
Computational Netlib experience with a

dense projected gradient sagitta method

Ángel Santos-Palomo a,∗ Pablo Guerrero-Garćıa a

aDepartment of Applied Mathematics, University of Málaga, 29071 Málaga, Spain

Abstract

Computational results obtained when solving a subset of Netlib problems by us-
ing a dense projected gradient implementation of the non-simplex active-set sagitta
method presented in [12] are summarized. Two different addition rules for its initial
phase are considered and, for each problem solved, two corresponding graphs are
reported to illustrate the variations of the objective value along the active-set path.
The comparison of our code for the sagitta method versus Matlab code linprog
shows that this sagitta method outperforms the simplex method in number of iter-
ations and reliability and can be competitive in overall speed.

Key words: linear programming, non-simplex active-set method, projected
gradient
1991 MSC: 90C05, 65K05

1 Preliminaries

Let us consider the usual unsymmetric primal-dual pair of linear programs
using a non-standard notation (we have deliberately exchanged the usual roles
of b and c, x and y, n and m, and (P) and (D), as in e.g. [9, §2]):

(P) min �(x)
.
= cT x , x ∈ R

n

s.t. ATx ≥ b
(D) max L(y)

.
= bT y , y ∈ R

m

s.t. Ay = c , y ≥ 0

∗ Corresponding author.
Email addresses: santos@ctima.uma.es (Ángel Santos-Palomo),

pablito@ctima.uma.es (Pablo Guerrero-Garćıa).
URL: http://www.satd.uma.es/matap/personal/pablito/ (Pablo

Guerrero-Garćıa).

Preprint submitted to Optimization Online 14 September 2005

where A ∈ R
n×m with m ≥ n. The condition c �= 0 is added. (In this work the

dimension of the null vector 0 depends on the context, and ‖ · ‖ denotes the
euclidean vector norm.)

The original sagitta method (see [12,15] and also [6]) is a non-simplex active-
set method that starts without any iteration point, selects successive foreac-
tive or active sets (in [12] the foreactive-set term is used because initially the
constraints in this set do not have to be active constraints) and, as long as
possible, computes corresponding null-space descent directions, because the
method attempts to find a direction of the primal feasible region (see defi-
nition in [9, p. 48] or in [5, p. 82]). An iteration point is computed if, for
the current active set, there is not a corresponding null-space descent direc-
tion. Then, while violated constraints exist, a primal-feasibility search loop is
carried out. When suitable strategies are used, the first primal feasible point
obtained by the method is generally an optimal solution; but, if it does not
occur, the process restarts. The method convergence is not theoretically guar-
anteed and it is not possible to rule out the cycling possibility. We point out
that modifications of the sagitta method with guaranteed convergence under
nondegeneracy assumption have been recently presented in [16,18].

In our opinion, the original sagitta method has some features which would en-
tail a revision of some old topics with regard to non-simplex active-set meth-
ods. Thus:

• It works with active-set techniques and, if A is the foreactive or active
set, then | A |< n for a large percentage of the iterative process (unlike
simplex-type methods for which always | A |= n); it even can end up with
a non-square optimal solution, i.e. with | A∗ |< n for A∗ being a subset of
the set A(x∗) of active constraints at an optimal solution x∗ for the primal
P.

• Using a global viewpoint in an unusual initial phase, it starts without any
iteration point and attempts to find a descent direction of the primal feasible
region or, alternatively, a solution of the system Ay = c.

• Once a —generally non-square and sometimes infeasible— solution of Ay =
c is obtained, the search of primal feasibility is triggered even if dual feasi-
bility has not been achieved yet (unlike two-phase (simplex or non-simplex)
active-set methods). Whereas dual feasibility is maintained once achieved, it
does not occur so with primal feasibility. (Accurately speaking, the method
carries out a simultaneous search of optimality and feasibility because it
assembles primal and dual feasibility searchs.)

