Representing Boolean formulas by using trees of
implicants and implicates

G. Gutiérrez, I.P. de Guzman, J. Martinez, M. Ojeda-Aciego, A.Valverde

Dept. Matemaética Aplicada. Universidad de Mélaga.
P.O. Box 4114. E-29080 Malaga, Spain. Email: aciego@ctima.uma.es

Abstract— A new tree-based representation for pro-
positional formulas is introduced. This representa-
tion, the A-trees, allows a compact representation for
well-formed formulas as well as a number of reduction
strategies in order to consider only those occurrences
of literals which are relevant for the satisfiability of
the input formula.

Keywords: automated deduction, propositional formula
representation, implicates/implicants

I. INTRODUCTION

The ability to reason on specifications written in
a language as close as possible to natural language is
important for information sciences; thus, reasoning
efficiently on nnf (negation normal form) is interest-
ing because these formulas are easier to obtain from
specifications given in natural language. Obviously,
there is a need of efficient representations of nnfs so
that, in a similar manner as with cnfs (conjunctive
normal forms), we are able to describe and imple-
ment efficient algorithms on this kind of formulas.

Formulas in cnf are usually interpreted as lists of
clauses, and formulas in dnf are interpreted as lists of
cubes; these interpretations allow efficient descrip-
tions and implementations of algorithms to study
satisfiability (e.g. linear ordered resolution). In this
work we focus on the generalization of these inter-
pretations to nnfs. The proposed generalization will
use trees of clauses and cubes.

Specifically, nnfs are represented as trees of clauses
and cubes such that each clause-node in the tree is
an implicant of the formula represented by its scope
and, similarly, each cube-node is an implicate of the
formula represented by its scope. The new repres-
entation is named A-tree because its nodes are built
up from A-lists [1]. After defining the notion of A-
tree, we define operators Norm and A-Tree which,
respectively, associate a nnf to each A-tree and vice
versa. In addition, it can be shown that this corres-
pondence preserves equivalence and, therefore, we
can easily extend the concepts of validity and satis-
fiability to A-trees.

We introduce the concept of restricted A-tree
(generalizing the well-known concept of restricted
cnf in which clauses with repeated or contradictory
literals are not allowed and subsumed clauses are

Partially supported by CICYT project TIC97-0579-C02-02.

omitted), which involves only restricted clauses and
cubes in the representation and, in addition, prohib-
its that a single literal is both an implicant and an
implicate of the same subformula.

The transformation into restricted A-tree is given
by a number of meaning-preserving transformations,
with at most quadratic complexity, which eliminate
the conclusive or simple nodes and usually reduces
the size of the input A-tree. Roughly speaking a
conclusive node in a A-tree is one which can be sub-
stituted by a logical constant preserving the meaning
of the whole tree, and a simple node in a A-tree sat-
isfies that the subformula it represents is equivalent
to a literal; these concepts are generalized from the
classical case [2].

Technically, the transformation into restricted
form is made by the operators ®; and ®1, and ¥,
which eliminate, respectively, the conclusive and the
simple nodes in a A-tree.

II. PRELIMINARY CONCEPTS AND DEFINITIONS

Throughout the rest of the paper, we will work
with a classical propositional language over a de-
numerable set of propositional variables, V, and
connectives {—,A,V}, the semantics for this lan-
guage being the standard one. The symbol = de-
notes logical equivalence, and |= denotes logical con-
sequence. We will use the usual notions of literal,
clause, cube, and negation normal form:

In this paper, we will always use cubes and clauses
ordered by the lexicographic order in the set of lit-
erals V*.

o A literal £ is an implicant of a formula A if ¢ = A.
o A literal £ is an implicate of a formula A if A | /.

We will use finite lists written in juxtaposition,
with the standard notation, nil, for the empty
list. If A = ¢fy... 0, is a list of literals, then
A="01ly... 0,

In the next section we present a short summary
of A-lists. These were firstly introduced in [2], and
have been recently used in the development of a large
set of reduction strategies for studying the satisfiab-
ility of non-clausal propositional formulas [1] which
can be extended to non-classical logics as well [3], [4],
thus allowing a uniform metatheory of reduction of

formulas extremely useful in the field of automated
reasoning.

A. The A-lists

We associate to each nnf A a pair of lists of literals
denoted Ag(A) and A;(A) (so-called associated A-
lists of A).

In a nutshell, Ag(A) and A;(A) are, respectively,
lists of implicates and implicants of A.

