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Abstract

This report continues the study of quantified equilibrium logic, QEL,
introduced in [25, 26], and its monotonic base logic, here-and-there. We
present a slightly modified version of QEL where the so-called unique

name assumption or UNA is not assumed from the outset but may be
added as a special requirement for specific applications. We also consider
here an alternative axiom set for first-order here-and-there. The new
system appears to be simpler as well as making it easier to derive some
simple semantic validities.

In addition, based on the modified semantics for first-order here-and-
there we present QEL and investigate some of its properties. We look
in particular at two issues. First, we consider the relation of QEL to
non-ground answer set programming. Specifically we show that in the
quantified case equilibrium models corresponds precisely to the open an-
swer sets of [12], while the earlier version of open answer sets discussed in
[11] can be captured in QEL with UNA. Secondly, we propose a concept of
strong equivalence for theories in QEL generalising the usual concept for
propositional theories. The strong equivalence theorem of [16] is extended
to the first-order case by showing that equivalence in the first-order logic
of here-and-there is a necessary and sufficient condition for strong equiva-
lence. We relate this to the concept of strong equivalence for non-ground
logic programs studied in [3].

1 Introduction

Equilibrium logic was introduced in [21] as a general nonmonotonic formalism
extending the semantics of answer sets for logic programs [6]; it was further
studied and applied in [22, 16, 24] and elsewhere. For an overview of the main
features and properties, see [23]. Equilibrium logic is based on a simple, mini-
mal model construction in the nonclassical logic of here-and-there, HT. When
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a second negation operator is present in the language, as in the usual case of
answer set semantics, the underlying logic is the least strong negation extension
of HT, denoted by N5. As equilibrium logic is defined for arbitrary proposi-
tional formulas it yields an extension of the usual syntax of (ground) answer set
programs. It also provides a useful logical foundation for answer set program-
ming (ASP), the fast developing paradigm for declarative programming based
on the answer set semantics [1].

A costly component of the computation of answer sets is the process of
grounding a program containing variables by instantiating the variables with
constants from the language to yield a ground propositional program for which
candidate models are then generated and tested. For future generation systems
it is desirable to develop mechanisms for program transformation and simpli-
fication that would allow for program optimisation and perhaps even partial
evaluation prior to grounding. For this reason interest has recently grown in
the logical and mathematical foundations of non-ground or first-order programs.
For example [18, 3] have studied the property of strong equivalence and related
notions for non-ground programs, while in [26] a first-order version of equilib-
rium logic was presented and its relation to non-ground programs under answer
set semantics was studied. In a different direction, the concept of open answer
set for non-ground programs was defined in [11, 10] and decidable classes of
programs were identified via embeddings into fixpoint logic.

This report continues the work of [26] on first-order, or, as we shall say, quan-
tified equilibrium logic (or QEL for short) and its relation to non-ground answer
set programming. The report has three main contributions. First, we present a
slightly different version of QEL where the so-called unique name assumption
or UNA is not assumed from the outset but may be added as a special require-
ment for specific applications. The motivation for relaxing the UNA is to make
equilibrium logic more flexible for certain kinds of applications. For instance in
the area of reasoning for the Semantic Web there has been considerable interest
recently in combining reasoning about ontologies with nonmonotonic rules un-
der answer set semantics. In this domain the UNA may be undesirable or even
in a sense incorrect, and in approaches to so-called hybrid knowledge bases that
integrate classical logic with ASP the UNA has been dropped [27, 12]. A more
specific plea for QEL without UNA is also made in [4]. In our earlier version
[26] the UNA was present as a built-in feature of the Kripke model semantics
of the underlying logic of quantified here-and-there. Here we present a mod-
ified version of the semantics without UNA. However we show that the logic
QHTs corresponding to the new models is equivalent in terms of satisfiability
and validity to the logic described previously in [26].

Secondly, we consider here an alternative axiom set for QHTs. The new
system appears to be simpler as well as making it easier to derive some simple
semantic validities; we give an example in Section 3.2. Much of the report is
given over to proving the completeness of the new axiom schemata.

Thirdly, based on the modified semantics for QHTs we present quantified
equilibrium logic QEL and investigate some of its properties. We look in par-
ticular at two issues. First, we consider the relation of QEL to non-ground
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answer set programming. Specifically we show that in the quantified case equi-
librium models corresponds precisely to the open answer sets of [12], while the
earlier version of open answer sets discussed in [11] can be captured in QEL
with UNA. Secondly, we propose a concept of strong equivalence for theories
in QEL generalising the usual concept for propositional theories. The strong
equivalence theorem of [16] is extended to the first-order case by showing that
equivalence in the logic QHTs is a necessary and sufficient condition for strong
equivalence.

2 Background: known logics and systems

We start by recalling some well-known logical systems. To simplify the presen-
tation, for the time being we consider languages without strong negation. The
addition of strong negation will be treated as a separate issue in Section 6. For
the propositional language we consider the following connectives: ∧ for conjunc-
tion, ∨ for disjunction, → for implication, ¬ for weak or intuitionistic negation.
We also consider the connective ↔ defined as α↔ β =def (α → β) ∧ (β → α).
For the first-order language we add the usual universal and existential quanti-
fiers ∀ and ∃, respectively.

We work with first order languages with function symbols, L = 〈C,F, P 〉,
built over a set of constants, C, a set of functions, F , and a set of predicates,
P ; the three sets of symbols are disjoints and each predicate symbol and each
function symbol has an assigned arity. Atoms and formulas are constructed as
usual; closed formulas, or sentences, are those where no variable appears outside
the scope of a quantifier. A theory is a set of sentences. Variable-free terms,
atoms, formulas, or theories are also called ground.

If D is a non-empty set, we denote by AtD(C,P ) the set of atomic sentences
of 〈C ∪D,F, P 〉 (if D = ∅, we obtain the set of atomic sentence of the language
L = 〈C,F, P 〉);1 and we denote by TD(C,F ) the set of ground terms of 〈C ∪
D,F, P 〉. If L = 〈C,F, P 〉 and L′ = 〈C′, F ′, P ′〉, we say that L ⊆ L′ if C ⊆ C′,
F ⊆ F ′ and P ⊆ P ′.

2.1 Intuitionistic Logic

In this section we analyse the axiomatic systems for the logic used in this paper.
All the systems are extensions of intuitionistic logic denoted by Int. We are
going to work with the following axiomatic system for Int, where D is an infinite
and countable set such that C ∩D = ∅.

