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Abstract—A new tree-based representation for pro-
positional formulas is introduced. This representa-
tion, the ∆-trees, allows a compact representation for
well-formed formulas as well as a number of reduction
strategies in order to consider only those occurrences
of literals which are relevant for the satisfiability of
the input formula.
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I. Introduction

The ability to reason on specifications written in
a language as close as possible to natural language is
important for information sciences; thus, reasoning
efficiently on nnf (negation normal form) is interest-
ing because these formulas are easier to obtain from
specifications given in natural language. Obviously,
there is a need of efficient representations of nnfs so
that, in a similar manner as with cnfs (conjunctive
normal forms), we are able to describe and imple-
ment efficient algorithms on this kind of formulas.

Formulas in cnf are usually interpreted as lists of
clauses, and formulas in dnf are interpreted as lists of
cubes; these interpretations allow efficient descrip-
tions and implementations of algorithms to study
satisfiability (e.g. linear ordered resolution). In this
work we focus on the generalization of these inter-
pretations to nnfs. The proposed generalization will
use trees of clauses and cubes.

Specifically, nnfs are represented as trees of clauses
and cubes such that each clause-node in the tree is
an implicant of the formula represented by its scope
and, similarly, each cube-node is an implicate of the
formula represented by its scope. The new repres-
entation is named ∆-tree because its nodes are built
up from ∆-lists [1]. After defining the notion of ∆-
tree, we define operators Norm and ∆-Tree which,
respectively, associate a nnf to each ∆-tree and vice
versa. In addition, it can be shown that this corres-
pondence preserves equivalence and, therefore, we
can easily extend the concepts of validity and satis-
fiability to ∆-trees.

We introduce the concept of restricted ∆-tree
(generalizing the well-known concept of restricted
cnf in which clauses with repeated or contradictory
literals are not allowed and subsumed clauses are
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omitted), which involves only restricted clauses and
cubes in the representation and, in addition, prohib-
its that a single literal is both an implicant and an
implicate of the same subformula.

The transformation into restricted ∆-tree is given
by a number of meaning-preserving transformations,
with at most quadratic complexity, which eliminate
the conclusive or simple nodes and usually reduces
the size of the input ∆-tree. Roughly speaking a
conclusive node in a ∆-tree is one which can be sub-
stituted by a logical constant preserving the meaning
of the whole tree, and a simple node in a ∆-tree sat-
isfies that the subformula it represents is equivalent
to a literal; these concepts are generalized from the
classical case [2].

Technically, the transformation into restricted
form is made by the operators Φ⊥ and Φ>, and Φ`
which eliminate, respectively, the conclusive and the
simple nodes in a ∆-tree.

II. Preliminary Concepts and Definitions

Throughout the rest of the paper, we will work
with a classical propositional language over a de-
numerable set of propositional variables, V, and
connectives {¬,∧,∨}, the semantics for this lan-
guage being the standard one. The symbol ≡ de-
notes logical equivalence, and |= denotes logical con-
sequence. We will use the usual notions of literal,
clause, cube, and negation normal form:

In this paper, we will always use cubes and clauses
ordered by the lexicographic order in the set of lit-
erals V±.
• A literal ` is an implicant of a formula A if ` |= A.
• A literal ` is an implicate of a formula A if A |= `.

We will use finite lists written in juxtaposition,
with the standard notation, nil, for the empty
list. If λ = `1`2 . . . `n is a list of literals, then
λ = `1 `2 . . . `n

In the next section we present a short summary
of ∆-lists. These were firstly introduced in [2], and
have been recently used in the development of a large
set of reduction strategies for studying the satisfiab-
ility of non-clausal propositional formulas [1] which
can be extended to non-classical logics as well [3], [4],
thus allowing a uniform metatheory of reduction of



formulas extremely useful in the field of automated
reasoning.

A. The ∆-lists

We associate to each nnf A a pair of lists of literals
denoted ∆0(A) and ∆1(A) (so-called associated ∆-
lists of A).

In a nutshell, ∆0(A) and ∆1(A) are, respectively,
lists of implicates and implicants of A.

