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Abstract—The construction of Galois connections between
different structures provides a number of advantages, both from
the theoretical and the applied standpoints. In this paper, we
survey some works on Galois connections focused essentially on
certain aspects of Computational Intelligence.
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I. INTRODUCTION

The notion of Galois connection originated in pure mathe-
matics. Historically, the first occurrence of a Galois connection
appeared in the works of Évariste Galois, hence its name, on
the solvability by radicals of polynomial equations. The main
idea was to link the algebraic solution to a polynomial equation
to the structure of the group of permutations associated with
the roots of the polynomial; in other works, he “moved" the
problem of studying solutions to a polynomial to the realm
of group theory. This is the essence of Galois connection, a
passing between two (apparently disparate) worlds.

The term Galois connection was coined by Ore in 1944 in
the context of complete lattices, and then Kan introduced the
adjunctions in the context of category theory in 1958. Apart
from some particularities, both notions are closely related and,
in fact, are interchangeable.

Applications of Galois connections to Computer Science
can be traced back to the eighties: in [1] Galois connections
are used to proof the correctness of a compiler, to solve a
a data type coercion problem; and to Scott’s inverse limit
construction for recursively defined domains. Much more
recently, we still can find further applications, for instance,
[2] introduces a binary relational combinator which mirrors the
linguistic structure in expressions such as “the smallest such
number”, “the best approximation”, “the longest such list” and
exploits its potential for calculating programs by optimization,
in particular, to specifications written in the form of Galois
connections, in which one of the adjoints delivers the optimal
solution being sought.

An interesting example of Galois connection arises in the
field of Formal Concept Analysis (FCA), which can be seen
both as a mathematical theory aiming at restructuring lattice
theory (as stated by Rudolph Wille) and as a technology
of data processing which complements collective intelligence
and helps visualising the hidden information in apparently
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unstructured and distributed data [3]. Different computational
intelligence tools which convert data into formal contexts and
then analyse those contexts providing a concept lattice as a
form of visualised knowledge have been developed.

In this work, we will stress on the usefulness of Galois
connection as a tool for Computational Intelligence, and we
will survey some recently published papers in which Galois
connections play an important role.

The structure of this paper is the following: in Section II
we recall the idea of Galois connection, and introduce the
different versions that are in use, both in the crisp and in the
fuzzy cases; then, Section III focuses on recent applications
of Galois connections in the field of Evolutive Computation;
later, in Section IV, the focus is put on applications related
to Neural Computation; and, then, in Section V, we consider
applications within the area of Fuzzy Computation; finally, in
Section VII, we state some conclusions and future work.

II. DEFINITIONS

The standard notion of Galois connection is defined be-
tween two partially ordered sets. However, not all the authors
consider the same definition of Galois connection and it is
remarkable that not all of them are equivalent. In fact, there
are four different notions of Galois connection, the most often
used being the “right Galois connection” (also known as
antitone Galois connection) and the “adjunction" (also known
as isotone Galois connections).

Definition 1: Let A = (A,≤) and B = (B,≤) be posets,
f : A → B and g : B → A be two mappings. The pair (f, g)
is called a
• Right Galois Connection between A and B, denoted by

(f, g) : A⇀↼B if, for all a ∈ A and b ∈ B it holds that

a ≤ g(b) if only if b ≤ f(a)

• Left Galois Connection between A and B, denoted by
(f, g) : A⇁↽B if, for all a ∈ A and b ∈ B it holds that

g(b) ≤ a if only if f(a) ≤ b

• Adjunction between A and B, denoted by (f, g) : A � B
if, for all a ∈ A and b ∈ B it holds that

a ≤ g(b) if only if f(a) ≤ b

• Co-Adjunction between A and B, denoted by (f, g) : A 

B if, for all a ∈ A and b ∈ B it holds that

g(b) ≤ a if only if b ≤ f(a)



It is noteworthy that this definition is also compatible with
the case of A = (A,≤) and B = (B,≤) being preordered
sets.