Axioms: I1 ϕ→ (ψ → ϕ)

I2 (ϕ→ (ψ → γ))→ ((ϕ→ ψ)→ (ϕ→ γ))

I3 ϕ→ (ψ → ϕ ∧ ψ)

1We can think of the objects in D as additional constants. As we shall see below, for
notational simplicity we do not distinguish between the objects in D and their names.
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I4 ϕ ∧ ψ → ϕ

I5 ϕ ∧ ψ → ψ

I6 ϕ→ ϕ ∨ ψ

I7 ψ → ϕ ∨ ψ

I8 (ϕ→ γ)→ ((ψ → γ)→ (ϕ ∨ ψ → γ))

I9 (ϕ→ ψ)→ ((ϕ→ ¬ψ)→ ¬ϕ)

I10 ¬ϕ→ (ϕ→ ψ)

I11 ∀xϕ(x)→ ϕ(t), for every t ∈ TD(C,F )

I12 ϕ(t)→ ∃xϕ(x), for every t ∈ TD(C,F )

Inference rules: • Modus Ponens: From ϕ and ϕ→ ψ, conclude ψ.

• ∀-Introduction: From ψ → ϕ(c), where c ∈ C ∪D does not occur in
ψ, conclude ψ → ∀xϕ(x).

• ∃-Elimination: From ϕ(c) → ψ, where c ∈ C ∪D does not occur in
ψ, conclude ∃xϕ(x)→ ψ.

When deductions are considered, in the inference rules for quantifiers, the
constant c can not occur in the premises

If ϕ is deducible from Γ in this system we write: Γ ⊢Int ϕ.

2.1.1 Kripke semantics for intuitionistic logic

An intuitionistic L-structure I comprises a tuple

I = 〈(W,≤), ({Dw}w∈W , σ), {Iw}w∈W 〉

where: (W,≤) is a partial ordered set; every Dw is a non-empty set and Dw ⊆
Dw′ if w ≤ w′; if D =

⋃
w∈W Dw, then σ : TD(C,F )→ D is recursively defined2

and verifies that σ(d) = d for all d ∈ D and σ(t) ∈ Dw if t ∈ TDw
(C,F ); and for

every w ∈ W , Iw ⊆ AtDw
(∅,∅, P ) and Iw ⊆ Iw′ if w ≤ w′. The satisfiability

relation is defined as follows:

• M, w |= p(t1, . . . , tn) iff p(σ(t1), . . . , σ(tn)) ∈ Iw for every t1, . . . , tn ∈
TDw

(C,F ).

• M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ.

• M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ.

• M, w |= ϕ→ ψ iff M, w′ 6|= ϕ or M, w′ |= ψ for every w′ ≥ w.

• M, w |= ¬ϕ iff M, w′ 6|= ϕ for every w′ ≥ w.

2That is, for every a ∈ C, σ(a) ∈ Dw for all w, for every f ∈ F with arity n, a mapping
fI : Dn → D is defined verifying fI(d1, . . . , dn) ∈ Dw provided d1, . . . , dn ∈ Dw.; so, the
recursive definition is given by σ(f(t1 , . . . , tn)) = fI(σ(t1), . . . , σ(tn)).
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• M, w |= ∀xϕ(x) iff M, w′ |= ϕ(d) for all w′ ≥ w and d ∈ Dw′ .

• M, w |= ∃xϕ(x) iff M, w |= ϕ(d) for some d ∈ Dw.

This is one of the standard ways to present Kripke semantics for Int, similar
to that of [30]; for alternative but equivalent presentations, see eg. [29]. The
semantics can be intuitively explained as follows. W is a set of states or ‘pos-
sible worlds’ partially ordered by ≤. Each world w is associated a domain Dw

whose elements persist at ‘later’ worlds, ie. Dw ⊆ Dw′ if w ≤ w′. For each
world σ assigns elements and tuples of the domain to terms built from con-
stant and function symbols in the original language extended with constants for
each domain element; the semantic condition ensures that a function defined
on terms in some domain is assigned a value in that domain. In addition, each
world w is assigned an interpretation Iw which takes the form of a set of closed
atoms in the language of Dw. These correspond to the atoms verified at world
w. As usual in Kripke semantics, an atom verified at world w remains true at
any ‘later’ world w′ ≥ w. For the truth relation one requires that an atomic
sentence is true at a world w just in case its interpretation is an element of Iw.
This relation is extended recursively to all sentences in the usual manner.

Truth of a sentence in a model is defined as follows: M |= ϕ iff M, w |= ϕ

for all w ∈ W . The sentence ϕ is valid in Int if it is true in all models and it
is denoted by |=Int ϕ. A formula ϕ is deduced from Γ if every model of Γ is a
model of ϕ and it is denoted by Γ |=Int ϕ.

Int is strongly complete for the above semantics in the sense that Γ ⊢Int ϕ

if and only if Γ |=Int ϕ.

2.2 Propositional Here-and-There Logic

In the propositional case, the logic of here-and-there can be characterised by
adding to intuitionistic propositional logic the following axiom schema  LUK,
introduced by  Lukasiewicz [19]:

 LUK (¬α→ β)→ (((β → α)→ β)→ β)

Added to the intuitionistic propositional calculus, the 3-valued logic of Heyting
[13] and Gödel [7] is obtained, and we denote this logic by HT. Other ax-
iomatic systems for here-and-there have been described in the literature [15];
for example, the axiom of  Lukasiewicz can be replaced by the following axiom
of Hosoi [14], in slightly simplified form:

HOS α ∨ (¬β ∨ (α→ β))

This logic can be characterised by a Kripke semantics for rooted frames with
just two elements, say ‘h’ and ‘t’: ({h, t},≤) with h ≤ t. So models for HT can
be regarded as pairs 〈H,T 〉 where H and T are sets of atoms with H ⊆ T . The
satisfiability relation is defined as in intuitionistic logic by considering Ih = H

and It = T ; validity is defined in the same way.
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3 Quantified Here-and-There Logics

We now turn to quantified versions of the here-and-there logic and consider both
the cases of static and non-static domains.

3.1 Kripke semantics with expanding domains

We denote by QHT the Kripke semantics for here-and-there logic obtained
by considering the interpretation of quantifiers as in intuitionistic logic. So a
(non-static) here-and-there L-structure (in short, QHT -L-structure) is a tuple
I = 〈(Dh, Dt, σ), H, T 〉 such that:

• ∅ 6= Dh ⊆ Dt.

• σ : TDt
(C,F ) → Dt is such that σ(d) = d if d ∈ Dt and σ(t) ∈ Dh if

t ∈ TDh
(C,F ).