Definition 1: Given a nnf A, ∆0(A) and ∆1(A)
are elements of List(V±)∪{>,⊥} called ∆-lists as-
sociated with A, recursively defined as follows:

∆0(`) = ` ∆1(`) = `

∆0(⊥) = ⊥ ∆1(⊥) = nil

∆0(>) = nil ∆1(>) = >

∆0 (
∧
iAi) = ∧

⋃
i
∆0(Ai); ∆1 (

∧
iAi) =

⋂
i
∆1(Ai)

∆0 (
∨
iAi) =

⋂
i
∆0(Ai); ∆1 (

∨
iAi) = ∨

⋃
i
∆0(Ai)

In the definition above there are two versions of
the union operator, and this can be explained be-
cause of the intended interpretation of these sets to-
gether with Theorem 1 below:
1. Elements in ∆0 are considered to be conjunct-
ively connected. Namely, if ` and ` ∈ ∆0(A), then
∆0(A) simplifies to ⊥. This way, we obtain a set of
implicates which can be thought of as a cube.
2. Elements in ∆1 are considered to be disjunctively
connected. Namely, if ` and ` ∈ ∆1(A), then ∆1(A)
simplifies to >. This way, we obtain a set of implic-
ants which can be thought of as a clause.

B. Information in the ∆-lists

The next theorem states that elements of ∆0(A)
are implicates of A, and that elements of ∆1(A) are
implicants of A. It follows easily by structural in-
duction from the definition of ∆-lists.

Theorem 1: Let A be a nnf and ` be a literal in A
then:
1. If ` ∈ ∆0(A), then A |= `, that is, A ≡ ` ∧A.
2. If ` ∈ ∆1(A), then ` |= A, that is, A ≡ ` ∨A.

As immediate corollaries of the previous theorem
we have the following result on the structure of the
∆-lists:

Corollary 1: For all nnf A we have one and only
one of the following possibilities:
• There is b ∈ {0, 1} such that ∆b(A) = nil,
• ∆1(A) = ∆0(A) = `, and then A ≡ `.

Finally, the following corollary defines a meaning-
preserving substitution for a formula A whose result
contains only one occurrence of any literal in the
∆-lists of A.

Corollary 2: Let A a nnf and ` a literal in A.
Then:

1. If ` ∈ ∆0(A), then A ≡ A[`/>, `/⊥] ∧ `.
2. If ` ∈ ∆1(A), then A ≡ A[`/⊥, `/>] ∨ `.

Remark 1: The substitution defined in the corol-
lary above never increases the size of A; actually, the
size is always decreased but in the following cases:
• If A is a conjunctive formula such that ` ∈ ∆0(A),
and there is only one occurrence of `.
• If A is a disjunctive formula such that ` ∈ ∆1(A),
and there is only one occurrence of `.

III. The ∆-trees

Definition 2: A ∆-tree T is a labeled tree in

H = {[γ]λ | γ ∈ {α, β} and λ ∈ List(V±)∪{>,⊥}}

inductively defined by the three properties below:
1. The leaves in a ∆-tree are elements in H.
2. Let T1, . . . , Tm be ∆-trees whose roots are
[β]λ1, · · · , [β]λm and [α]λ ∈ H, then [α]λ

T1 . . . Tm

is

a (conjunctive) ∆-tree.
3. Let T1, . . . , Tm be ∆-trees whose roots are
[α]λ1, · · · , [α]λm and [β]λ ∈ H, then [β]λ

T1 . . . Tm

is

a (disjunctive) ∆-tree.

Every ∆-tree T can be interpreted as a propos-
itional formula A in nnf. This interpretation also
allows to identify the subtrees of T with subformu-
las of A.

Definition 3: Given a ∆-tree T , we can generate a
nnf by using the operator Norm, recursively defined
as follows:
1. Norm([α]λ) =

∧
`∈λ `, and Norm([α]nil) = >

2. Norm([β]λ) =
∨
`∈λ `, and Norm([β]nil) = ⊥

3. If T is a conjunctive ∆-tree, T = [α]λ
T1 . . . Tm

then Norm(T ) = Norm([α]λ) ∧
∧m
i=1 Norm(Ti)

4. If T is a disjunctive ∆-tree, T = [β]λ
T1 . . . Tm

then Norm(T ) = Norm([β]λ) ∨
∨m
i=1 Norm(Ti)

Conversely, given a nnf A we can generate a ∆-
tree, whose nodes are the ∆-lists associated to A.

Definition 4: Let A be a nnf, we can generate
a ∆-tree by using the operator ∆-Tree, recursively
defined as follows:
1. Let A be a clause, A 6= ⊥, then ∆-Tree(A) =
[β]∆1(A).
2. Let A be a non-literal cube such that A 6= > and
A is not a literal, then ∆-Tree(A) = [α]∆0(A).



3. Let A be a disjunctive nnf, and let A1, . . . , An,
with n ≥ 1, be the non-literal disjuncts of A, then

∆-Tree(A) =
[β]∆1(A)

∆-Tree(A1) . . . ∆-Tree(An)

4. Let A be a conjunctive nnf, and let A1, . . . , An,
with n ≥ 1, be the non-literal conjuncts of A, then

∆-Tree(A) =
[α]∆0(A)

∆-Tree(A1) . . . ∆-Tree(An)

It is remarkable the idea that, in some sense, the
structure of ∆-tree allows to substitute reasoning
with literals by reasoning on clauses and cubes.