• It works with the original linear program thorought the whole process,
with no artificial variables in contrast to usual two-phase (simplex or non-
simplex) active-set methods.

As we detail in [17], the sagitta methods can be implemented, using projected-

2

gradient techniques. Then, if the subscript j denotes the iteration counter and
P1 = I for I being the identity matrix, the null-space descent direction used
in the initial phase of the method is

d(j) = Pj(−c), (1)

where
Pj = I − AA(AT

AAA)−1AT
A = I − AAA†

A
is the orthogonal projector onto the null-space of AT

A and A†
A is the Moore-

Penrose pseudoinverse of AA, with the active-set matrix AA of full column
rank. This null-space descent direction (1) is a steepest-descent direction [4,
pp. 377–378]. When the active-set matrix AA is such that d(j) = 0, the system
AAμ = c is compatible and it is possible to compute a dual point y(j), and
also a primal point

x(j) = AA(AT
AAA)−1bA = (A†

A)T bA, (2)

for bA being the subvector of b corresponding to the indices in the current
active-set. This point x(j) is the minimum-norm solution of the underdeter-
mined system AT

Ax = bA.

Update formulae for the current primal and dual points and current steepest-
descent direction are used in our dense implementation of the original sagitta
method (see [17]). This implementation is based on the QR factorization of the
matrix AA, using the classical Gram-Schmidt method with reorthogonalization
[1, §2.4]. Details and computational considerations of practical interest are
included in [17].

The aim of this paper is to summarize the computational results obtained
when solving a subset of Netlib problems by using the aforementioned dense
implementation of the original sagitta method. This problem subset —limited
in accordance with the capabilities of the system used to obtain the compu-
tational results— is selected to test the sagitta method on small and medium
practical instances. The viability of a sparse implementation of the original
sagitta method on top of the static data structure of a Cholesky factor of
P T ATAP , where P is a permutation matrix determined for P TATAP to have
a Cholesky factor as sparse as possible, was established in [6,14]. Details and
computational results using this sparse implementation are also included in
[6,7,17].

The paper is organized as follows. In section 2 we give details of our com-
putational experience, whereas the computational results are summarized in
section 3. The comparison of computational results obtained using the same
sagitta method but with different addition rule at start in its initial phase

3

is carried out in section 4 and final remarks are included in section 5. Addi-
tional tables of numerical results and illustrative graphs are furnished in the
appendix.

2 Details of our computational experience

Theoretical and practical issues of our dense implementation of the sagitta
method are detailed in [17]. Based on them, in this section we state precise
details of our computational experience.

A) Index sets: The foreactive or active set Aj and its complement set are
implemented as unsorted vectors of indices in our dense implementation of the
sagitta method. A constraint index is always added on the right and, then,
ties are solved by selecting the leftmost from amongst the tied elements, in
accordance with the order maintained in both sets.

B) Addition strategy in the initial phase: The strategy used to add
constraints to the current foreactive set is crucial for the behaviour of the initial
phase of the sagitta method (see [17]). The practical index set of contrary
constraints to the current descent direction is C = { i /∈ Aj | aT

i d(j) < −εc },
for εc = 1.06nε and ε ≈ 2.22 × 10−16 being the machine epsilon. We have
considered in this computational experience the following two plain addition
strategies:

• Addition strategy A (Most-Obtuse-Angle Rule).- A most contrary con-
straint to the current null-space descent direction d(j), that is to say,

p = arg min
i∈C

{
aT

i d(j)

‖ ai ‖
}

.

• Addition strategy B (Corrected Sagitta Rule).- Amongst the contrary
constraints to the current null-space descent direction d(j), a most contrary
to the “arrow” −c, that is to say,

p = arg min
i∈C

{−aT
i c

‖ ai ‖
}

;

but if cos(ap, d(j)) > −tol1, where tol1 = 0.01, then the most-obtuse-angle
rule is used to select a new constraint p again.