Taking into account the dual order, by which A∂ = (A,≥),
it is not difficult to check that the following conditions are
equivalent:

1) (f, g) : A⇀↼B.
2) (f, g) : A∂ ⇁↽B∂ .

3) (f, g) : A � B∂ .
4) (f, g) : A∂ 
 B.

Focusing on one particular notion, say Right Galois Con-
nection, there are many other equivalent definitions in terms
of particular properties of the components of the connection
f and g.

The different characterizations for each of the notions of
(right- or left-) Galois connection and (co-)adjunction are
summarized in Table I (taken from [4]), where we assume that
the standard notions of (crisp) order theory are known by the
reader. The only non-standard notation is that of p-max(C)
to refer to the set of maximum elements of subset C of a
preordered set (note that the absence of antisymmetry leads to
the possible existence of several different elements fulfilling
the properties of being a maximum for C).

Galois connections in the fuzzy case

A more interesting framework to work with Galois connec-
tions for Computational Intelligence is to consider potential
extensions of the notion to the fuzzy case. As usual, we will
consider a complete residuated lattice L = (L,≤,>,⊥,⊗,→)
as underlying structure for considering the generalization to a
fuzzy framework. As usual, supremum and infimum will be
denoted by ∨ and ∧, respectively

An L-fuzzy set is a mapping from the universe set, say X , to
the lattice L, i.e. X : U → L, where X(u) means the degree
in which u belongs to X . We will denote LA to refer to the
set of all mappings from A to L.

Given X and Y two L-fuzzy sets, X is said to be included
in Y , denoted as X ⊆ Y , if X(u) ≤ Y (u) for all u ∈ U . The
subsethood degree S(X,Y ), by which X is a subset of Y , is
defined by S(X,Y ) =

∧
u∈U

(
X(u)→ Y (u)

)
.

The first notion of fuzzy Galois connection was given by
Bělohlávek, and it can be rewritten as follows:

Definition 2 ( [5]): An (L-)fuzzy Galois connection between
A and B is a pair of mappings f : LA → LB and g : LB →
LA such that, for all X ∈ LA and Y ∈ LB it holds that
S(X, g(Y )) = S(Y, f(X)).

This definition generalizes the standard notion of Galois
connection between powersets to the fuzzy case, but not the
Galois connection between (pre-)ordered structures. For this,
one needs to consider suitable extensions of the notion of poset
and preordered set to the fuzzy case.

An L-fuzzy binary relation on U is an L-fuzzy subset of
U × U , that is ρU : U × U → L, and it is said to be:
• Reflexive if ρU (a, a) = > for all a ∈ U .
• ⊗-Transitive if ρU (a, b) ⊗ ρU (b, c) ≤ ρU (a, c) for all
a, b, c ∈ U .

• Symmetric if ρU (a, b) = ρU (b, a) for all a, b ∈ U .
• Antisymmetric if ρU (a, b) = ρU (b, a) = > implies a = b,

for all a, b ∈ U .
We can now introduce the notions of fuzzy poset and fuzzy

preposet as follows:
Definition 3: An L-fuzzy poset is a pair U = (U, ρU ) in

which ρU is a reflexive, antisymmetric and transitive L-fuzzy
relation on U .

An L-fuzzy preposet is a pair U = (U, ρU ) in which ρU is
a reflexive and transitive L-fuzzy relation on U .

From now on, when no confusion arises, we will omit the
prefix “L-”.

We can now recall the extension to the fuzzy case provided
by Yao and Lu, also used in [6],which can be stated as follows:

Definition 4 ( [7]): Let A = 〈A, ρA〉 and B = 〈B, ρB〉
be fuzzy preposets. A pair of mappings f : A → B and
g : B → A forms a Galois connection between A and B,
denoted (f, g) : A � B if, for all a ∈ A and b ∈ B, the
equality ρA(a, g(b)) = ρB(f(a), b) holds.

