A Procedural Semantics for
Multi-Adjoint Logic Programming

Jestis Medina,! Manuel Ojeda-Aciego,' and Peter Vojt4s?

! Dept. Matematica Aplicada. Universidad de Mslaga.* * *
{jmedina,aciego}@ctima.uma.es
2 Dept. Mathematical Informatics. P.J. Saférik University."
vojtas@kosice.upjs.sk

Abstract. Multi-adjoint logic program generalise monotonic logic pro-
grams introduced in [1] in that simultaneous use of several implications
in the rules and rather general connectives in the bodies are allowed.
In this work, a procedural semantics is given for the paradigm of multi-
adjoint logic programming and completeness theorems are proved.

1 Introduction

Multi-adjoint logic programming was introduced in [5] as a refinement of both
initial work in [7] and residuated logic programming [1]. It allows for very general
connectives in the body of the rules, and sufficient conditions for the continuity
of its semantics are known. Such an approach is interesting for applications: in [6]
a system is presented where connectives are learnt from different users’ examples
and, thus, one can imagine a scenario in which knowledge is described by a many-
valued logic program where connectives have many-valued truth functions and @
is an aggregation operator (arithmetic mean, weighted sum, ...) where different
implications could be needed for different purposes, and different aggregators are
defined for different users, depending on their preferences, e.g. the rule below:

hotel _reservation(Business_Location, Time, Hotel) «—;
@(near_to(Business_Location,Hotel),
cost_reasonable(Hotel, Time),

building is_fine(Hotel)). with truth value 0.8

The framework of multi-adjoint logic programming was introduced in [5] as a
generalisation of the monotonic and residuated logic programs given in [1]. The
special features of multi-adjoint logic programs are: (1) a number of different
implications are allowed in the bodies of the rules, (2) sufficient conditions for
continuity of its semantics are known, and (3) the requirements on the lattice of
truth-values are weaker that those for the residuated approach.

*** Partially supported by Spanish DGI project BFM2000-1054-C02-02 and Junta de
Andalucia project TIC-115.
T Partially supported by Slovak project VEGA 1/7557/20

(© Springer-Verlag. Lect. Notes in Artificial Intelligence 2258:290-297, 2001

The purpose of this work is to provide a procedural semantics to the paradigm
of multi-adjoint logic programming. This work is an extension of [3], with a
different treatment of reductants and an improved version of the completeness
results, based on the so-called supremum property.

The central topics of this paper are mainly at the theoretical level, however
the obtained results can be applied in a number of contexts:

1. The integration of information retrieval and database systems requires meth-
ods for dealing with uncertainty; there are already a number of many-valued
approaches to the general theory of databases, but none of them contains
a formal mathematical proof of the relation between the relational algebra
and its denotational counterpart; a by-product of the obtained results is the
possibility of defining a fuzzy relational algebra and a fuzzy Datalog, the
completeness result then shows that the expressive power of fuzzy Datalog
is the same that the computational power of the fuzzy relational algebra;

2. One of the problems of fuzzy knowledge bases is handling a great amount
of items with very small confidence value. The approach introduced in this
paper enables us to propose a sound and complete threshold computation
model oriented to the best correct answers up to a prescribed tolerance level.

3. The multi-adjoint framework can also be applied to abduction problems.
In [4] the possibility of obtaining the cheapest possible explanation to an
abduction problem wrt a cost function by means of a logic programming
computation followed by a linear programming optimization has been shown.

2 Preliminary definitions

To make this paper as self-contained as possible, the necessary definitions about
multi-adjoint structured are included in this section. For motivating comments,
the interested reader is referred to [5].

Definition 1. Let (L, =) be a complete lattice. A multi-adjoint lattice £ is a
tuple (L, 2, 1,&1,- - -, “n,&n) satisfying the following items:

1. (L, =) is bounded, i.e. it has bottom and top elements;
2. T&iV=9&; T =9 forallvelL fori=1,...,n;
3. («i,&;) is an adjoint pair in (L, =) fori=1,...,n; i.e.
(a) Operation & is increasing in both arguments,
(b) Operation «—; is increasing in the first argument and decreasing in the
second argument,
(¢) For any z,y,z € P, we have that x < (y «; z) holds if and only if
(x & z) Xy holds.

From the point of view of expressiveness, it is interesting to allow extra
operators to be involved with the operators in the multi-adjoint lattice. The
structure which captures this possibility is that of a multi-adjoint (2-algebra
which can be understood as an extension of a multi-adjoint lattice containing a
number of extra operators given by a signature (2.

We will be working with two (2-algebras: the first one, §, to define the syntax
of our programs, and the second one, £, to host the manipulation of the truth-
values of the formulas in the programs. To avoid possible name-clashes, we will
denote the interpretation of an operator symbol w in §2 under £ as w (a dot on
the operator), whereas w itself will denote its interpretation under §.