We note that ties are broken according to the order of the constraint indices
in C and that, when a restarting event occurs, the addition strategy A is the
only one used.

4

C) Dependency check: We determine that ap is in the range-space of AA
if the following inequality is satisfied,

‖ ap − AAηA ‖≤ εr(1+ ‖ ap ‖),
where ηA is the least-squares solution of the system AAη = ap and εr =

√
ε in

our computational experience.

D) Addition strategy in the primal-feasibility-search loop: We select
the incoming constraint by using the Brown–Koopmans rule, namely the nor-
malized version of the classical Dantzig or textbook rule,

p = arg min

{
ri(x

(j))

‖ ai ‖ | ri(x
(j)) < −εP , i /∈ Aj

}
,

where εP =
√

ε in our computational experience.

E) Min-ratio rule: An exchange occurs in the primal-feasibility-search loop if
ap is in the range-space of AA. In this case, the leaving constraint is selected by
using the min-ratio rule; but, in accordance with the practical considerations
detailed in [17], we use different primal iterations in the same loop depending
on the suitable implementation of this min–ratio. Let us denote with y(j) and
δ(j) the dual vectors whose elements are zeros barring those corresponding to
the respective solutions of the compatible systems AAμ = c and AAη = ap,

with S1=̇{i ∈ Aj | δ
(j)
i ≥ εD} and with VD=̇{i ∈ Aj | y

(j)
i < −εD}, where

εD =
√

ε in our computational experience. Thus, when S1 �= ∅:

• If dual feasibility is not achieved, i.e. VD �= ∅,

q = arg min

⎧⎨
⎩ y

(j)
i

δ
(j)
i

| i ∈ S1 if S2 = ∅, or i ∈ S2 if S2 �= ∅

⎫⎬
⎭

where S2=̇{i ∈ Aj | δ
(j)
i ≥ tol2} with tol2 = 0.001 in our computational

experience.
• Once dual feasibility is achieved, i.e. VD = ∅,

q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arg min

⎧⎨
⎩y

(j)
i

δ
(j)
i

| i ∈ S1

⎫⎬
⎭ if N = ∅

arg max
{
δ

(j)
i | i ∈ N

}
if N �= ∅ and max

{
δ

(j)
i | i ∈ N

}
> εD

arg min

⎧⎨
⎩y

(j)
i

δ
(j)
i

| i ∈ S1\N
⎫⎬
⎭ if N �= ∅ and max

{
δ

(j)
i | i ∈ N

}
≤ εD

where N =̇{i ∈ S1 | −εD ≤ y
(j)
i ≤ εD}.

F) Restarting: If the primal-feasibility-search loop ends because a primal
feasible point is reached but the optimality condition y ≥ 0 is not satisfied

5

by the associated dual point y(j), then the method restarts after deleting a
single constraint of the current active set Aj that is selected according to the
following plain deletion strategy:

q = Aj(k) = arg min
{

y
(j)
i | y

(j)
i < −εD, i ∈ Aj

}
.

Possibly, when a restarting event occurs, the steepest-descent direction (1) is
not null for several successive iterations and, then, the current dual point y(j)

cannot be computed because the corresponding system AAμ = c is incompat-
ible. However we have computed the objective value by using the minimum-
norm solution (2) of the current system AT

Ax = bA, and such value has been
used in the graphs of the objective function. Note that in its initial phase, at
start, the sagitta method does not compute neither primal or dual points, nor
objective value.

3 Computational results

As an illustrative sample of the performance of the sagitta method we summa-
rize the computational results obtained for the duals of 36 Netlib problems
[3] —the first 36 smallest problems in which neither BOUNDS nor RANGES
sections occur and with less than 10000 nonzeros— using the dense projected-
gradient implementation described in [17] and in accordance with the details
pointed out in the previous section.