• H ⊆ AtDh
(∅,∅, P ), T ⊆ AtDt

(∅,∅, P ) and H ⊆ T .

The satisfaction relation and validity are defined as in intuitionistic logic.

3.2 Kripke semantics with static domains

Another possibility is to consider the Kripke semantics for here-and-there logic
taking the same domain for both worlds. We denote by QHTs the Kripke
semantics for here-and-there logic obtained by considering static domains.

A static here-and-there L-structure (in short QHT s-L-structure) is a tuple
I = 〈(D,σ), H, T 〉 such that: D is a non-empty set, σ : TD(C,F ) → D is such
that σ(d) = d if d ∈ D and H ⊆ T ⊆ AtD(∅,∅, P ). The satisfiability relation
and validity are defined as in Intuitionistic logic.

This logic is stronger than the non-static versions; for example, in the gen-
eral case the formula ∀x(p(x) ∨ q(a)) → (∀xp(x) ∨ q(a)) is not valid in QHT
(〈({a}, {a, b}, id), {p(a)}, {p(a), q(a)}〉 is not a model for it) but it is valid in
QHTs.

Lemma 1 |=QHTs ∀x(p(x) ∨ q(a))→ (∀xp(x) ∨ q(a)).

Proof: Let us consider the structure M = 〈(D,σ), H, T 〉.

1. If M, t |= ∀x(p(x) ∨ q(a)) then M, t |= p(d) ∨ q(a) for all d ∈ D; we
distinguish two cases: if M, t |= q(a), then M, t |= ∀xp(x) ∨ q(a); if
M, t 6|= q(a), then necessarilyM, t |= p(d) for all d ∈ D and consequently
M, t |= ∀xp(x) andM, t |= ∀xp(x)∨q(a). Therefore,M, t |= ∀xp(x)∨q(a).

2. IfM, h |= ∀x(p(x)∨q(a)), thenM, h |= p(d)∨q(a) andM, t |= p(d)∨q(a)
for all d ∈ D; we distinguish three cases: if M, h |= q(a), then M, h |=
∀xp(x) ∨ q(a); if M, h 6|= q(a), then necessarilyM, h |= p(d) for all d ∈ D
and thereforeM, t |= p(d) for all d ∈ D and it follows thatM, h |= ∀xp(x)
(at this point we make use of the fact that D = D(h) = D(t)) andM, h |=
∀xp(x) ∨ q(a). Therefore M, h |= ∀xp(x) ∨ q(a).
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Consequently, M |= ∀x(p(x) ∨ q(a)) → (∀xp(x) ∨ q(a)) and therefore |=QHTs

∀x(p(x) ∨ q(a))→ (∀xp(x) ∨ q(a)). 2

3.3 Independence from the language

If M = 〈(Dh, Dt, σ), H, T 〉 is a QHT-L′-structure and L ⊂ L′, we denote by
M↾L to the restriction of M to the sublanguage L:

M↾L = 〈(Dh, Dt, σ↾L), H↾L, T ↾L〉

Theorem 2 Let Π be a theory in L andM a QHT-L′-model of Π. ThenM↾L
is a QHT-L-model.

Theorem 3 Let ϕ ∈ L and L′ ⊃ L. Then ϕ is valid (respt. satisfiable) in
QHTL if and only if is valid (respt. satisfiable) in QHTL′ .

Corollary 4 Π1 and Π2 are equivalent in QHTL if and only if they are equiv-
alent in QHTL′ .

We have the same results for QHTs.

3.4 Relation to the work of [26]

In [26] quantified here-and-there logic was intruduced using a smaller class of
structures: first, we take a set C′ such that C ⊂ C′ and C′

r C is infinite and
denumerable; the domain is D = T(C′, F ). It is clear that TD(C,F ) = D. So
the structures used in [26] are just 〈(D, id), H, T 〉.3 In this section, we are going
to prove that both semantics are equivalent.

Definition 5 For a HT s-L-structureM the set Th(M) is defined as follows:

Th(M) = {ϕ ∈ L and sentence | M |= ϕ}

Two HT s-L-structuresM1 andM2 are said (elementary) equivalent if Th(M1) =
Th(M2), and it is denoted by M1 ≡M2.

Theorem 6 For every HT s-L-structure M = 〈(D,σ), H, T 〉 there exists an-
other HT s-L-structure, M′ = 〈(D′, id), H ′, T ′〉, such that M≡M′.

Proof: We can assume that C ∩D = ∅ and D is infinite and denumerable. The
new domain is defined as follows: C′ = C ∪D, D′ = T(C′, F ). The set of atoms
H ′ is defined as follows: H ′ =

⋃
n∈N

Hn, where H0 = H and

Hi+i =
⋃

p(...,d,... )∈Hi

î+1

Ar(p)≥i+1

{p(. . . , t, . . . ) : σ(t) = d}

3The notation used in [26] is slightly different, it has been adapted to the nomenclature of
the present work.
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T ′ is defined in the same way. Now we must prove that M |= ϕ if and only
if M′ |= ϕ; this is a consequence of the property: M, w |= ϕ if and only if
M′, w |= ϕ for every w and this is easy to prove by induction over ϕ.2

Corollary 7 The semantics for QHT s introduced here is equivalent to the se-
mantics in [26] in the following sense: validity and satisfiability agree and ad-
ditionally if Γ is elementary representable in one logic it is also elementary
representable in the other.

4 Axioms for QHT

In this section we prove that the following axioms, when added to the intuition-
istic calculus, characterise the logic QHT.

FOHT ∀x¬¬α(x) → ∃x(α(x) → ∀xα(x))

We will denote by ⊢QHT to the inference relation of Int ∪ {HOS,FOHT }.
The axiom FOHT is weaker than the Double Negation Shift axiom

DNS ∀x¬¬α(x) → ¬¬∀xα(x)

which characterises the class of intuitionisic models such that, for each world w,
there exists an w′ ≥ w which is maximal [5]. This of course holds in the case of
QHT:

⊢Int ∀x¬¬α(x) → ∃x(α(x)→ ∀xα(x))

⊢Int ∀x¬¬α(x) → ∃x(¬¬α(x) → ¬¬∀xα(x))

⊢Int ∀x¬¬α(x) → (∀x¬¬α(x) → ¬¬∀xα(x))

⊢Int ∀x¬¬α(x) → ¬¬∀xα(x)

Recently, Skvortsov in [28] has studied a parametrized family of intemediate
logics, including QHT and has provided axiomatisation for them. Additionally,
we are going to prove that if the following axiom is added to the previous system,
then we obtain a complete axiomatic for QHTs:

CD ¬¬∃xα(x) → ∃x¬¬α(x)

Görnemann proved in [8] that the axiom

CD’ ∀x(α(x) ∨ β)→ (∀xα(x) ∨ β)

characterises the Kripke models whose domain is a constant map, and thus
it can replace to CD in our system. We will denote by ⊢QHTs the inference
relation of Int ∪ {HOS,FOHT,CD}.