Definition 2 (Multi-Adjoint Logic Programs). A multi-adjoint logic pro-
gram on a multi-adjoint (2-algebra § with values in a multi-adjoint lattice £ (in
short multi-adjoint program) is a set P of rules of the form ((A «—; B),9).

1. The rule (A «—; B) is a formula of §;

2. The confidence factor ¢ is an element (a truth-value) of L;

8. The head of the rule A is a propositional symbol of I1.

4. The body formula B is a formula of § built from propositional symbols

Bi,...,B, (n > 0) by the use of conjunctors &1i,...,&n and A1,..., A,

disjunctors V1, ...,V and aggregators Qq, ..., Q,, .

Facts are rules with body T.

6. A query (or goal) is a propositional symbol intended as a question ? A prompt-
ing the system.

&

As usual, an interpretation is a mapping I: II — L. The set of all inter-
pretations of the formulas defined by the 2-algebra § in the (2-algebra £ is
denoted Z¢. Note that each of these interpretations can be uniquely extended to
the whole set of formulas, I: Fr, — L.

The ordering < of the truth-values L can be easily extended to Zg, which
also inherits the structure of complete lattice.

Definition 3.

1. An interpretation I € T satisfies (A «—; B,9) if and only if ¥ < f(A —; B).

2. An interpretation I € Lo is a model of a multi-adjoint logic program P iff
all weighted rules in P are satisfied by 1.

3. An element A € L is a correct answer for a program P and a query 7A if for
any interpretation I € Tg which is a model of P we have A < I(A).

The immediate consequences operator, given by van Emden and Kowalski,
can be easily generalised to the framework of multi-adjoint logic programs.

Definition 4. Let P be a multi-adjoint program. The immediate consequences
operator Tﬂfng — Lo, mapping interpretations to interpretations, is defined by

TED)(A) =sup {9 & 1(B) | A & Be P}

As usual, the semantics of a multi-adjoint logic program is characterised by
the post-fixpoints of T, see [5]; that is, an interpretation I of Zg is a model
of a multi-adjoint logic program P iff T (I) C I. It is remarkable the fact that
this result is still true even without any further assumptions on conjunctors
(definitely they need not be commutative and associative).

Regarding continuity, the following theorem was proved in [5].

Theorem 1 ([5]).

1. If all the operators occurring in the bodies of the rules of a program P are
continuous, and the adjoint conjunctions are continuous in their second ar-
gument, then Ty is continuous.

2. If the operator Ty is continuous for all program P on £, then any operator
in the body of the rules is continuous.

3 Procedural semantics of multi-adjoint logic programs

Once we have shown that the TP’? operator can be continuous under very general
hypotheses, then the least model can be reached in at most countably many
iterations. Therefore, it is worth to define a procedural semantics which allow
us to actually construct the answer to a query against a given program.

For the formal description of the computational model, we will consider an
extended the language §’ defined on the same graded set, but whose carrier is
the disjoint union I7TW L; this way we can work simultaneously with propositional
symbols and with the truth-values they represent.

Definition 5. Let P be a multi-adjoint program, and let V. C L be the set of
truth values of the rules in P. The extended language §' is the corresponding
-algebra of formulas freely generated from the disjoint union of II and V.

We will refer to the formulas in the language § simply as extended formulas.
An operator symbol w interpreted under §’ will be denoted as @.

Our computational model will take a query (atom), and will provide a lower
bound of the value of A under any model of the program. Given a program P,
we define the following admissible rules for transforming any extended formula.

Definition 6. Admissible rules are defined as follows:

1. Substitute an atom A in an extended formula by (9&:B) whenever there
exists a rule (A—;B,9) in P.

2. Substitute an atom A in an extended formula by L.

3. Substitute an atom A in an extended formula by ¥ whenever there exists a
fact (A—;T,9) in P.

Note that if an extended formula turns out to have no propositional symbols,
then it can be directly interpreted in the multi-adjoint {2-algebra £. This justifies
the following definition of computed answer.

Definition 7. Let P be a multi-adjoint program, and let 7A be a goal. An ele-

ment @[7’1, oy T, with r; € L, for alli € {1,...,m} is said to be a computed
answer if there is a sequence Gy, ...,Gni1 such that

1. Go=A and Gpyp1 = Q[ry, ... 7] where r; € L for alli=1,...n.

2. Bvery G;, fori=1,...,n, is a formula in § .

3. Fvery Giy1 is inferred from G; by one of the admissible rules.

Note that our procedural semantics, instead of being refutation-based (this
is not possible, since negation is not allowed in our approach), is oriented to
obtaining a bound of the optimal correct answer of the query.