Note that for the example above Norm(∆-Tree(A))
is not equal to A, for a new literal q is attached as
an immediate successor of the root node, making
explicit that q is an implicate of the formula.

The next theorem shows that the operators in-
troduced in Definitions 3 and 4 are inverse, up to
equivalence.

Theorem 2: Let A be a nnf. Then A ≡
Norm(∆-Tree(A)).

IV. Towards a restricted form for ∆-trees

In this section, meaning-preserving transforma-
tions are introduced which allow to reduce the size of
a ∆-tree and get a restricted form for them. These
transformations extend to ∆-trees the definitions of
∆0-conclusive, ∆1-conclusive and `-simple given for
nnfs in [1].

A. Subformulas which can be substituted by con-
stants

The result of Corollary 2 is extended to ∆-trees,
in that not only literals, but also subformulas can
be substituted by the constants > or ⊥. We also in-
troduce the operators Φ⊥ and Φ> on ∆-trees which
reduce a ∆-tree by deleting its redundant nodes, that
is, those nodes which can be substituted by logical
constants in a meaning-preserving way.

Definition 5: Let η be a node of a ∆-tree T is said
to be 0-conclusive if it satisfies any of the following
conditions:
• It is labeled with [α]⊥.
• It is a leaf labeled with [β]nil.
• It is a monary node labeled with [β]nil.
• It is labeled with [α]λ, it has an immediate suc-
cessor [β]λ′ which is a leaf and λ′ ⊆ λ.
• It is labeled with [α]λ, its immediate ancestor is
labeled with [β]λ′ and λ ∩ λ′ 6= ∅.

Intuitively, the previous definition detects those
nodes in the ∆-tree which, in some sense, can be sub-
stituted by ⊥ without affecting the meaning. The

effective deletion of those nodes is made by the op-
erator Φ⊥ which, in addition, reduces the ∆-tree ac-
cording to the 0-1 laws.

Theorem 3: Let T be a ∆-tree, then Φ⊥(T ) has
no 0-conclusive nodes and, in addition, T ≡ Φ⊥(T ),
where the operator Φ⊥ is defined as follows:
1. If T is a leaf ∆-tree, then:
(a) Φ⊥(T ) = ⊥, if T = [β]nil.
(b) Φ⊥(T ) = T otherwise.

If T is not a leaf ∆-tree, then Φ⊥ traverses T in
a reverse depth-first order, that is from the leaves
to the root, and from right to left; for every visited
node η, the following transformations are applied:
2. If η is labeled with [α]⊥, then:
(a) If η = ε, then Φ⊥(T ) = ⊥.
(b) If η 6= ε, then the subtree rooted at η is erased.

3. If η is a leaf labeled with [β]nil, and η′ is the
immediate ancestor of η, then the subtree rooted at
η′ is substituted by ⊥.
4. If η is a monary node labeled with [β]nil, and its
only successor σ is labeled with [α]λ, then:
(a) If η = ε, then the node η is erased.
(b) Otherwise, if η′ is the immediate ancestor of
η and it is labeled with [α]λ′, then nodes η and σ

are erased and η′ is re-labeled with ∧
⋃
{λ, λ′}, that

is, the union of λ and λ′ considered conjunctively
connected.
5. If η is labeled with [α]λ and it has an immediate
successor which is a leaf, if this leaf is labeled with
[β]λ′ and λ′ ⊆ λ, then the subtree rooted at η is
substituted by ⊥.
6. If η is labeled with [β]λ and it has an immediate
successor η′ which is labeled with [α]λ′, if λ∩λ′ 6= ∅,
then the subtree rooted at η′ is erased.

The concept of 1-conclusive node and the operator
Φ> are defined by duality.

B. Simple leaves

In order to get to a restricted ∆-tree it is also
necessary to detect which leaves are redundant, in
the sense that are not proper clauses or cubes, but
literals.

Definition 6: Let T be a non-leaf ∆-tree, and let η
be a leaf in T . We say that η is simple if it is labeled
with either [α]` or [β]`, where ` ∈ V±.

Theorem 4: Let T be a ∆-tree, then Φ`(T ) is a
∆-tree without simple leaves and, in addition, T ≡
Φ`(T ), where the operator Φ` is defined as follows:

If the simple leaf η is labeled with [Θ]` and
its immediate ancestor is labeled with [Θ]λ, then
the simple leaf is erased, and its predecessor is re-
labeled as follows; if Θ = α, then the new label is
[Θ] ∧
⋃
{λ, `}, otherwise it is [Θ] ∨

⋃
{λ, `}.



