions of
fuzzy function, and their interrelations: one of the first ap-
proaches was given by Sasaki [10], and one of the most well-
known is that of Demirci [7], [11]; we can even find recent
works in which the different notions existing in the literature
are further compared and put into context, see [12] and [13]. A
similar characterization of functional fuzzy relations in terms
of partial fuzzy functions was already stated in [14], using the



notion of uniform fuzzy relation and uniform F -function, and
a completely different motivation. We prefer to stick to our
approach since, at least in the context of our research topic, it
is much more natural to consider a functional fuzzy relation
than a uniform fuzzy relation.

Concerning the generalization to the notion of adjunction to
the fuzzy case, to the best of our knowledge, the first approach
was due to Bělohlávek [15]. Later, a number of publications
have introduced different approaches to either fuzzy adjunc-
tions or fuzzy Galois connections, see [16], [17], [18], [19],
[20]. The latter notion of fuzzy Galois connection introduced
by Yao in [20] was used in our previous work [4], where
we were interested in constructing a right adjoint (or residual
mapping) associated to a given mapping f : 〈A, ρA〉 → B
from a fuzzy preposet 〈A, ρA〉 into an unstructured set B.
The fact the mappings in this approach are crisp rather than
fuzzy motivated the search for the use of fuzzy functions and
lead to the notion introduced in this work.

VII. CONCLUSIONS AND FURTHER WORK

We have revisited the problem of studying when a given
a fuzzy relation can be characterized in terms of a fuzzy
function. Then, we have provided a notion of fuzzy adjunction
as a pair of (completely functional) fuzzy relations fulfilling
certain properties which generalizes naturally the notion used
in previous approaches (see [4] and [5]).

As future work, we are planning the characterization of
existence of this type of fuzzy adjunctions in different fuzzy
environments (preordered or partially ordered sets with or
without corresponding fuzzy equivalence relations).
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