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Abstract

Generalized concept lattices have been recently proposed to deal with uncertainty
or incomplete information as a non-symmetric generalization of the theory of fuzzy
formal concept analysis. On the other hand, concept lattices have been defined as
well in the framework of fuzzy logics with non-commutative conjunctors.

The contribution of this paper is to prove that any concept lattice for non-
commutative fuzzy logic can be interpreted inside the framewok of generalized con-
cept lattices, specifically, it is isomorphic to a sublattice of the cartesian product of
two generalized concepts lattices.
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1 Introduction

The theory of Formal Concept Analysis has its beginnings in the works of
Ganter and Wille [7] where an object-attribute view of data is developed.
Specifically, a concept is defined as a pair of subsets which, respectively, mean
the extension (the subset of objects related to the concept) and the intension
(the set of attributes which define the concept).

Ganter and Wille’s approach is based on a classical setting, in that objects and
attributes crisply belong or not to the extension or to the intension, respec-
tively, of a concept. Since then, there have been several approaches aiming at
introducing some kind of fuzziness, vagueness or uncertainty in the data. Fuzzy
concept lattices were firstly introduced by Burusco and Fuentes-González
in [6], later independently developed by Pollandt in [14] and Bělohlávek in [2]
(which also considered fuzzy orderings). Later, Georgescu and Popescu [8]
defined the notion of fuzzy concept lattice associated to fuzzy logic with a
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non-commutative conjunction. More recently, Krajči considered the so-called
generalized concept lattices, which use different sets of truth-values to refer
to a subset of objects, to a subset of attributes of a concept, as well as to a
degree to which an object has an attribute.

The motivation for generalized concept lattices was the common platform
for [14] and/or [2] and so-called one-sided fuzzy concept lattices, independently
introduced by [3,5,9]. Furthermore, it has been shown to embed some other
approaches, like the concept lattices with hedges [10].

In this paper, we prove that the framework of generalized concept lattices is
wide enough so that Georgescu and Popescu concept lattices can be adequately
represented by using generalized concept lattices. Specifically, we show how
the residuated operators introduced by the latter are related to the notion
of left-continuity used by the former. As a result, we prove that any concept
lattice for non-commutative fuzzy logic can be interpreted inside the framewok
of generalized concept lattices, specifically, it is isomorphic to a sublattice of
the cartesian product of two generalized concepts lattices.

2 Generalized Concept Lattices

As stated in the introduction, generalized concept lattices are based on two
complete lattices (L,�1) (M,�2), and a poset (P,≤), which are the different
sets of truth-values to refer to the objects, to the attributes of a concept, as
well as to the degree to which an object has an attribute.

In addition, a conjunction operator ⊗ : L ×M → P is considered, which is
assumed to be increasing and left-continuous in both arguments. The notion
of left-continuity, see [11], is given below:

Definition 1 Given (L,�) a complete lattice and (P,≤) a poset, a mapping
T : L → P is left-continuous when, given p ∈ P and a non-empty subset
X ⊆ L, the following condition holds:

if T (x) ≤ p for every x ∈ X, then T (sup X) ≤ p

The context where concepts are defined is a tuple (A, B, R,⊗), where sets A
and B represent the attributes and objects, and R : A× B → P is a P -fuzzy
relation.

On a context (A, B, R,⊗), consider the maps ↑ : MB → LA and ↓ : LA →MB

defined as follows:
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g↑(a) = sup{x ∈ L | (∀b ∈ B) x⊗ g(b) ≤ R(a, b)}
f ↓(b) = sup{y ∈M | (∀a ∈ A)f(a)⊗ y ≤ R(a, b)}

Now, consider the subset of MB × LA formed by the pairs (g, f) such that
g↑ = f and f ↓ = g.

When proving the basic theorem of generalized concept lattices, Krajči used
that the pair (↓, ↑) is a Galois connection, obtaining as a result that the set of
all concepts, G = {(g, f) | g↑ = f and f ↓ = g} with the ordering �G defined
as (g1, f1) �G (g2, f2) if and only if g1 �2 g2, is a complete lattice and defines
what it is known as the generalized concept lattice associated to (A, B, R,⊗).

3 Concept lattice for non-commutative conjunctors

This concept lattice, introduced in [8], is based on the structure of complete
biresiduated lattice 1 as underlying set for the truth-values of both the objects
and attributes. The formal definition of this structure is given below:

Definition 2 A complete biresiduated lattice is a tuple (L,�, &,↙,↖) sat-
isfying the following conditions:

(1) (L,�) is a complete lattice.
(2) (L, &,>) is a monoid.
(3) The adjoint properties:

(a) x � z ↙ y if and only if x & y � z
(b) y � z↖ x if and only if x & y � z

The study of implications and conjunctions related by adjointness has re-
cently been the subject of extensive research, becoming an important branch
of multiple-valued logics and fuzzy logic. Note that this structure was intro-
duced in the framework of fuzzy logic programming [13] and, simultaneously,
under the name of implication triple, in [1].

In order to define the concept lattice, we have to introduce the notion of con-
text. Given a complete biresiduated lattice (L,�, &,↙,↖), a (biresiduated)
context is a tuple (A, B, R) where A, B are sets representing the attributes
and the objects, respectively, and R : A×B → L is a L-fuzzy relation.