C. Updated ∆-trees

A useful property of the operator ∆-Tree is that,
given a nnf A, in a ∆-Tree(A) the label of each [α]
(resp. [β]) node is the ∆0- (resp. ∆1-)list associated
to the subformula that it represents. However, this
property need not hold when some transformation
has already been applied on T .

Definition 7: Let T be a ∆-tree, and let η be a
node of T that is neither a leaf nor the root. Let
[Θ]λ be the label of the predecessor of η, and let
[Θ]λ1, . . . , [Θ]λn be the labels of its immediate suc-
cessors. We say that η can be updated if it satisfies
some of the next conditions:
1. Is labeled with [Θ]nil and

⋂n
i=1{λ1, . . . , λn} 6⊂ λ.

2. Is labeled with [Θ]` for some ` ∈ V± and satisfies
both ` 6∈ λ and ` ∈

⋂n
i=1{λ1, . . . , λn}.

We say that T is updated if it has no nodes that
can be updated.

From the definition above, in order to obtain an
updated ∆-tree, we have to drive upwards all those
literals that can be generated by intersections; this
operation is done by the operator Update.

Theorem 5: If T is a ∆-tree, then Update(T ) is
updated and, in addition, Update(T ) ≡ T , where
the operator Update is defined as follows:
1. If T is a leaf ∆-tree, then Update(T ) = T .
2. If T is not a leaf ∆-tree, we traverse T in a reverse
depth-first ordering (from the leaves to the root, and
from right to left) until we get to a node that can
be updated. Let η be such a node and let [Θ]λ be
the label of its predecessor, and [Θ]λ1, . . . , [Θ]λn the
labels of its immediate successors.
(a) If η is labeled with [Θ]nil, and

⋂
i{λ1, . . . , λn} =

δ 6⊂ λ then the predecessor of η is re-labeled. This
new label is [Θ] ∧

⋃
{δ, λ} if Θ = α, and [Θ] ∨

⋃
{δ, λ}

otherwise.
(b) If η is labeled with [Θ]`, with ` ∈ V±, ` 6∈ λ

and ` ∈
⋂n
i=1{λ1, . . . , λn} then the predecessor of η

is re-labeled as follows; the new label is [Θ] ∧
⋃
{`, λ}

if Θ = α, and with [Θ] ∨
⋃
{`, λ} otherwise.

D. Restricted ∆-trees

Definition 8: Let T be a ∆-tree. If T is up-
dated and it has neither 0-conclusive nodes nor 1-
conclusive nodes nor simple leaves, then it is said to
be restricted.

The operators defined in the previous sections al-
low us to transform every ∆-tree in another equival-
ent and restricted one.

From Theorems 3–5 we immediately obtain the
following result.

Theorem 6: Let T be a ∆-tree, then Restrict(T )
is restricted and, in addition, T ≡ Restrict(T );

TABLE I

Run time on some IFIP benchmarks.

Problem Bea TAS Problem Bea TAS
d3 0.1 0.17 vg2 7.0 2.82
misg 0.7 0.35 alu 7.1 3.98
ztwaalf1 0.8 0.80 x1dn 7.2 3.37
mp2d 1.1 1.03 z9sym 9.8 4.07
dk27 2.2 0.07 sqn 11.2 0.43
rom2 2.5 3.03 add1 12.2 1.20
table 2.8 2.72 dc2 12.5 0.40
dk17 3.0 0.38 mul03 20.1 1.03
z5xpl 4.1 0.38 rd73 30.4 1.27
f51m 5.7 0.48 root 33.7 0.67
pitch 5.7 2.55 alupla20 618.1 31.72

where the operator Restrict traverses T in a re-
verse depth-first order (from leaves to the root,
and from right to left) and in every node it tests
whether the node is 0-conclusive, or 1-conclusive, or
a simple leaf, or a node that can be updated, and
in this case applies the corresponding operator in
{Φ⊥,Φ>,Φ`, Update}.

V. Experimental results

∆-trees have been used to implement an ATP us-
ing the reductions described in [2], [1], together with
a branching rule based on the Davis-Putnam proced-
ure (without using heuristic or probabilistic criteria
for selecting the variable to branch the formula);
namely, a formula A is split into two subformulas
A[p/>] and A[p/⊥], where p is the first variable oc-
curring in A.

As our method is specially focused on non-cnf for-
mulas we have run our prover, written in Object-
ive CAML, on the IFIP benchmarks for hardware
verification. The results obtained, using a Power
Macintosh G3, are shown in table I, together with
the results reported in [5] where a Sun Super SPARK
workstation was used. It is noticeable the important
speed-up obtained when using TAS.
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