All the test problems have been solved with our code without previous scaling
nor preprocessing; they have been read as linear programs in standard form
and then dualized to obtain a problem P [6, §5.3]. The computational results
were obtained with an Intel Pentium IV at 3.00 GHz with 512MB RAM, using
Matlab release 14 and interpreted code, at least with regard to our source
code.

We have compared our code against the Matlab code linprog of the Mat-
lab Optimization Toolbox release 3.0. This code linprog solves linear pro-
grams by using, in accordance with the documentation of the distributor, three
different options:

• Simplex-on option, where the code linprog uses the two-phase simplex
algorithm, with the same preprocessing steps as in the large-scale option.

• Medium-scale option, where the code linprog uses an active set pro-
jection method which is a variation of the well-known simplex method for
linear programming. The algorithm finds an initial feasible solution by first
solving another linear programming problem.

• Large-scale option, where the code linprog uses a primal-dual interior-

6

point method, based on (compiled) LIPSOL which is a variant of Mehrotra’s
predictor-corrector algorithm. A number of preprocessing steps occur before
the algorithm begins to iterate.

TABLE 1. Computational results when solving Netlib problems by using
Matlab code linprog with Simplex-on Option

Name n m Optimal value Iter Time MinRes
1 AFIRO 27 51 4.647531428571E+2 32 0.05 -5.6E-17
2 SC50B 50 78 7.000000000000E+1 48 0.09 -2.2E-16
3 SC50A 50 78 6.457507705856E+1 75 0.13 -5.6E-17
4 SC105 105 163 5.220206121171E+1 187 0.42 -1.1E-16
6 ADLITTLE 56 138 -2.254949631623E+5 205 0.61 -3.7E-10
7 SCAGR7 129 185 2.331389824331E+6 113 0.30 -2.5E-12
8 STOCFOR1 117 165 3.8296896695E+21(*) 0 0.16 -1.2E+20
9 BLEND 74 114 3.081214984583E+1 68 0.45 -3.6E-15

10 SC205 205 317 5.220206121171E+1 362 1.38 -2.5E-16
12 SHARE2B 96 162 4.157322407414E+2 198 0.53 -4.2E-14
14 LOTFI 153 366 2.526470606188E+1 1140 3.98 -3.3E-16
15 SHARE1B 117 253 7.733802172937E+4 338 1.63 -1.7E+01
17 SCORPION 388 466 -1.878124822738E+3 399 1.92 -3.1E+02
19 SCAGR25 471 671 1.475343306077E+7 1160 7.34 -1.2E-10
20 SCTAP1 300 660 -1.412250000000E+3 2930 19.97 -5.7E-14
22 BRANDY 220 303 -1.600244678227E+3 2915 15.48 -1.1E+03
23 ISRAEL 174 316 8.966448218630E+5 550 3.72 -4.8E-13
26 SCSD1 77 760 -8.666666674333E+0 291 4.17 -3.7E-09
28 AGG 488 615 3.1701910085E+10(‡) 0 60.25 -2.6E+01
29 BANDM 305 472 2.0347063101E+3(‡) 0 48.44 -9.6E+01
30 E226 223 472 -1.037028095E+1(‡) 0 48.47 -2.9E+01
31 SCFXM1 330 600 2.6713249014E+4(‡) 0 90.47 -3.3E+00
34 SCRS8 490 1275 -9.042969538008E+2 980 15.42 -2.3E-12
35 BEACONFD 173 295 -3.398085982900E+4 118 0.23 -2.4E+00
40 DEGEN2 444 757 1.435178000000E+3 3318 57.41 -5.3E-14
41 AGG2 516 758 2.816416170E+9(‡) 0 22.89 -7.8E+01
42 AGG3 516 758 9.9449537076E+19(*) 0 1.00 -1.7E+02
43 SCSD6 147 1350 -5.050000007714E+1 2669 65.92 -3.4E-09
44 SHIP04S 402 1506 -1.798714700445E+6 602 4.03 -1.9E-12
48 BNL1 643 1586 1.552547771E+0(‡) 0 33.98 -2.8E-01
50 SCFXM2 660 1200 6.9085787326E+4(‡) 0 117.34 -3.4E+00
53 FFFFF800 524 1028 -7.351927600E+18(†) 11 0.89 -1.0E+16
54 SHIP04L 402 2166 -1.793324537970E+6 887 6.48 -5.1E-12
55 SCTAP2 1090 2500 -1.724807142857E+3 3505 76.97 -2.1E-14
57 SHIP08S 778 2735 -1.920098210535E+6 977 13.72 -5.5E-12
59 SCFXM3 990 1800 6.9085787325E+4(‡) 0 154.66 -3.4E+00
Notes: (*) No feasible point was found. (†) Problem is unbounded.