A further step towards generalization to the fuzzy realm
is possible when considering fuzzy equivalence relations in
each of the involved sets instead of the mere equality relation.
This leads to a notion of fuzzy Galois connection in which
the mappings f and g can be seen, in some sense, as fuzzy
mappings instead of being crisp ones.

The additional consideration of an underlying fuzzy equiv-
alence relation suggests considering the following notions:

Definition 5:
(i) A fuzzy structure A = 〈A,≈A〉 is a set A endowed with

a fuzzy equivalence relation ≈A.
(ii) A morphism between two fuzzy structures A and B is

a mapping f : A → B such that for all a1, a2 ∈ A the
following inequality holds: (a1 ≈A a2) ≤ (f(a1) ≈B

f(a2)). In this case, we write f : A → B, and we say
that f is compatible with ≈A and ≈B .

We can now introduce the notion of fuzzy preordered
structure as follows:

Definition 6: Given a fuzzy structure A = 〈A,≈A〉, the
pair A = 〈A, ρA〉 will be called a ⊗-≈A- fuzzy preordered
structure or simply fuzzy preordered structure (when there is
no risk of confusion), if ρA is a fuzzy relation that is ≈A-
reflexive, ⊗-≈A-antisymmetric and ⊗-transitive, where
(i) ≈A-reflexive means (a1 ≈A a2) ≤ ρA(a1, a2) for all

a1, a2 ∈ A.
(ii) ⊗-≈A-antisymmetric means ρA(a1, a2) ⊗ ρA(a2, a1) ≤

(a1 ≈A a2) for all a1, a2 ∈ A.
If the underlying fuzzy structure is not clear from the context,
we will sometimes write a fuzzy preordered structure as a
triplet A = 〈A,≈A, ρA〉.

A reasonable approach to introduce the notion of Galois
connection between fuzzy preordered structures A and B
would be the following

Definition 7 ( [8]): Let A and B be two fuzzy preordered
structures. Given two morphisms f : A → B and g : B → A,
the pair (f, g) is said to be a Galois connection between A and



TABLE I
SUMMARY OF DEFINITIONS AND EQUIVALENT CHARACTERIZATIONS BETWEEN CRISP PREORDERED SETS

Galois Connections
Right Galois Connections between A and B Left Galois Connections between A and B

(f, g) : A ⇀↼ B (f, g) : A ⇁↽ B
b ≤ f(a)⇔ a ≤ g(b) f(a) ≤ b⇔ g(b) ≤ a

for all a ∈ A and b ∈ B for all a ∈ A and b ∈ B
f and g are antitone and f and g are antitone and

g ◦ f and f ◦ g are inflationary g ◦ f and f ◦ g are deflationary
f(a)↓ = g−1(a↑) for all a ∈ A f(a)↑ = g−1(a↓) for all a ∈ A
g(b)↓ = f−1(b↑) for all b ∈ B g(b)↑ = f−1(b↓) for all b ∈ B

f is antitone and f is antitone and
g(b) ∈ p-max f−1(b↑) for all b ∈ B g(b) ∈ p-min f−1(b↓) for all b ∈ B

g is antitone and g is antitone and
f(a) ∈ p-max g−1(a↑) for all a ∈ A f(a) ∈ p-min g−1(a↓) for all a ∈ A

Adjunctions
Adjunction between A and B co-Adjunction between A and B

(f, g) : A � B (f, g) : A 
 B
f(a) ≤ b⇔ a ≤ g(b) b ≤ f(a)⇔ g(b) ≤ a

for all a ∈ A and b ∈ B for all a ∈ A and b ∈ B
f and g are isotone, f and g are isotone,

g ◦ f is inflationary and f ◦ g is deflationary g ◦ f is deflationary and f ◦ g is inflationary
f(a) ↑= g−1(a↑) for all a ∈ A f(a)↓ = g−1(a↓) for all a ∈ A
g(b)↓ = f−1(b↓) for all b ∈ B g(b)↑ = f−1(b↑) for all b ∈ B

f is isotone and f is isotone and
g(b) ∈ p-max f−1(b↓) for all b ∈ B g(b) ∈ p-min f−1(b↑) for all b ∈ B

g isotone and g is isotone and
f(a) ∈ p-min g−1(a↑) for all a ∈ A f(a) ∈ p-max g−1(a↓) for all a ∈ A