Definition 1: Given a nnf A, Ag(A) and A;(A)
are elements of List(V*)U{T, L} called A-lists as-
sociated with A, recursively defined as follows:

Ao(t) =1 Ai(0) = ¢
Ao(J_) =1 Al(J_) =nil
Ao(—r) =nil Al("l') = T

In the definition above there are two versions of
the union operator, and this can be explained be-
cause of the intended interpretation of these sets to-
gether with Theorem 1 below:

1. Elements in Ay are considered to be conjunct-
ively connected. Namely, if £ and ¢ € Ag(A), then
Ap(A) simplifies to L. This way, we obtain a set of
implicates which can be thought of as a cube.

2. Elements in A are considered to be disjunctively
connected. Namely, if £ and £ € A;(A), then A;(A)
simplifies to T. This way, we obtain a set of implic-
ants which can be thought of as a clause.

B. Information in the A-lists

The next theorem states that elements of Ag(A)
are implicates of A, and that elements of A;(A) are
implicants of A. It follows easily by structural in-
duction from the definition of A-lists.

Theorem 1: Let A be a nnf and ¢ be a literal in A
then:

1. If £ € Ag(A), then A = ¢, that is, A = ¢ A A.
2. If £ € A1(A), then £ = A, that is, A=/¢V A.

As immediate corollaries of the previous theorem
we have the following result on the structure of the
A-lists:

Corollary 1: For all nnf A we have one and only
one of the following possibilities:

o There is b € {0,1} such that Ay(A) = nil,
e A1(A) =Ag(A) = ¢, and then A = ¢.

Finally, the following corollary defines a meaning-
preserving substitution for a formula A whose result
contains only one occurrence of any literal in the
A-lists of A.

Corollary 2: Let A a nnf and ¢ a literal in A.
Then:

1. 1f £ € Ag(A), then A = A[¢/T, T/ L] A L.
2. If £ € A (A), then A= A[¢/L,1/T] VL.

Remark 1: The substitution defined in the corol-
lary above never increases the size of A; actually, the
size is always decreased but in the following cases:
o If Ais a conjunctive formula such that £ € Ay(A),
and there is only one occurrence of /.

o If A is a disjunctive formula such that £ € Aj(A),
and there is only one occurrence of /.

III. THE A-TREES
Definition 2: A A-tree T is a labeled tree in
H={\|~v e {3} and X € List(VF)U{T, L}}

inductively defined by the three properties below:
1. The leaves in a A-tree are elements in H.

2. Let Ty, ..., T,, be A-trees whose roots are
[BIA1, -+, [B]A\m and [a]A € H, then [a]A is

7 ... T
a (conjunctive) A-tree.
3. Let Ty, ..., T,, be A-trees whose roots are
[@]A1, -, [@] A and [B]A € H, then (8] is

... Ty
a (disjunctive) A-tree.

Every A-tree T' can be interpreted as a propos-
itional formula A in nnf. This interpretation also
allows to identify the subtrees of T" with subformu-
las of A.

Definition 3: Given a A-tree T', we can generate a
nnf by using the operator Norm, recursively defined
as follows:

1. Norm([a]\) = A,cy £, and Norm([a]nil) = T
2. Norm([B]A) = ey £, and Norm([B]nil) = L
3. If T is a conjunctive A-tree, T = A

T ... T

)

then Norm(T') = Norm([a]A) A A~ Norm(T;)
4. If T is a disjunctive A-tree, T = (8]

... T

then Norm(7') = Norm([B]\) V /!, Norm(T;)

Conversely, given a nnf A we can generate a A-
tree, whose nodes are the A-lists associated to A.

Definition 4: Let A be a nnf, we can generate
a A-tree by using the operator A-Tree, recursively
defined as follows:
1. Let A be a clause, A # 1, then A-Tree(A) =
(1A (A).
2. Let A be a non-literal cube such that A # T and
A is not a literal, then A-Tree(A) = [a]Ao(A).

3. Let A be a disjunctive nnf, and let Ay,..., Ay,
with n > 1, be the non-literal disjuncts of A, then

A-Tree(A) = 5121 (4)
A-Tree(A;) A-Tree(A,)

4. Let A be a conjunctive nnf, and let Ay,..., A,,
with n > 1, be the non-literal conjuncts of A, then

[0]Ag(A)

A-Tree(A) =
ree(4) A-Tree(A;) A-Tree(A,)

It is remarkable the idea that, in some sense, the
structure of A-tree allows to substitute reasoning
with literals by reasoning on clauses and cubes.

Note that for the example above Norm(A-Tree(A))
is mot equal to A, for a new literal ¢ is attached as
an immediate successor of the root node, making
explicit that ¢ is an implicate of the formula.

The next theorem shows that the operators in-
troduced in Definitions 3 and 4 are inverse, up to
equivalence.

Theorem 2: Let A be a nnf.
Norm(A-Tree(A)).