(‡) Number of iterations exceeded in Phase 1; increase options. (MaxIter=10000)

However, a comparison of computational results using this large-scale option
would not be fair because our source code is interpreted. Moreover, it is well-
known [8, p. 10] that simplex methods outperform interior-point ones when
the problem is not large enough.

In tables below we use a first column labeled # to hold a number to recognize

7

each Netlib problem. This number was assigned to each Netlib problem by
Bixby in [2], according to the number of its nonzeros. The name, the number n
of variables and the number m of constraints of each Netlib problem solved
are also given in Table 1.

TABLE 2. Computational results when solving Netlib problems by using
Matlab code linprog with Medium-Scale Option

Optimal value Iter Time MinRes
1 4.647531428571E+2 36 0.45 -3.5E-15
2 7.000000000000E+1 48 0.16 -2.6E-14
3 6.457507705854E+1 49 0.13 -2.3E-13
4 5.220206121095E+1 153 1.17 -1.4E-11
6 -2.254869494679E+5 114 0.36 -1.5E-11
7 2.331389647646E+6 298 6.47 -2.8E-05
8 4.113197621944E+4 134 0.86 -5.7E-13
9 3.081214983612E+1 101 2.19 -8.6E-10

10 5.220206115002E+1 312 9.33 -9.6E-10
12 4.157322407411E+2 185 1.86 -3.2E-11
14 2.523476221909E+1 320 8.06 -2.3E-06
15 7.658931857919E+4 275 2.75 -5.7E-12
17 -1.878124822738E+3 394 64.45 -5.1E-12
19 -1.542545322695E+8 (†) 1124 665.66 -7.4E+04
20 -1.412250000000E+3 649 129.61 -3.8E-12
22 0.000000000000E+0 (‡) 273 6.84 0.0E+00
23 8.966579621649E+5 519 8.67 -2.1E-07
26 -8.666666674333E+0 126 2.09 -8.0E-15
28 3.599176728660E+7 678 231.91 -2.9E-10
29 -3.925389270571E+9 (†) 1378 349.36 -6.8E+08
30 5.589897323428E+0 (†) 557 109.08 -5.3E+00
31 -4.374337958081E+9 (†) 888 416.20 -2.0E+07
34 -9.042969538008E+2 956 2717.89 -2.0E-12
35 -3.359248580720E+4 270 9.00 -1.6E-14
40 1.206130292277E+3 (†) 941 1787.64 -1.5E+02
41 2.023925235569E+7 585 41.23 -1.7E-07
42 -1.031359656446E+7 606 79.13 -8.6E-02
43 -5.050000007714E+1 356 6.13 -1.1E-14
44 -1.798714700445E+6 639 337.00 -4.7E-11
48 -1.977629561541E+3 2985 10401.17 -9.8E-10
50 -1.499191537245E+15 (†) 2020 6812.83 -2.4E+12
53 -5.556795648331E+5 1894 4393.23 -6.7E-08
54 -1.793324537970E+6 763 676.67 -1.1E-11
55 -1.724807142857E+3 1160 7269.59 -3.2E-13
57 -1.920098210535E+6 839 3034.77 -4.5E-11
59 -1.194681939107E+21 (†) 2908 27973.06 -9.7E+18
Notes: (†) The problem is badly conditioned; the solution may not be reliable.