B (briefly, (f, g) : A � B) if the following conditions hold for
all a, a1, a2 ∈ A and b, b1, b2 ∈ B:

(G1) (a1 ≈A a2)⊗ ρA(a2, g(b)) ≤ ρB(f(a1), b)
(G2) (b1 ≈B b2)⊗ ρB(f(a), b1) ≤ ρA(a,g(b2))
The following proposition proves that the previous definition

behaves as expected, namely, it satisfies the standard equality
for Galois connections.

Proposition 1 ( [8]): Consider two fuzzy preordered struc-
tures A = 〈A, ρA〉 and B = 〈B, ρB〉, and two mappings
f : A → B and g : B → A. It holds that the pair (f, g) is
a Galois connection between A and B if and only if both
mappings are morphisms and ρA(a, g(b)) = ρB(f(a), b) for
all a ∈ A and b ∈ B.

III. GALOIS CONNECTIONS IN EVOLUTIONARY
COMPUTATION

A relevant field in Computational Intelligence is the Evo-
lutionary Computation, which embraces a wide range of
algorithms for global optimization. Their main feature is that
they are inspired by biological evolution. Genetics Algorithms
(GA) form the most popular kind of Evolutionary Algorithm,
which seek the solution of a optimization problem in the form
of strings of numbers (usually binary chains) by applying
operators such as mutation, crossover and selection.

GAs lack a rigorous explanation of exactly why and on
what functions they perform well. There is, however, a chief
approach to studying the power of GAs, which is by consid-
ering the schemata they are processing. In [9], the authors
define two basic operations for schematas, the expansion
and compression, and, using these operators that constitute
a Galois connection, they define the notions of the schematic
completion and the schematic lattice. They use the schematic
completion to observe the building blocks (schema with below
average order, below average defining length and above aver-
age fitness) during the course of a GA. Finally, they introduce
methods to explicitly calculate the schemata present in a
population and the identification underlying lattice structures
involved in schema processing.

Galois connections and, in particular, FCA techniques have
been also used in order to improve the efficiency of this kind
of algorithms in particular applications. One example is the
approach proposed in [10] to Feature Location (process of
finding the set of software artifacts that realize a particular
feature) that target models as the feature realization artifacts.
It is based on a GA that generates alternative model fragments
that can be the realizations of the feature being located. Then,
it uses FCA techniques to cluster the model fragments by their
common attributes and to generate feature candidates. The



feature candidates are assessed comparing them to a search
query that describes the target feature. The closer ones are
selected to engendrate the next generations.

In [11], FCA techniques and GA are combined for the
automatic definition of fuzzy classification systems. The task
of classification has been widely researched by computational
intelligence community. Among the methods proposed for the
task of classification, special attention has been given to the
Genetic Fuzzy Systems (GFS) with a large number of pro-
posals found in the literature [12]. The approach proposed in
[11], by using FCA techniques, extract rules directly from data
avoiding the random extraction of rules with low classification
power. This approach to extract rules presents polynomial
complexity. The obtained rules can be used with any genetic
approach that performs rule selection improving the accuracy
rates for most of the datasets.

GA have been also proposed in [13] as alternative to FCA
techniques to obtain frequent item sets and large bite item sets.

In [14], an FCA-based algorithm for choosing the most
appropriate consensus function for each case is provided.
There have been various attempts, solutions, and approaches
towards constructing an appropriate consensus tree based on a
given set of phylogenetic trees, but it is not always clear, for
a given dataset, which of these would create the most relevant
consensus tree. The authors propose the use of FCA to address
this problem.