Then A

IV. TOWARDS A RESTRICTED FORM FOR A-TREES

In this section, meaning-preserving transforma-
tions are introduced which allow to reduce the size of
a A-tree and get a restricted form for them. These
transformations extend to A-trees the definitions of
Ag-conclusive, A1-conclusive and ¢-simple given for
nnfs in [1].

A. Subformulas which can be substituted by con-
stants

The result of Corollary 2 is extended to A-trees,
in that not only literals, but also subformulas can
be substituted by the constants T or L. We also in-
troduce the operators ® | and ®+ on A-trees which
reduce a A-tree by deleting its redundant nodes, that
is, those nodes which can be substituted by logical
constants in a meaning-preserving way.

Definition 5: Let 1 be a node of a A-tree T' is said
to be 0-conclusive if it satisfies any of the following
conditions:

o It is labeled with [a]L.

o It is a leaf labeled with [G]nil.

o It is a monary node labeled with [G]nil.

o It is labeled with [a]), it has an immediate suc-
cessor [B]\" which is a leaf and X C \.

o It is labeled with [a]), its immediate ancestor is
labeled with [3]\ and AN X # 0.

Intuitively, the previous definition detects those
nodes in the A-tree which, in some sense, can be sub-
stituted by L without affecting the meaning. The

effective deletion of those nodes is made by the op-
erator ® | which, in addition, reduces the A-tree ac-
cording to the 0-1 laws.

Theorem 3: Let T be a A-tree, then ®,(T) has
no 0-conclusive nodes and, in addition, T' = @, (T),
where the operator ®, is defined as follows:

1. If T is a leaf A-tree, then:

(a) @,(T) =1, if T = [f]nil.

(b) @, (T) =T otherwise.

If T is not a leaf A-tree, then ®, traverses T in
a reverse depth-first order, that is from the leaves
to the root, and from right to left; for every visited
node 7, the following transformations are applied:
2. If n is labeled with [a]L, then:

(a) If n =&, then &, (T) = L.

(b) If n # €, then the subtree rooted at 7 is erased.
3. If n is a leaf labeled with [8]nil, and 7’ is the
immediate ancestor of 7, then the subtree rooted at
7’ is substituted by L.

4. If n is a monary node labeled with [§]nil, and its
only successor o is labeled with [a]A, then:

(a) If n = &, then the node 7 is erased.

(b) Otherwise, if 7' is the immediate ancestor of
n and it is labeled with [a]\/, then nodes n and o
are erased and 7’ is re-labeled with LAJ{)\, X'}, that

is, the union of A and)\’ considered conjunctively
connected.
5. If n is labeled with [o]A and it has an immediate
successor which is a leaf, if this leaf is labeled with
[B]\ and N C), then the subtree rooted at 7 is
substituted by L.
6. If n is labeled with [B]\ and it has an immediate
successor 1’ which is labeled with [a] X, if ANN # 0,
then the subtree rooted at n’ is erased.

The concept of 1-conclusive node and the operator
&+ are defined by duality.

B. Simple leaves

In order to get to a restricted A-tree it is also
necessary to detect which leaves are redundant, in
the sense that are not proper clauses or cubes, but
literals.

Definition 6: Let T be a non-leaf A-tree, and let n
be aleaf in T. We say that n is simple if it is labeled
with either [a]¢ or [8]¢, where ¢ € VE.

Theorem 4: Let T be a A-tree, then ®,(T) is a
A-tree without simple leaves and, in addition, T' =
®,(T), where the operator @y is defined as follows:

If the simple leaf n is labeled with [O]¢ and
its immediate ancestor is labeled with [O]), then
the simple leaf is erased, and its predecessor is re-

labeled as follows; if © = «, then the new label is

[O] A\, €}, otherwise it is [B] (VJ{A, ¢}.

C. Updated A-trees

A useful property of the operator A-Tree is that,
given a nnf A, in a A-Tree(A) the label of each [a]
(resp. [A]) node is the Ap- (resp. Ap-)list associated
to the subformula that it represents. However, this
property need not hold when some transformation
has already been applied on T'.

Definition 7: Let T be a A-tree, and let n be a
node of T that is neither a leaf nor the root. Let
[O]A be the label of the predecessor of 1, and let
[O]A1, ..., [O]A, be the labels of its immediate suc-
cessors. We say that n can be updated if it satisfies
some of the next conditions:

1. Islabeled with [O]nil and (_ {A1, ..., A} & A
2. Is labeled with [O]¢ for some ¢ € V* and satisfies
both ¢ ¢ X and £ € ([_ {\1,..., A}

We say that T is updated if it has no nodes that

can be updated.