Lemma 8 The formula FOHT is valid in QHT and QHTs, and CD is valid
in QHTs.
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Theorem 9 (Soundness) If Γ ⊢QHT α then Γ |=QHT α. If Γ ⊢QHTs α then
Γ |=QHTs α.

To prove the completeness of the systems, we will follow the Henkin method
for intuitionistic logic. For this reason some details are omitted but they can be
found, for instance, in [30].

Lemma 10 If Γ is a set of formulas and ϕ is another formula such that Γ 6⊢QHT

ϕ, then there exists a theory Γh in an extension of the language, 〈Dh, F, P 〉,
C ⊂ Dh, such that Γ ⊂ Γh, Γh 6⊢QHT ϕ, Γh is closed for ⊢QHT, and it is
prime, that is, it verifies the following properties: if α ∨ β ∈ Γh, then either
α ∈ Γh or β ∈ Γh; and if ∃xα(x) ∈ Γh, then α(d) ∈ Γh for some d ∈ Dh.

For ⊢QHTs we have the same property: if Γ 6⊢QHTs ϕ, then there exists
a theory Γs

h in an extension of the language, 〈Dh, F, P 〉, C ⊂ Dh, such that
Γ ⊂ Γh, Γh 6⊢QHTs ϕ, Γh is closed for ⊢QHT, and it is prime.

The theories Γh y Γs
h allow us to construct the here part of the (counter)-

model. To define the there-part, we need a second extension and it depends of
the axiomatic system. For the static version, the language is not extended.

Lemma 11 Let us consider a set of formulas Γ, other formula ϕ and the ex-
tension Γs

h defined in the previous lemma. We consider also the theory Γs
t that

is maximally consistent and it is closed for ⊢QHTs (it exists by the Lindenbaum
lemma). Then, Γs

t is a Henkin theory, that is, for every formula ∃xα(x) in the
language, there exists c ∈ Dh such that ∃xα(x)→ α(c) ∈ Γs

t .

Proof. We firstly prove the following property: if Γs
t ⊢ α, then Γs

h ⊢ ¬¬α. If
Γs

t ⊢ α, then Γs
t 6⊢ ¬α and Γs

h 6⊢ ¬α; thus Γs
h ⊢ ¬¬α, because ¬α ∨ ¬¬α is valid

en HT and Γs
h is prime.

To prove the Henkin property we considerer three cases:

1. If Γs
h ⊢ ∃xα(x), then Γs

h ⊢ α(c) and Γs
h ⊢ ∃xα(x) → α(c) and therefore

Γs
t ⊢ ∃xα(x)→ α(c).

2. If Γs
t 6⊢ ∃xα(x), then Γs

t ⊢ ¬∃xα(x) and:

Γs
t ⊢ ¬∃xα(x)

⊢ ¬∃xα(x) → ∀x¬α(x) (Int)

Γs
t ⊢ ∀x¬α(x)

Γs
h ⊢ ¬¬∀x¬α(x)

Γs
h ⊢ ¬α(c)→ ∀x¬α(x)

Γs
t ⊢ ¬α(c)→ ∀x¬α(x)

Γs
t ⊢ ¬∀x¬α(x) → ¬¬α(c)

Γs
t ⊢ ∃xα(x)→ α(c)

The last line is consequence of the maximality consistency of Γs
t .
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3. If Γs
h 6⊢ ∃xα(x) and Γs

t ⊢ ∃xα(x), then Γs
h ⊢ ¬¬∃xα(x) and:

Γs
h ⊢ ¬¬∃xα(x)

⊢ ¬¬∃xα(x) → ∃x¬¬α(x) CD

Γs
h ⊢ ∃x¬¬α(x)

Γs
h ⊢ ¬¬α(c)

Γs
t ⊢ α(c)

Γs
t ⊢ ∃xα(x)→ α(c) 2

However, to extend Γh to a Henkin theory with respect ⊢QHT, we need to
extend the language with new constants, as in classical logic.

Lemma 12 Let us consider a set of formulas Γ, other formula ϕ and the ex-
tension Γh defined before. Then there exists a theory Γs

t in an extension of
the language, 〈Dt, F, P 〉, C ⊂ Dh ⊂ Dt such that: it is closed for ⊢QHT, it is
maximally consistent and it is a Henkin theory.

We already can construct the models that we are going to use in the following
lemma. For the static case M = 〈(Dh, id), H, T 〉, where H and T are the sets
of ground atomic formulas in Γs

h and Γs
t respectively. For the non-static case,

M = 〈(Dh, Dt, id), H, T 〉, where H and T are the sets of ground atomic formulas
in Γh and Γt respectively. The following lemma and its proof is valid for both
axiomatic systems, because it only use HOS and DNS and the properties of
Henkin theories.

Lemma 13 For every formula ψ, in the initial language, and w ∈ {h, t},
M, w |= ψ iff Γw ⊢ ψ.

Proof. We prove the lemma by induction over ψ. By the definition of H and T
the result is obvious for atoms. Assume that the result is valid for any formula
with degree less than n and let ψ be a formula with degree n. For ψ = α ∧ β,
ψ = α ∨ β, ψ = ¬α and ψ = ∃xα(x) the proof is as for intuitionistic logic.
For ψ = α→ β:

• By the induction hypothesis, M, t |= α → β iff: if Γt ⊢ α, then Γt ⊢ β.
Thus: if Γt ⊢ α, then Γt ⊢ β and using the axiom β → (α → β) we
conclude that Γt ⊢ α → β; if Γt 6⊢ α, then Γt ⊢ ¬α (because Γt is
maximally consistent) and using the axiom ¬α → (α → β) we conclude
that Γt ⊢ α→ β. The converse is trivial.