IV. GALOIS CONNECTIONS IN NEURAL NETWORKS AND
MACHINE LEARNING

Neural Computing is another very popular subfield of
biologically inspired computing. Artificial neural networks
(ANNs) are computing systems, inspired by the biological
neural networks, that learn from examples, generally without
task-specific programming.

Concepts are the base of human thinking and FCA. Per-
ceptions and cognitions are one among the natural ability of
human brain that can be modeled to an extent with neural
networks. Therefore, one can easily find papers that relates
the techniques of FCA and ANNs. We highlight below the
most relevant and current.

In [15], the authors propose an approach to generating
neural network architecture based on the covering relation
(graph of the diagram) of a lattice coming from antitone
Galois connections (standard concept lattice) or isotone Galois
connections. Selecting an appropriate network architecture is
a crucial problem when looking for a solution based on a
neural network. The method proposed by the authors provides
an architecture fitted to the problem and directly derived from
the dataset.

ANNs also suffer from poor interpretability of learning
results, which could be critical in applications such as medical
decision making. Another advantadge of the approach pro-
posed in [15] is that allows to explain why objects are assigned
to particular classes.

One way of human brain to learn and memorize the new
concepts is via its association with previously learned con-

cepts. ANNs implements this associations through either feed-
forward or recurrent networks. These networks store the set of
patterns as memories and identify the corresponding associated
pattern in the memory for the given input pattern. The most
popular and widely used associative memory model is Bidi-
rectional Associative Memory (BAM), which is a recurrent
network that is capable of modeling the hetero-association. A
BAM is a complete bipartite graph whose vertexes are neurons.
It perfectly fits with the notion of concept in FCA. In [16],
the authors model the associative memory activity using FCA
techniques: patterns are associated with the help of object-
attribute relations and the memory is represented using the
formal concepts generated using FCA.

In the other direction, there is a wide set of papers that
propose the use of ANNs to solve FCA problems. Thus, for
instance, [17] proposes an enhancement of FCA by Lattice
Computing techniques. The authors introduce a novel Galois
connection toward defining tunable metric distances as well as
tunable inclusion measure functions between formal concepts
induced from hybrid data. The formal concepts are interpreted
as descriptive decision making knowledge (rules) induced
from the training data. In addition, a simple KNN algorithm for
inducing formal concepts is introduced there as an extension
of the Karnaugh map technique from digital electronics.

V. GALOIS CONNECTIONS IN FUZZY COMPUTATION

The groundbreaking work for extending the concept of
Galois connection to a fuzzy setting is due to Bělohlávek
[5]. In this seminal paper, a fuzzy Galois connection was
introduced as a pair of crisp mappings between the sets of
fuzzy sets of two universes which satisfies certain adjoint-like
property. Since then many other papers have been published
including further approaches to both antitone and isotone
Galois connections [18]–[24].

An outstanding issue in all the generalized notions of Galois
connection is its actual construction, namely, the problem of
constructing the residual (also known as right adjoint) mapping
of a given f : A→ B. An easy-going possibility is to apply a
suitable version of the Freyd’s adjoint theorem (coming from
category theory) which characterizes when such a residual
exists if both A and B have the same structure.

But when the ordered-like structure is just on the domain
A, this theorem cannot be applied since, firstly, the missing
structure on B needs to be built. This has been one of the
recent research lines of our team, in which a number of results
have been obtained by considering different underlying set-
tings. Namely, in [25] we worked with crisp functions between
a crisp poset (resp. preordered set) and an unstructured set as
a first step to undertake the topic in the fuzzy framework.

As a generalization of Bělohlávek’s approach, in [7], fuzzy
Galois connections between the so-called fuzzy posets (i.e.
crisp universes endowed with fuzzy order relations [26]) were
introduced. Our first approach started from this definition but
since the property of antisymmetry of fuzzy order relations
seems to be rather restrictive, fuzzy preorder relations were
preferred. Thus, in [6], we considered a mapping f : A →



B from a fuzzy preposet A = 〈A, ρA〉 into an unstructured
set B, and then characterize those situations in which B can
be endowed with a fuzzy preorder relation and a mapping
g : B → A can be defined such that the pair (f, g) becomes a
Galois connection.