(‡) Exiting: the search direction is close to zero; the problem is ill-posed.

Tables 1–2 sum up the computational results obtained using Matlab code
linprog with simplex-on or medium– scale option, respectively. Total number
of iterations and running time required to solve each problem are displayed
in two columns labeled Iter and Time, along with two additional columns
(labeled Optimal value and MinRes, respectively) with the computed optimal
value of the objective and the minimum element of the residual vector at

8

the optimal solution obtained. The code linprog warns about its difficulties
to solve (eleven or eight, according to the option used) Netlib problems by
issuing displayed notes, which are incorporated as a footnote.

TABLE 3. Computational results for the Sagitta Method when solving
Netlib problems by using Most-Obtuse-Angle Rule at start

Optimal value Its Scs MinRes | A∗ | IPh R %Itb
1 4.647531428571E+2 23 0.03 -1.8E-15 20 7 0 0.0
2 7.000000000000E+1 67 0.08 0.0E+00 48 5 0 0.0
3 6.457507705856E+1 64 0.08 -1.2E-16 49 17 0 0.0
4 5.220206121171E+1 141 0.30 -1.9E-16 104 33 0 0.0
6 -2.254949631624E+5 153 0.31 -3.8E-12 56 39 0 41.8
7 2.331389824331E+6 188 0.61 -8.9E-13 129 113 3 16.5
8 4.113197621943E+4 127 0.16 -3.1E-13 117 98 0 8.7
9 3.081214984583E+1 127 0.25 0.0E+00 74 8 0 28.3

10 5.220206121171E+1 312 2.03 -6.5E-17 203 60 0 0.0
12 4.157322407414E+2 258 0.63 -4.8E-13 96 47 5 26.7
14 2.526470606237E+1 313 1.78 -9.4E-15 153 85 0 29.4
15 7.658931857919E+4 228 0.80 -9.8E-11 117 117 0 49.1
17 -1.878124822738E+3 382 4.84 -1.4E-12 336 260 1 0.0
19 1.475343306077E+7 694 23.03 -8.2E-12 448 419 0 0.0
20 -1.412250000000E+3 511 9.05 -4.0E-11 279 223 2 0.0
22 -1.518509896488E+3 504 3.67 -3.1E-13 170 159 0 0.0
23 8.966448218631E+5 401 2.83 -1.7E-11 174 171 0 25.9
26 -8.666666674333E+0 123 0.52 -1.3E-08 77 7 0 14.6
28 3.599176728658E+7 563 14.47 -2.6E-09 486 459 1 0.0
29 1.586280184499E+2 754 13.42 -1.4E-12 304 288 0 0.0
30 1.875192906630E+1 831 9.02 -2.8E-14 213 139 0 0.0
31 -1.841675902836E+4 554 10.50 -3.4E-13 320 273 0 0.0
34 -9.042969538008E+2 1164 57.38 -3.6E-10 479 154 1 0.0
35 -3.359248580720E+4 141 0.39 -4.2E-14 122 122 0 0.0
40 1.435178000000E+3 4211 245.08 -4.4E-14 440 309 0 0.0
41 2.023925235598E+7 607 21.02 -1.5E-11 516 485 0 7.2
42 -1.031211593509E+7 602 20.33 -1.1E-12 516 486 0 5.3
43 -5.050000007714E+1 564 7.86 -1.2E-08 147 43 0 20.9
44 -1.798714700445E+6 560 24.41 -8.2E-12 325 300 24 0.0
48 0.000000000E+0(†) 0 0.00 0.0E+00 0 0 0 0.0
50 -3.666026156503E+4 1291 99.47 -5.2E-12 649 548 0 0.0
53 -5.556795648175E+5 764 31.92 -2.9E-09 470 336 6 0.0
54 -1.793324537970E+6 661 36.05 -3.1E-12 323 299 16 0.0
55 -1.724807142857E+3 1053 167.61 -4.8E-12 869 777 2 0.0
57 -1.920098210535E+6 742 79.47 -4.5E-12 503 463 14 0.0
59 -5.490125454861E+4 1930 325.98 -6.7E-10 974 822 0 0.0

Total 21608 1215.34 8171
Note: (†) Number of iterations exceeded.