• By the induction hypothesis, M, h |= α → β iff: ir Γh ⊢ α, then Γh ⊢ β
and if Γt ⊢ α, then Γt ⊢ β. We consider three cases: if Γh ⊢ α, then
Γh ⊢ β and using the axiom β → (α→ β) we conclude that Γh ⊢ α→ β;
if Γh ⊢ ¬α then with the axiom ¬α → (α → β) we conclude that Γh ⊢
α → β; finally, if Γh 6⊢ α and Γh 6⊢ ¬α, then Γh ⊢ ¬¬α, Γt ⊢ α, Γt ⊢ β,
Γt 6⊢ ¬β and Γh 6⊢ ¬β and so, using the Hosoi axiom, α∨ (¬β ∨ (α→ β)),
we conclude that Γh ⊢ α→ β. The converse is trivial.
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For ψ = ∀xα(x):

• With the axiom ∀xα(x) → α(s) and the hypothesis of induction it is
immediate that: if Γw ⊢ ∀xα(x) then M, w |= α(s) for all s ∈ T(Dw, F ).

• By the induction hypothesis, if M, t |= ∀xα(x) then Γt ⊢ α(s) for all
s ∈ T(Dt, F ); for Γt is a Henkin theory, ∃x¬α(x) → ¬α(c) ∈ Γt for
some c ∈ Dt thus, using classical equivalence, α(c) → ∀xα(x) ∈ Γt and
∀xα(x) ∈ Γt.

• By the induction hypothesis, if M, h |= ∀xα(x) then Γh ⊢ α(s) for all
s ∈ T(Dh, F ) and Γt ⊢ α(s) for all s ∈ T(Dt, F ). From the previous
item, Γt ⊢ ∀xα(x) and thus Γh 6⊢ ¬∀xα(x) (otherwise Γt ⊢ ¬∀xα(x)) and
Γh ⊢ ¬¬∀xα(x) (because ¬A ∨ ¬¬A is valid in HT and Γh is prime);

Γh ⊢ ¬¬∀xα(x)

⊢ ¬¬∀xα(x) → ∃x(α(x) → ∀xα(x)) FOHT

Γh ⊢ ∃x(α(x) → ∀xα(x))

Γh ⊢ α(c)→ ∀xα(x) (It is prime)

Γh ⊢ α(c)

Γh ⊢ ∀xα(x) 2

Theorem 14 (Completeness) If Γ |=QHT ϕ then Γ ⊢QHT ϕ. If Γ |=QHTs ϕ

then Γ ⊢QHTs ϕ.

Proof. The completeness follows inmediately from the previous lemma: M, h |=
ψ for every ψ ∈ Γ, for Γ ⊂ Γh, but M, h 6|= ϕ, for ϕ 6∈ Γh. 2

In fact, we have proved an stronger version of the completeness theorem:
the axiomatic systems are complete for models where the domains are extension
of the constants and the assignment σ is the identity. Therefore, the general
semantics introduced in this paper and that presented in[26] are equivalent with
respect to validity

The axioms given here for QHTs are somewhat simpler to work with than
those presented earlier in [26], We give an example to show how an obviously
valid statement can be derived from the axioms and inference rules.
Example: ¬∀xα(x) → ∃x¬α(x) is valid in QHTs. To see that it is also
a theorem, we will use the following well-known valid rules and theorems in
intuitionistic logic:

IR1 A→ B ⊢ ¬B → ¬A

IR2 A→ B,B → C ⊢ A→ C

IT1 A→ ¬¬A

IT2 ∃x¬¬¬A(x) → ∃x¬A(x)

11



Let c be a constant that does not occur in α(x)

1. ¬α(c)→ ∃x¬α(x) I12

2. ¬∃x¬α(x) → ¬¬α(c) IR1: 1

3. ¬∃x¬α(x) → ∀x¬¬α(x) ∀I:2

4. ∀x¬¬α(x) → ¬¬∀xα(x) DNS

5. ¬∃x¬α(x) → ¬¬∀xα(x) IR2: 3,4

6.¬¬¬∀xα(x) → ¬¬∃x¬α(x) IR1: 5

7. ¬∀xα(x)→ ¬¬¬∀xα(x) IT1

8. ¬∀xα(x)→ ¬¬∃x¬α(x) IR2: 7,6

9.¬¬∃x¬α(x) → ∃x¬¬¬α(x) CD

10. ¬∀xα(x)→ ∃x¬¬¬α(x) IR2: 8,9

11. ∃x¬¬¬α(x) → ∃x¬α(x) IT2

12. ¬∀xα(x) → ∃x¬α(x) IR2: 10,11

Ono proved in [20] that the system obtained by extending the intuitionis-
tic calculus with the axioms  LUK and CD’ is complete for QHTs. Another
complete calculus can be obtained with the axioms  LUK and

SQHT ∃x(α(x) → ∀xα(x)).4

4.1 Adding decidable equality

The completeness result is general, so we may assume that Γ contains the iden-
tity axioms. However, we cannot assume that the interpretation of the equality
symbol in the language is identity in the worlds. If the equality predicate is
interpreted with the condition for every w ∈ {h, t}

• M, w |= t1 = t2 iff σ(t1) = σ(t2) for every t1, t2 ∈ TD(C,F )

then we need to consider the axiom of “decidible equality” to obtain a complete
calculus4

DE ∀x∀y(x = y ∨ x 6= y).

Below we shall consider the result of adding to QHTs the usual axioms for
equality plus the condition DE and we denote the resulting logic by QHTs

=.

5 Quantified Equilibrium Logic

We turn now to the definition of quantified equilibrium logic. We will use as a
basis quantified here-and-there logic with static domains and decidable equality,

4This will be discussed in more detail in a forthcoming article with Vladimir Lifschitz.
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ie. QHTs
=. For theories without equality we use simply QHTs. We do not

exclude that for some kinds of reasoning problems the non-static variant of here-
and-there might also provide a suitable base logic. However, for the purpose
of obtaining a logical foundation for the answer set semantics for non-ground
programs it seems that QHTs or QHTs

= are fully adequate.
Let us mention some additional conditions that might be applied to QHTs

models for specific applications. By a universal theory we mean a theory that is
equivalent to a set of prenex formulas all of whose quantifiers are universal. In
[26] it was noted that any theory Π can be extended to an equivalent universal
theory by the addition of new (Skolem) functions and constants.

Let M = 〈(D,σ), H, T 〉 be a model of a universal theory Π. We say that:

• M is a PNA-model (parameter names assumption model) if the restriction
of σ to terms is surjective.

• M is a UNA-model (unique names assumption model) if the restriction
of σ to terms is injective.

• M is a SNA-model (standard names assumption model) if the restriction
of σ to terms a bijection.

For general theories, we can apply the same notions considering the interpre-
tation in the extended language obtained by skolemization. So, when applying
equilibrium logic we can make use these restrictions, when appropriate, depend-
ing on the intended application.