The second approach that we adopted consists of replacing
the standard equality between elements of the universe by a
similarity relation, in order terms, a fuzzy equivalence relation
to reflect the degree in which two elements in the universe are
similar. The mappings that make sense between these f uzzy
structures are those compatible with the similarity. In order
to consider the definition of a Galois connection in this new
framework, it is necessary to add an extra fuzzy binary relation
in the domain and the codomain. In [8] our problem is then to
find a right adjoint to a mapping f : 〈A,≈A, ρA〉 → 〈B,≈B〉
in which the fuzzy equivalence ≈B is already given and has
to be preserved.

Concerning the study of IF-THEN rules to describe depen-
dences between graded attributes values in data collections,
(also called fuzzy attribute implications or similarity-based
functional dependences) isotone Galois connections on fuzzy
sets have proven to be very useful [27]. Novel parame-
terizations based on systems of Galois connections allows
to emphasize antecedents in fuzzy attribute implications or
to admit a graded notion of satisfaction in the rules. This
approach is more general than the parameterizations based on
linguistic hedges which have been used previously in [28],
[29]. The use of Galois connections brings more versatility
into the applications of the IF-THEN rules in data analysis
in that experts are able to specify parameterizations of rules
from a rich family of parameterizations. Moreover, even in the
borderline case of classical functional dependencies (which
can be seen as a particular case of the graded ones when the
structure of degrees is the two-element Boolean algebra) pa-
rameterization by systems of isotone Galois connections brings
new types of semantics, in contrast with the earlier approaches
by hedges, which yield no nontrivial parameterization in the
crisp setting.

A promising task in this direction could be to find methods
for constructing families of parameterizations by user require-
ments and to investigate properties of such families of isotone
Galois connections. It may be related with the construction
of residual mappings that has been described in our papers.
Likewise, further investigation may focus on connections of
the presented theory to the general approaches to multiadjoint
concept lattices and related structures.

Other authors have emphasized that fuzzy Galois connec-
tions are the core of generalizations of FCA [30] which are
oriented to knowledge discovery and information management
under uncertainty. In the near future research regarding fuzzy
implications the existence of such Galois connections should
stand foremost among the applications of such implications.
Some examples of applications that can be explored under
this perspective are the management of contingency tables for
error assessment [31], analysis of Gene Expression Data [32]
or discovery of semantic web services [33].

VI. MISCELLANEOUS APPLICATIONS

A. Mathematical morphology

In a few words, Mathematical Morphology (MM) is a
formal theory for the study of shape. It is based on two
operators (erosion and dilation) whose composition generates
the operators of opening and closing. Obviously, MM is
mainly used in the analysis of digital images, specifically to
investigate the interaction, in terms of erosion and dilation,
between an image and a given structuring element. Our interest
in MM lies on the fact that the operators of erosion and dilation
form an isotone Galois connection.

Although the original definition of MM was oriented to B/W
images, several extensions have been developed to grayscale
and color images. In fact, the underlying theory of MM has
been extended to complete lattices to the so-called L-fuzzy
Mathematical Morphology [34].

The fact that the main constructors in both FCA and MM
are based on the notion of Galois connection suggest a possible
relation between them. Actually, the relation exists not only
between them, but also with other lattice-based formalisms
such as fuzzy sets, rough sets or the F -transforms [35]. In
particular, this paper shows how fuzzy MM techniques can be
used to navigate a fuzzy concept lattice.

To finish with, since the previous reference also used the no-
tion of F -transform (i.e. fuzzy transform) [36], which provides
an alternative technique for approximation models, it is worth
to note that Galois connections also appear on the realm of
F -transforms, since the pair functions given by the direct and
inverse transform form an isotone Galois connection. Recently,
this theory has been extended to the lattice-based case [37].