3.1 Reductants

It might be the case that for some lattices it is not possible to get the correct
answer, simply consider L to be the powerset of a two-element set {a, b} ordered
by inclusion, and the following example from Morishita, used in [2]:

Ezample 1. Given a multi-adjoint program P with rules A <~ B and A & Band
fact (B, T). Assuming that the adjoint conjunction to < has the usual boundary
conditions, then the correct answer to the query ?A is T, since it has to be an
upper bound of all the models of the program, therefore it has to be greater than
both a and b. But the only computed answers are either a or b. a

The idea to cope with this problem is the generalisation of the concept of re-
ductant [2] to our framework. Namely, that whenever we have a finite number

of rules A & @;(D3,...,D;) for i =1,...,k, then there should exist another
rule which allows us to get the correct value of A under the program. That can
be rephrased as follows:

As any rule A ﬁl @;(Ds,...,D,,) contributes with the value ¥, &; b; for
the calculation of the lower bound for the truth-value of A, we would like to
have the possibility of reaching the supremum of all the contributions, in the
computational model, in a single step. This leads to the following definition.

Definition 8 (Reductant). Let P be a multi-adjoint program; assume that all
the rules in P with head A are A &i B; fori=1,...,n. A reductant for A is a
rule A& Q(By,...,B,) such that for any by, ..., b, we have

sup{; &ib; |i=1,...,n} =09&Q(bs,...,by,)
where & s the adjoint conjunctor to the implication «—.

Remark 1. When all the elements in the multiset are the same (e.g. all rules in

the program have the same implication), and the operator & is continuous, then
the following equality holds

sup{ﬁi&bi l[i=1,...,n} = supﬁi&supbi
which immediately implies that choosing ¥ = sup; and @(b1, ..., bp) =supb;
we have constructed a reductant.

The example below shows a program with reductants, whose truth-values
range over the lattice of closed intervals in [0, 1].

Ezample 2. Consider the lattice of all the closed intervals in [0, 1], denoted C[0, 1]
under the ordering [a,b] = [¢,d] iff a < ¢ and d < b, and consider the compon-
entwise extended definition of the Lukasiewicz, product and Godel implications
to intervals. Let P be the program with rules

<A —p B7 [191,192]> <A —G C, [7'1,7'2]>

where ¢, < 71, and facts
(B «—r, [U3,74]) (C —p,[95,9])

Let us see that P has reductants. In this particular case, the only head in the
rules is A, so we have to define a reductant for A in P.

From the two rules, we have the associated conjunctors to the implications
&p, &q (also defined componentwise), given its two truth-intervals [, J3] and
[T1, T2] there should exist a truth-interval [e1, €2], a conjunctor & and an aggreg-
ator @ such that for all [by, b2], [¢1, c2] € C[0, 1]:

sup{[¥1, V2] &p[b1,b2], [T1, T2] &alc1, ca]} = [€1, €2] & Q([by, ba], [c1, c2])

In this case, it suffices to consider & = &g, [€1, €2] = [max (¥, 71), min(dq, 72)],
and @([bl, bg], [Cl, CQD = [max(ﬁlbl, Cl)7 min(ﬂsz, CQ)]. O

Certainly, it will be interesting to consider only programs which contain all
its reductants, but this might be a too heavy condition on our programs; the
following proposition shows that it is not true, therefore we can assume that a
program contains all its reductants, since its set of models is not modified.

Proposition 1. Any reductant A 2B of P is satisfied by any model of P. In
short, P = A 2B

It is possible to construct reductants for any head-of-rule in a given program
under the only requirement that the truth-value set is complete under suprema;
and this is actually an assumption for all multi-adjoint programs, which are
based on a multi-adjoint lattice.

Definition 9 (Construction of reductants). Let P be a multi-adjoint pro-
gram; assume that all the rules in P with head A are (A—;B;,9;) fori=1,... n.
A reductant for A is any rule (A «— Q(By,...,B,), T) where «— is any implic-
ation with an adjoint conjunctor (let us denote it &) and the aggregator @ is
defined as follows

@(bl, .. ,bn) = sup{ﬂl &1 bl, . 71971 &n bn}

It is immediate to prove that the rule constructed in the definition above is
actually a reductant for A in P, and we state the fact in the following proposition.

Proposition 2. Under the hypotheses of the previous definition, the defined rule
(A~ Q(By,...,B,),T) is a reductant for A in P.

Note that we have followed just traditional techniques of logic programming,
and discarded non-determinism by using reductants. A possible disadvantage
of this technique is that the full search space must be traversed (every rule of
every atom must be evaluated), although this need not be necessary in many
circumstances. It is clear that some evaluation strategies might start by executing
non-deterministically the rules for a given atom, and finally the reductant. This
joined with some memoizing or tabling technique would not have significant
overhead, and could improve performance.