Now, given a context (A, B, R) and the mappings �, ⇑ : LB → LA and �,
⇓ : LA → LB defined as follows:

1 The term used by Georgescu and Popescu is complete generalized residuated
lattice, which we do not use here in order to avoid misunderstandings with Krajči’s.
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g�(a) = inf{R(a, b)↙ g(b) | b ∈ B}
g⇑(a) = inf{R(a, b)↖ g(b) | b ∈ B}
f⇓(b) = inf{R(a, b)↖ f(a) | a ∈ A}
f�(b) = inf{R(a, b)↙ f(a) | a ∈ A}

The concepts in this framework are triples (g, f, f ∗) ∈ LA×B×B such that
g� = f ; g⇑ = f ′; f⇓ = g; f ∗� = g; this is why we will call them t-concepts.

The fact that the pairs (�, ⇓) and (⇑, �) form Galois connections is used in [8]
to prove that the set of t-concepts L is a complete lattice with the ordering
(g1, f1, f1

∗) �L (g2, f2, f2
∗) if and only if g1 � g2 (equivalently f2 � f1 or

f2
∗ � f1

∗).

4 Relating both frameworks

In order to embed the concept lattice L into Krajči’s framework, firstly we
have to know when the operator &, defined in Section 3, is left continuous in
both arguments.

By definition, we have that & has associated two “residuated” mappings ↙
and ↖ satisfying the adjoint properties. As a result we obtain that & is sup-
preserving in both arguments, i. e., for all x, y ∈ L and X, Y ⊆ L we have that
sup(X) & y = sup{x′& y | x′ ∈ X}, and x & sup(Y ) = sup{x & y′ | y′ ∈ Y },
see [1].

Once we know that & is sup-preserving in both arguments, the following step
is to obtain left-continuity. This can be achieved as an application of the
following result which characterises when an operator is sup-preserving in
terms of the left-continuity.

Lemma 3 Let (L,�) be a complete lattice and ∧ : L × L → L an increasing
operator then the following conditions are equivalent:

(1) ∧ is sup-preserving in the first argument.
(2) ∧ is left-continuous in the first argument and ⊥∧ y = ⊥ for every y ∈ L.

PROOF. (1 implies 2)

The proof of the boundary condition is trivial considering X = ∅ since ⊥∧y =
sup(X) ∧ y = sup{x ∧ y | x ∈ X} = ⊥. Now, given y, z ∈ L and a non-empty
subset X ⊆ L, if x ∧ y � z for every x ∈ X then sup{x ∧ y | x ∈ X} � z, so,

4



by hypothesis:

sup(X) ∧ y = sup{x ∧ y | x ∈ X} � z

therefore ∧ is left-continuous in the first argument.

(2 implies 1)

Let ∅ 6= X ⊆ L and y ∈ L, the inequality sup{x ∧ y | x ∈ X} � sup(X) ∧ y
follows directly from the increasing character of ∧ and definition of supremum.

For the other inequality, since x∧ y � sup{x∧ y | x ∈ X} for every x ∈ X, we
can use the left-continuity in the first argument of ∧, and obtain sup(X)∧y �
sup{x ∧ y | x ∈ X}.

If X = ∅, the equality is straightforward because of the boundary condition
and sup(X) = ⊥. 2

A similar lemma can be proved for the second argument, but in this case the
boundary condition has to be modified as x ∧ ⊥ = ⊥. As a consequence of
Lemma 3, we get that & is left continuous in both arguments.

Remark 4 Note that only the first implication is needed for our purposes.
However, we have stated and proved the full equivalence in order to point out
that the need of the boundary conditions turns out to be essential. This point
is not explicitly mentioned in [4].

Finally, an alternative definition of the Galois connections of Section 3 can be
given in terms of suprema, hence obtaining a definition more similar to that
of Krajči’s:

Lemma 5 Given a complete biresiduated lattice (L,�, &,↙,↖) and a biresid-
uated context (A, B, R) we have that:

g�(a) = sup{x ∈ L1 | (∀b ∈ B)x & g(b) � R(a, b)}
f⇓(b) = sup{y ∈ L2 | (∀a ∈ A)f(a) & y � R(a, b)}

PROOF. For the first equality we need to prove that

sup{x ∈ L1 | (∀b ∈ B)x & g(b) � R(a, b)} = inf{R(a, b)↙ g(b) | b ∈ B}

By the adjoint property of & with respect to ↙, and the characterisation of
the infimum as the supremum of the lower bounds, we obtain
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sup{x ∈ L | (∀b ∈ B)x & g(b) � R(a, b)} =

= sup{x ∈ L | (∀b ∈ B)x � R(a, b)↙ g(b)}
= inf{R(a, b)↙ g(b) | b ∈ B}

The other equality is proved similarly. 2

Theorem 6 Given a complete biresiduated lattice (L,�, &,↙,↖) and a bires-
iduated context (A, B, R), then there exist two generalized concept lattices, G1

and G2 such that the sublattice of G1 × G2 defined by

G12 = {((g1, f1), (g2, f2)) ∈ G1 × G2 | g1 = g2}

is isomorphic to the lattice of t-concepts L.

PROOF. By Lemma 5, we have that the definitions of the mappings (�, ⇓)
given in Section 3 coincide with the definitions of (↑, ↓) given in Section 2
considering the context (A, B, R, &).

Now, if we consider the operator &op : L× L→ L, where x &op y = y & x, we
obtain similarly that the pair (⇑, �) is equal to (↑

op
, ↓op) defined for the context

(A, B, R, &op).

Finally, we simply have to take G1 and G2 as the generalized concept lattices
associated to the contexts (A, B, R, &) and (A, B, R, &op) 2

As a future work we will study the relationship between the generalized con-
cept lattice and the recently introduced multi-adjoint concept lattice [12].
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[3] R. Bělohlávek, V Sklenář, and J. Zacpal. Crisply generated fuzzy concepts. In
Intl Conf on Fuzzy Concept Analysis, volume 3403 of Lect. Notes in CS, pages
268–283, 2005.
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