Tables 3–4 sum up the computational results obtained for the original sagitta
method, using the same initial phase with the most-obtuse-angle rule or the
corrected sagitta rule, respectively, to choose the incoming constraint. In these
tables, apart from the five columns labeled #, Optimal value, Iter, Time and
MinRes (displaying the Bixby’s number and the corresponding computational
results obtained with the respective rule), other columns with additional nu-

9

merical information of interest are included, on which we comment now:

TABLE 4. Computational results for the Sagitta Method when solving
Netlib problems by using Corrected Sagitta Rule at start

Optimal value Its Scs MinRes | A∗ | IPh R %Itb
1 4.647531428571E+2 25 0.03 -2.0E-14 22 9 0 0.0
2 7.000000000000E+1 67 0.06 0.0E+000 48 5 0 0.0
3 6.457507705856E+1 59 0.06 -2.1E-18 47 25 0 0.0
4 5.220206121171E+1 128 0.22 -1.3E-18 99 50 0 0.0
6 -2.254949631624E+5 161 0.30 -2.3E-11 56 41 0 42.2
7 2.331389824331E+6 197 0.59 -9.1E-13 129 115 0 12.2
8 4.113197621944E+4 132 0.17 -3.3E-13 117 101 0 11.4
9 3.081214984583E+1 126 0.23 0.0E+000 74 12 0 31.0

10 5.220206121171E+1 282 1.80 -5.6E-18 199 95 0 0.0
12 4.157322407414E+2 258 0.64 -4.8E-13 96 47 5 26.7
14 2.526470605672E+1 317 1.80 -1.7E-14 153 86 0 23.7
15 7.658931857919E+4 228 0.83 -9.8E-11 117 117 0 49.1
17 -1.878124822738E+3 375 4.72 -1.2E-12 339 278 0 0.0
19 1.475343306077E+7 969 36.25 -1.0E-11 448 421 0 0.0
20 -1.412250000000E+3 457 7.75 -2.9E-10 281 227 8 0.0
22 -1.518509896488E+3 504 3.25 -3.1E-13 170 159 0 0.0
23 8.966448218631E+5 402 2.69 -6.1E-11 174 172 0 16.7
26 -8.666666674333E+0 161 0.72 -1.2E-14 77 43 0 20.5
28 3.599176728665E+7 582 15.64 -4.6E-09 486 461 1 0.0
29 1.586280184071E+2 1008 19.19 -6.7E-14 304 297 0 0.0
30 1.875192906629E+1 818 8.70 -4.8E-13 214 139 0 0.0
31 -1.841675902834E+4 573 11.22 -1.4E-13 319 274 0 0.0
34 -9.042969538008E+2 961 46.00 -3.8E-11 478 154 2 0.0
35 -3.359248580720E+4 141 0.36 -4.2E-14 122 122 0 0.0
40 1.435178000000E+3 11386 702.64 -5.3E-14 442 313 0 0.0
41 2.023925235598E+7 607 20.98 -1.5E-11 516 485 0 7.2
42 -1.031211593509E+7 602 20.38 -1.1E-12 516 486 0 5.3
43 -5.050000007764E+1 503 6.86 -1.4E-08 147 46 0 11.9
44 -1.798714700445E+6 538 21.44 -6.0E-10 327 307 17 0.0
48 0.000000000E+0(†) 0 0.00 0.0E+00 0 0 0 0.0
50 -3.666026156505E+4 1207 90.88 -2.1E-09 647 545 0 0.0
53 -5.556795648176E+5 854 36.69 -2.9E-10 475 346 12 0.0
54 -1.793324537970E+6 602 35.78 -6.0E-10 327 306 7 0.0
55 -1.724807142857E+3 1088 173.89 -1.2E-11 879 792 1 0.0
57 -1.920098210535E+6 727 76.84 -6.8E-12 506 465 7 0.0
59 -5.490125454933E+4 1881 306.39 -1.9E-09 977 814 0 0.0