3.2 Completeness results

The proof of the completeness theorems follows from some technical results.
The first lemma below states that the least fix-point is also the least model of a
program; the second states a characterisation of correct answers in terms of the
T, operator.

Lemma 1. For all model I of P we have that T (A) T 1.

Lemma 2.)\ € L is a correct answer for program P and query TA if and only
if A =T (0)(A)

Now, in order to match correct and computed answers, the proposition below,
whose proof is based induction on n, shows that any iteration of the Tj operator
is, indeed, a computed answer.

Proposition 3. Let P be a program, then Ty (A)(A) is a computed answer for
all n and for all query 7A.

We have now all the required background to prove a completeness result.

Theorem 2. For every correct answer \ € L for a program P and a query 7A,
there exists a chain of elements A, such that A = sup \,, such that for arbitrary
ng there exists a computed answer § such that \p, < 9.

Proof: Consider A\, = T3 (A)(A). As X is a correct answer, we have that
A =TP(0)(A) = sup{Tp'(A)(A) | n € N} =sup A,

since T3’ (A) is a model. Now we can choose § to be T (A)(A) for any n > ng
and the theorem follows directly by the monotonicity of the Ty operator and
Proposition 3. O

The theorem above can be further refined under the assumption of the so-
called supremum property:

Definition 10. A cpo L is said to satisfy the supremum property if for all
directed set X C L and for all ¢ we have that if ¢ < sup X then there exists
0 € X such thate < § < sup X.

Theorem 3 below states that any correct answer can be approximated up to
any lower bound.

Theorem 3. Assume L has the supremum property, then for every correct an-
swer A € L for a program P and a query TA, and arbitrary € < X there exists a
computed answer § such that e < 9.

Proof: As X is a correct answer, then A < T’ (A)(A), since T'(A) is a model
of P. By definition we have T’ (A)(A) = sup{Tp(A)(A) | n € N} and, by hypo-
thesis, ¢ < A < T (A)(A). The supremum property states that there exists an
element § = T (A)(A) in {Tp'(2)(A) | n € N}, such that € < 6 = T’ (2)(A).
This finishes the proof, for T;°(A)(A) is a computed answer, by Proposition 3. O

4 Conclusions and future work

We have presented a framework for studying more elaborate proof procedures
for multi-adjoint programs: a procedural semantics has been introduced, and two
quasi-completeness theorems are stated and proved.

As future work, from the theoretical side, it is necessary to further invest-
igate lattices with the supremum property; from the not-so-theoretical side, a
practical evaluation of the proposed approach has to be performed, to evaluate
the appropriateness of several possible optimisation techniques.

Acknowledgements

We thank C. Damasio and L. Moniz Pereira for their interesting comments on
previous versions of this work. We are also grateful to the referees who pointed
out several weaknesses of the first draft of the paper.

References

1. C.V. Damaésio and L. Moniz Pereira. Monotonic and residuated logic programs. In
Sixth European Conference on Symbolic and Quantitative Approaches to Reasoning
with Uncertainty, ECSQARU’01, pages 748-759. Lect. Notes in Artificial Intelli-
gence, 2143, Springer-Verlag, 2001.

2. M. Kifer and V. S. Subrahmanian. Theory of generalized annotated logic program-
ming and its applications. J. of Logic Programming, 12:335—-367, 1992.

3. J. Medina, M. Ojeda-Aciego, and P. Vojtds. A completeness theorem for multi-
adjoint logic programming. In Proc. FUZZ-IEEE’01. The 10th IEEE International
Conference on Fuzzy Systems, IEEE Press, 2001. To appear.

4. J. Medina, M. Ojeda-Aciego, and P. Vojtds. A multi-adjoint logic approach to
abductive reasoning. In Proc. 17th International Conference on Logic Programming,
ICLP’01. Lect. Notes in Artificial Intelligence 2273, Springer-Verlag, 2001.

5. J. Medina, M. Ojeda-Aciego, and P. Vojtas. Multi-adjoint logic programming with
continuous semantics. In Proc. Logic Programming and Non-Monotonic Reasoning,
LPNMR’01, pages 351-364. Lect. Notes in Artificial Intelligence, 2173, Springer-
Verlag, 2001.

6. E. Naito, J. Ozawa, I. Hayashi, and N. Wakami. A proposal of a fuzzy connective
with learning function. In P. Bosc and J. Kaczprzyk, editors, Fuzziness Database
Management Systems, pages 345-364. Physica Verlag, 1995.

7. P. Vojtds and L. Paulik. Soundness and completeness of non-classical extended
SLD-resolution. In Proc. Extensions of Logic Programming, pages 289-301. Lect.
Notes in Comp. Sci. 1050, Springer-Verlag, 1996.