From the definition above, in order to obtain an
updated A-tree, we have to drive upwards all those
literals that can be generated by intersections; this
operation is done by the operator Update.

Theorem 5: If T is a A-tree, then Update(T') is
updated and, in addition, Update(T') = T, where
the operator Update is defined as follows:

1. If T is a leaf A-tree, then Update(T) = T.

2. If T is not a leaf A-tree, we traverse T in a reverse
depth-first ordering (from the leaves to the root, and
from right to left) until we get to a node that can
be updated. Let 1 be such a node and let [O]A be

the label of its predecessor, and [O]Aq,. .., [O]\, the
labels of its immediate successors.
(a) Ifnislabeled with [©]nil, and ,{\1,..., A\n} =

0 ¢ A then the predecessor of 7 is re-labeled. This
new label is [0] [AJ{3,\} if © = a, and [O](VJ{5, A}
otherwise.

(b) If i is labeled with [B]¢, with £ € V¥, £ ¢ X
and ¢ € (_;{\1,..., A\, } then the predecessor of n
is re-labeled as follows; the new label is [O] W{E, A}

if ® = «, and with [©] L_/J{K, A} otherwise.
D. Restricted A-trees

Definition 8: Let T be a A-tree. If T is up-
dated and it has neither 0-conclusive nodes nor 1-
conclusive nodes nor simple leaves, then it is said to
be restricted.

The operators defined in the previous sections al-
low us to transform every A-tree in another equival-
ent and restricted one.

From Theorems 3-5 we immediately obtain the
following result.

Theorem 6: Let T be a A-tree, then Restrict(7)
is restricted and, in addition, T = Restrict(T);

TABLE 1
RUN TIME ON SOME IFIP BENCHMARKS.

Problem Bea TAS Problem Bea TAS

d3 0.1 0.17 || vg2 7.0 2.82
misg 0.7 0.35 alu 7.1 3.98
ztwaalfl 0.8 0.80 x1dn 7.2 3.37
mp2d 1.1 1.03 || z9sym 9.8 4.07
dk27 2.2 0.07 || sqn 11.2 0.43
rom2 2.5 3.03 || add1 12.2 1.20
table 2.8 2.72 || dc2 12.5 0.40
dk17 3.0 0.38 || mulo3 20.1 1.03
z5xpl 4.1 0.38 || rd73 30.4 1.27
f51m 5.7 0.48 || root 33.7 0.67
pitch 5.7 2.55 alupla20 | 618.1 31.72

where the operator Restrict traverses T in a re-
verse depth-first order (from leaves to the root,
and from right to left) and in every node it tests
whether the node is 0-conclusive, or 1-conclusive, or
a simple leaf, or a node that can be updated, and
in this case applies the corresponding operator in
{(I)L, D1, Dy, Update}.

V. EXPERIMENTAL RESULTS

A-trees have been used to implement an ATP us-
ing the reductions described in [2], [1], together with
a branching rule based on the Davis-Putnam proced-
ure (without using heuristic or probabilistic criteria
for selecting the variable to branch the formula);
namely, a formula A is split into two subformulas
Alp/T] and Alp/L], where p is the first variable oc-
curring in A.

As our method is specially focused on non-cnf for-
mulas we have run our prover, written in Object-
ive CAML, on the IFIP benchmarks for hardware
verification. The results obtained, using a Power
Macintosh G3, are shown in table I, together with
the results reported in [5] where a Sun Super SPARK
workstation was used. It is noticeable the important
speed-up obtained when using TAS.

REFERENCES

[1] G. Aguilera, I. P. de Guzmdn, M. Ojeda-Aciego, and
A. Valverde, “Reductions for non-clausal theorem prov-
ing,” Theoretical Computer Science, 2000. To appear

[2] G. Aguilera, I. P. de Guzman, and M. Ojeda-Aciego, “In-
creasing the efficiency of automated theorem proving,”
Journal of Applied Non-Classical Logics, vol. 5, no. 1,
pp- 9-29, 1995.

3] I. P. de Guzmdn, M. Ojeda-Aciego, and A. Valverde,
“Multiple-valued tableaux with A-reductions,” in Proc.
of ICAI’99. 1999, pp. 177-183, C.S.R.E.A.

[4] I. P. de Guzmén, M. Ojeda-Aciego, and A. Valverde,
“Implicates and reduction techniques for temporal lo-
gics,” Annals of Mathematics and Artificial Intelligence,
1999, To appear.

[5] Fabio Massacci, “Simplification: a general constraint
propagation technique for propositional and modal
tableaux,” in Proceedings of Tableauzr’98. Lect. Notes
in Artificial Intelligence 1397, 1998, pp. 217-231.