Definition 15 In the collection of QHTs
=-L-structures we define the order �

as follows: 〈(D,σ), H, T 〉 � 〈(D′, σ′), H ′, T ′〉 if D = D′, σ = σ′, T = T ′ and
H ⊆ H ′.

Definition 16 Let Π be a set of sentences and M a model of Π.

1. M = 〈(D,σ), H, T 〉 is said to be total if H = T .

2. M is said to be an equilibrium model of Π if it is minimal under � among
models of Π, and it is total.

Theorem 17 Let Π be a theory in L and M an equilibrium model of Π in L′

for some L′ ⊃ L. Then M↾L is an equilibrium model of Π in L.

Quantified equilibrium logic (QEL) is the (non-monotonic) logic determined by
truth in all equilibrium models. We now consider some important properties of
QEL starting with its relation to non-ground answer set programs.

5.1 Relation to answer set programming

We consider here function-free first-order languages L = 〈C,P 〉 without equal-
ity and we treat non-ground disjunctive logic programs with (default) negation
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allowed in rule heads and bodies under the answer set semantics [17]. Syntacti-
cally, a program Π consist of sets of rules r of the form

a1 ∨ . . . ∨ ak ∨ ¬ak+1 ∨ . . . ∨ ¬al ← b1, . . . , bm,¬bm+1, . . . ,¬bn (1)

where the ai (i ∈ {1, . . . , l}) and bj (j ∈ {1, . . . , n}) are atoms, called head
(body, respectively) atoms of r, in L = 〈C,P 〉. By CΠ ⊆ C we denote the
constants appearing in Π. Note that negation in rule heads is an extension of
the original answer set semantics. A rule with k = l and m = n is called positive.
Rules where each variable appears in at least one positive body atom are called
safe; a program is safe if all its rules are safe. We shall treat rules of form (1)
as ordinary logical formulas in L of the form:

b1 ∧ . . . ∧ bm ∧ ¬bm+1 . . . ∧ ¬bn → a1 ∨ . . . ∨ ak ∨ ¬ak+1 ∨ . . . ∨ ¬al (2)

Answer set semantics in its usual form is defined via classical interpretations
and the concept of program reduct. Given a language L = 〈C,P 〉, a (classical)
L-structure consists of a pair I = 〈U, I〉, where U = (D,σ) is the universe
consisting of a non-empty domain D and a function σ which assigns a domain
value to each element of C ∪ D, ie σ : C ∪ D → D such that σ(d) = d for all
d ∈ D. Given a universe (D,σ) we apply the terms PNA, UNA and SNA as
in the previous subsection. An L-interpretation I over D is defined as a subset
of AtD(C,P ). The satisfaction of a formula ϕ in an interpretation I is defined
in the usual way and denoted by I |= ϕ. We can define a subset relation for
L-structures I1 = 〈(D,σ1), I1〉 and I2 = 〈(D,σ2), I2〉 over the same domain
by setting I1 ⊆ I2 if I1 ⊆ I2.5 When defining answer sets we refer to subset
minimality of models understood as minimality wrt ⊆ among all models over
the same domain.

We now define the concept of the grounding of a program Π wrt to a universe:

Definition 18 The grounding grU (Π) of Π wrt to a universe U – sometimes
called pre-interpretation – denotes the set of all rules obtained as follows: For
r ∈ Π, replace (i) each constant c appearing in r with σ(c) and (ii) each variable
with some element in D.

Observe that thus grU (Π) is a ground program over the atoms in AtD(∅, P ).
For a ground program Π and first-order structure I, the reduct ΠI consists

of all rules
a1 ∨ a2 ∨ . . . ∨ ak ← b1, . . . , bm

obtained from rules of the form (1) in Π such that I |= ai for all k < i ≤ l and
I 6|= bj for all m < j ≤ n.

Answer set semantics is usually defined in terms of Herbrand structures over
L = 〈C,P 〉. Herbrand structures have a fixed universe, the so-called Herbrand
universe H = (C, id), where id is the identity function. For a Herbrand structure

5Note that this is not the substructure or submodel relation in classical model theory,
which holds between a structure and its restriction to a subdomain.

14



I = 〈H, I〉, I can be viewed as a subset of the Herbrand base, HB, which consists
of the ground atoms of L = 〈C,P 〉. Note that by definition of H, Herbrand
structures are SNA-structures.

Definition 19 Let Π be a logic program over L.6 An Herbrand structure I is
called an answer set of Π if I is subset minimal among the structures satisfying
all rules in grH(Π)I .

A variation of this semantics, the open answer set semantics, considers open
domains [11], thereby relaxing the PNA:7 An extended Herbrand structure is a
first-order structure based on a universe U = (D, id), where D ⊇ C. Note that
since the assignment is the identity function, the UNA applies.

Definition 20 An extended Herbrand structure I = 〈U, I〉 is called an open
answer set of Π if I is subset minimal among the structures satisfying all rules
in grU (Π)I .

The next variant of answer set semantics we discuss here, introduced by
Heymans et al. [12], relaxes the UNA, ie. arbitrary first-order L-structures are
allowed:

Definition 21 A first-order L-structure I = 〈U, I〉 is called a generalised open
answer set of Π if I is subset minimal among the structures satisfying all rules
in grU (Π)I .

We now relate the different notions of answer set to equilibrium models. First
we recall the basic property of equilibrium models for propositional theories. In
the propositional case we represent here-and-there models as pairs 〈H,T 〉 of sets
of atoms with H ⊆ T . The ordering � among models is defined as above where
now only the setsH and T are considered. Equilibrium models of a propositional
theory Π are then total models (ie. where H = T ) that are �-minimal among
HT-models of Π [21].

Proposition 22 [21] Let Π be a ground logic program. A total model 〈T, T 〉 is
an equilibrium model of Π iff T is an answer set of Π.

We return now to the first-order case. When we interpret non-ground logic
programs in QHTs or QHTs

= we assume that all program rules of form (2) are
universally quantified wrt to the variables appearing in them. In other words
we treat the universal closure of the program. The following is adapted from
[26].

Lemma 23 [26] Let Π be a logic program over L = 〈C,P 〉. Then a QHTs-
L-structure 〈U,H, T 〉 is a model of the univesral closure of Π iff 〈H,T 〉 is a
propositional QHT model of grU (Π).

6We assume here that all constants of L appear in Π, ie CΠ = C.
7Here and in the next two definitions we follow the terminology of [2].
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This gives us immediately the following proposition, also a slight adaption of a
theorem of [26].