B. Programming languages semantics

Another interesting research field in which Galois connec-
tions play their role is in structuring abstraction in semantics.
Static analysis based on abstract interpretation relies on ab-
stract domains of program properties, and Galois connections
are which provide the most widespread and useful formal tool
for mathematically specifying abstract domains.

In [38] the notion of constructive Galois connection was
introduced in order to define abstract domains in a style
more oriented to mechanization, which enables the automatic
generation of certified algorithms using systems such as Coq.

C. Knowledge extraction

The fixpoints of Galois connections form patterns in binary
object-attribute relations, that are important in disparate data
analysis areas (including, Boolean factor analysis, or frequent
itemset mining). In FCA, fixpoints of the Galois connection
which is defined by concept-forming operators, are particular
clusters in cross-tables, defined by means of attribute sharing.
This is a key notion in the theory and the problem of building
the concept lattice is not trivial, as the number of concepts
can be exponential in the size of the input context. From
the very beginning of FCA, different algorithms have been
proposed to generate the set of all formal concepts and Hasse
diagrams of concept lattices as Ganter’s Next Concept [39]



or Kuznetsov’s Close-by-One (CbO) [40] which has been the
basis for several variants and suggested improvements, such
as Krajca et al’s realisation of CbO [41], Andrews’s In-Close
[42] or Outrata and Vychodil’s FCbO [43]. Recently, various
algorithms have been discussed and compared, including some
performances of previous algorithms such as In-Close2 and
In-Close3 [44], [45]. The exploration of new algorithms for
computing Galois connection fixpoints and its comparison
with previous algorithms represent an issue of current and
permanent interest in the FCA community and other areas.

D. Granular Computing

Since Galois connections are the mathematical foundation
of several disciplines, it is interesting to explore the links
which can be established at the theoretical level between
different frameworks related to the so-called granular comput-
ing. In their position paper [46], Dubois and Prade consider
four settings: possibility theory [47], formal concept analysis,
extensional fuzzy sets [48] and rough sets [49]. All of them
have been developed independently and, although they look
very different, they are concerned with ideas of grouping
items and handling similar notions around the idea of granular
computing. The analysis carried out in [46] includes the
parallel between possibility theory and formal concept analysis
in the crisp case. The gap with rough sets is shortened by
restricting to relations between objects. It is also analyzed the
interactions in the non-Boolean case, specifically, between the
theory of extensional fuzzy sets and representation of fuzzy
extensions of equivalence relations with the gradual version of
formal concept analysis. Likewise, by replacing an equivalence
relation by a fuzzy similarity relation, rough sets have been
extended to a fuzzy setting [50], which are also connected
to extensional fuzzy sets in [51]. Therefore, since similar
structures were found to be at work in such settings it may
lead to mutual enrichments between such theories.

E. Mathematics

In this section, we would like to point out the use of
Galois connections to provide alternative and shorter proofs
of well-known theorems. For instance, in [52] two particular
Galois connections are defined and, then, are used to prove
in a short way the Knaster-Tarski’s fixpoint theorem. It is
worth to note that this theorem is important for the area of
Logic Programming, and its fuzzy extensions, in that it is the
essential tool in order to define the fixpoint semantics of a
(fuzzy) logic program.

VII. CONCLUSIONS AND FUTURE WORK

In this work, firstly, we have surveyed different notions of
Galois connections published up to now, focusing especially
on the extensions to the fuzzy case; secondly, we have also
surveyed on recent applications of the theory of Galois con-
nections within the realm of Computational Intelligence. As a
result, one can see, once again, that the study of theoretical
notions is not at odds with the applications.

Our next goal is to study fuzzy Galois connections consti-
tuted of truly fuzzy mappings. In [53] we started the search
for a more adequate notion involving fuzzy functions as
components. The notion of relational fuzzy Galois connection
is introduced and proved that the construction embeds Yao’s
notion of fuzzy Galois connection as a particular case. As
future work, we are planning to continue the line initiated
in [6], [8] and attempt the construction of the residual, in
the sense of relational fuzzy Galois connections, to a given
mapping between differently structured domain and codomain.
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