Proposition 24 Let Π be a logic program over L = (C,P ). Let 〈U, T, T 〉 be a
total QHTs-model of the universal closure of Π. Then 〈U, T, T 〉 is an equilib-
rium model of Π iff 〈T, T 〉 is a propositional equilibrium model of grU (Π).

The relations to answer sets are now straightforward.

Proposition 25 Let Π be a logic program over L = 〈C,P 〉. A total Herbrand
model 〈U, T, T 〉 of the universal closure of Π is an equilibrium model of Π iff T

is an answer set of Π.

Proof. Immediate from Definition 19 and Proposition 22. 2

And from Proposition 24 we obtain:

Corollary 26 Let Π be a logic program. A total QHTs
=-model 〈U, T, T 〉 of Π

is an equilibrium model of Π iff 〈U, T 〉 is a generalised open answer set of Π.

Proof. We note first that in the definition of (generalised) open answer set
[11, 12] equality is interpreted as in the manner of Section 4.1 above, so we can
apply static here-and-there with decidable equality. Now consider Definition 21.
Evidently if 〈U, T 〉 is a generalised open answer set of Π, then T is a propositional
answer set of grU (Π). By Propositions 22 and 24 it follows that 〈U, T, T 〉 is an
equilibrium model of Π. The converse direction is similar. 2

Corollary 27 Suppose the unique name assumption holds, so that all QHTs
=-

structures and equilibrium models are UNA-structures. Let Π be a logic program.
A total QHTs

=-model 〈U, T, T 〉 of Π is an equilibrium model of Π iff 〈U, T 〉 is
an open answer set of Π.

Proof. Similar to Corollary 26 except that we apply the UNA. 2

The assumptions of Corollary 27 correspond to the version of equilibrium
logic presented in [26].

5.2 Strong equivalence

The concept of strong equivalence for logic programs under answer set semantics
and propositional theories in equilibrium logic was investigated in [16]. Subse-
quently, the study of strong equivalence and its variants has become a popular
theme in ASP. Since strongly equivalent programs are inter-substitutable in all
contexts, the concept is relevant for program optimisation and modularity.

Let Π1 and Π2 be two theories in L. They are said to be equivalent if they
have they have the same equilibrium models and strongly equivalent if for every
theory Π in L′, with L′ ⊇ L, Π1 ∪ Π and Π2 ∪ Π have the same equilibrium
models.

Theorem 28 Let Π1 and Π2 be two theories (resp. theories with equality) in L.
They are strongly equivalent if and only if they are equivalent in QHTs (resp.
QHTs

=).
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Proof: With respect to QHTs (resp. QHTs
=), if Π1 and Π2 are equivalent in

L then they are equivalent in L′ and thus Π1 ∪Π and Π2 ∪Π are equivalent.
Let us assume that Π1 ∪Π and Π2∪Π have the same equilibrium models for

every theory Π in L′ with L′ ⊇ L. Suppose thatM = 〈(D,σ), H, T 〉 is a model
of Π1 which is not a model of Π2 and let us considerM′ = 〈(D,σ), T, T 〉.

1. If M′ is not a model of Π2 it cannot be model of Π2 ∪ T but this is
impossible because M′ is clearly an equilibrium model of Π1 ∪ T .

2. If M′ is a model of Π2 we take:

Π = H ∪ {α→ β : α, β ∈ T rH,α 6= β}

Trivially, M′ is a model of Π2 ∪Π; moreover, it is an equilibrium model:
if 〈(D,σ), J, T 〉 |= Π2 ∪Π with J ⊂ T , then H ⊂ J ; if we take α ∈ J rH

and β ∈ T r J , then α → β ∈ Π; but 〈(D,σ), J, T 〉 6|= α → β, which is
contradictory with 〈(D,σ), J, T 〉 |= Π2 ∪ Π. But in this case we obtain
a contradiction, because M′ is not an equilibrium model of Π1 ∪ Π, for
M�M′ and M |= Π1 ∪Π.

5.2.1 Strong equivalence for logic programs

We note first that if Π1 and Π2 are logic programs that are not strongly equiv-
alent, the proof of Theorem 28 shows that there exists a set of program rules
Π (of a simple form) such that Π1 ∪ Π and Π2 ∪ Π have different equilibrium
models. Since by Proposition 21 equilibrium models coincide with generalised
open answer sets, our definition and characterisation of strong equivalence, when
applied to logic programs, captures the following notion of strong equivalence:
two programs Π1 and Π2 are strongly equivalent iff Π1 ∪Π and Π2 ∪Π have the
same generalised open answer sets, for any set of program rules Π.

Now it turns out that for logic programs without equality, if we replace
generalised open answer sets by open answer sets, we capture precisely the
same concept of strong equivalence.

Proposition 29 Two logic programs Π1 and Π2 without equality over language
L are strongly equivalent wrt open answer sets iff they are strongly equivalent
wrt generalised open answer sets. Logical equivalence in QHTs captures both
notions.8

Proof. Evidently if Π1 and Π2 have the same QHT s-models they are strongly
equivalent wrt either concept of answer set. Suppose that Π1∪Π and Π2∪Π have
the same open answer sets for every theory Π in L′ with L′ ⊇ L. By Proposition
27 they have the same equilibrium models under the unique name assumption,
UNA. As in the proof of Theorem 28 suppose that M = 〈(D,σ), H, T 〉 is a
model of Π1 which is not a model of Π2. By Theorem 6 there is an equivalent

8The reason for the restriction to programs without equality lies in our use of Theorem 6,
which does not hold for the decidable version of equality.
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model N = 〈(D′, σ′), H ′, T ′〉 where σ′ = id. Clearly the restriction of σ′ to L-
terms is an injection, so N is a UNA model. Now N is not a model of Π2 and we
continue as in the proof of Theorem 28 by considering N ′ = 〈(D′, σ′), T ′, T ′〉. In
the remainder of the proof we need only refer to models with the same universe
(D′, σ′), so we work entirely under the UNA assumption, showing that if Π1 and
Π2 are not QHT s equivalent they are not strongly equivalent wrt open answer
sets. 2

Strong equivalence for non-ground programs has also been defined and stud-
ied in [18, 3]. In the case of [3] the concept is similar to the one presented
here except that the equivalence is with respect to ordinary answer sets rather
than open answer sets and equality is not explicitly treated. In general the
two concepts are different since not every open answer set need be an answer
set. However for the safe programs studied exclusively in [3], ordinary and open
answer sets do coincide, as shown for example in Proposition 3 of [2]. So we
obtain:

Corollary 30 Consider only safe rules and programs. Then Π1 and Π2 are
strongly equivalent in the sense of [3] if and only if they are equivalent in the
logic QHTs.

Proof. Suppose that Π1 and Π2 are safe programs. Clearly, if they are QHTs-
equivalent they are strongly equivalent. If they are not QHTs-equivalent we
construct a set of rules Π as in the proof of Proposition 29. Since these rules are
ground (in an expanded language) they are trivially safe. Therefore Π1 ∪Π and
Π2 ∪ Π are safe programs whose open answer sets coincide with their answer
sets. So by Proposition 29 Π1 and Π2 are not strongly equivalent in the sense
of [3]. 2

6 Adding Strong Negation

The logic obtained adding a new connective, ∼, called strong negation and
the following axioms to intuitionistic logic is known as Nelson’s logic and it is
denoted by N:

N1 ∼(α→ β)↔ α ∧ ∼β

N2 ∼(α ∧ β)↔ ∼α ∨ ∼β

N3 ∼(α ∨ β)↔ ∼α ∧ ∼β

N4 ∼¬α↔ α

N5 ∼∼α↔ α

N6 ∼∃xα↔ ∀x∼α

N7 ∼∀xα↔ ∃x∼α

N8 ∼α→ ¬α, for atomic α
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This system is taken from the calculus of Vorob’ev [31, 32] and actually, the
axiom N8 is valid for every formula α and not only for atoms. If α is deduced
from a set of formulas Γ in this system, we write Γ ⊢N α. There are other
equivalent systems; for instance, the axiom N8 can be replaced by the following
one:

α→ (∼α→ β)

To extend the Kripke semantics for this logic, the idea is to take the usual
Kripke models for intuitionistic logic but to allow for sentences to be not only
constructively verified at possible worlds or stages of the model, but also con-
structively falsified (equivalently their strong negations are verified). First we
need to introduce the notion of literal: a literal in the propositional language is
either a propositional variable or the strong negation of a propositional variable
and a ground literal in the first order language is either a ground atomic formula
or the strong negation of a ground atomic formula. We denote by LitD(C,F, P )
the set of ground literals in the language 〈C ∪D,F, P 〉. If L is an atom, we say
that ∼L is the contrary of L and vice versa.

In the Nelson logic, a structure M is a tuple

I = 〈(W,≤), ({Dw}w∈W , σ), {Iw}w∈W 〉

with the same conditions as in intuitionistic logic but, in this case, for every
w ∈ W , Iw ⊆ LitDw

(∅,∅, P ) and Iw ⊆ Iw′ if w ≤ w′. The satisfiability relation
is extended to the formulas with strong negation as follows:

• M, ω |= ∼(ϕ ∧ ψ) iff M, ω |= ∼ϕ or M, ω |= ∼ψ.

• M, ω |= ∼(ϕ ∨ ψ) iff M, ω |= ∼ϕ and M, ω |= ∼ψ.

• M, ω |= ∼(ϕ→ ψ) iff M, ω |= ϕ and M, ω |= ∼ψ.

• M, ω |= ∼¬ψ iff M, ω |= ϕ.

• M, ω |= ∼∼ψ iff M, ω |= ϕ.

• M, ω |= ∼∀xϕ(x) iff M, ω |= ∼α(t) for some t ∈ T(D(ω),F).

• M, ω |= ∼∃xϕ(x) iff M, ω′ |= ∼α(t) for every ω′ ≥ ω and every t ∈
T(D(ω′),F),

If the axioms N1-N8 are added to the the system QHT we obtain quantified
here-and-there logic with strong negation and non-static domains, denoted by
QN5. The structures for this logics are tuples I = 〈(Dh, Dt, σ), Ih, It〉 where
Ih ⊆ LitDh

(C,F, P ), It ⊆ LitDt
(C,F, P ) and Ih ⊆ It.

Finally, if the axioms N1-N8 are added to the system QHTs we obtain
quantified here-and-there logic with strong negation and static domains, denoted
by QNs

5. The structures for this logics are tuples I = 〈(D,σ), Ih, It〉 where
Ih ⊆ It ⊆ LitD(C,F, P ).

The soundness of the axiomatic systems for QN5 and QNs
5 is straighforward

and completeness is proved using the method of Vorov’eb and Gurevich in [9]
which we recall in the following lemma.
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Lemma 31 Assume that ϕ is in negation-normal form (ie where strong nega-
tion is driven-in to stand directly before atoms) and its predicate symbols are
among P1, . . . , Pk; let Q1, . . . , Qk be other different predicate symbols such that
Pi and Qi have the same arity for every i. We define the formulas Φ and
τ(ϕ) as follows: Φ =

∧n

i=1 ∀~x(Qi(~x)→ ¬Pi(~x)); τ(ϕ) is the result of uniformly
replacing each ocurrence of ∼Pi in ϕ by Qi. Then

1. If ⊢QHT Φ→ τ(ϕ), then ⊢QN5
ϕ.

2. Conversely, if ⊢QN5
ϕ and P1, . . . , Pk are the predicate symbols in the

proof, then ⊢QHT Φ→ τ(ϕ).

The proof follows step by step the proof of the corresponding result in [9]. From
the lemma and the completeness of QHT the completeness of QN5 follows
straighforwardly.

Theorem 32 (Soundness and Completeness)
Γ |=QN5

α iff Γ ⊢QN5
α.

Γ |=QNs

5
α iff Γ ⊢QNs

5
α.

We obtain a strong negation extension of quantified equilibrium logic by
applying the usual equilibrium construction to QNs

5-models. This version, with
the appropriate restrictions, captures the various concepts of answer set for non-
ground programs when the second, strong negation is present in the language.
The results on strong equivalence extend accordingly.

7 Conclusions

We have presented a new axiomatisation of the first order logic of here-and-there,
for non-static and static domains. Based on the latter we defined quantified
equilibrium logic QEL without the unique names assumption, UNA. We showed
that in this version equilibrium logic captures the semantics of generalised open
answer sets for non-ground logic programs due to [12], while the earlier version
of QEL with UNA presented in [26] captures the open answer sets of [11].

We gave a definition of strong equivalence for theories in QEL and showed
that this coincides with logical equivalence in QHTs (resp. QHTs

=). Moreover
we could infer that where equality is not present this characterisation continues
to hold for the strong equivalence of logic programs wrt open answer sets and,
in the case of safe programs and rules, wrt ordinary answer sets, precisely the
concept considered in [3].
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