Total 28926 1655.98 8355
Note: (†) Number of iterations exceeded.

• Column labeled | A∗ | shows the cardinal of the final active set A∗, subset of
the active set A(x∗) of active constraints at the computed optimal solution
x∗. We can check that | A∗ |< n for 23 out of the 35 (66.66%) problems
solved, or in other words, that such problems are solved by sagitta methods
working with basis deficiency (see [10]) throughout the whole process.

• Column labeled IPh shows the number of iterations performed in the initial
phase, which coincides with the cardinal of the active set at the end of such
phase and the beginning of the primal-feasibility-search loop. Note that only

10

for problem SHARE1B (#15), the cardinal of the active set at the end of
the initial phase is equal to n.

• Column labeled RS shows the number of restarting events.
• Column labeled %Itb shows the percentage of square basis iterations, i.e.

iterations with | Aj |= n. It is worth noting that such percentage is zero or
less than 50% for all problems solved.

The comparison of the computational results obtained using the sagitta method,
most-obtuse-angle (MOA) rule versus corrected sagitta (CS) rule, is deferred
to the following section.

TABLE 5. Comparison for code linprog versus original sagitta method
when solving Netlib problems

Method option Solved problems Iter Time Opt. sol. quality
Linprog simplex-on 25/36 24067 302.36 Deficient for 4 lp(†)
Linprog med.-scale 28/36 15444 29436.33 Deficient for 4 lp(‡)
Sagitta MOA rule 35/36 21608 1215.34 Good
Sagitta CS rule 35/36 28926 1655.98 Good

(†) Problems SHARE1B, SCORPION, BRANDY, BEACONFD.
(‡) Problems SCAGR7, LOTFI, ISRAEL, AGG3.

The comparison of computational results obtained using code linprog versus
our dense code for the original sagitta method is summarized in tables 5–7.
Table 5 shows clearly that the sagitta method outperforms linprog in relia-
bility, both simplex-on and medium-scale option, solving with good quality 35
out of 36 test problems against 25 or 28 problems solved (four with deficient
quality) using code linprog with simplex-on or medium-scale option, respec-
tively. Totals of iterations and running time in table 5 are not comparable
because they correspond to a different number of problems solved.

TABLE 6. Totals for code linprog simplex-on versus original sagitta method
when solving 25 Netlib problems

Linprog simplex-on Sagitta MOA rule Sagitta CS rule
Problem size Iter Time Iter Time Iter Time
Small(17) 9969 55.06 3936 28.19 3888 26.05
Medium(8) 14098 247.30 9649 640.87 16774 1099.70
Total(25) 24067 302.36 13585 669.06 20662 1125.75

The comparison by only taking the problems solved by both codes into account
is summarized in tables 6–7. We have distinguished between small problems,
those where the number of variables plus the number of constraints (rows
plus columns) is less than 1000, and medium problems, where such addition is
higher than 1000. Note that the number of variables (n) for medium problems
is higher than 400 (except for problem SCSD6), which entails that, when
solving a problem of this kind, our dense implementation works with a dense
orthonormal matrix of considerable size.

Considering only those problems solved by using the code linprogwith simplex-

11

on option, table 6 shows that our code sagitta outperforms linprog in total
of number of iterations, largely if the most-obtuse-angle (MOA) rule is used.
However, the code linprog outperfoms globally our code sagitta in running
time, even though the reverse occurs when considering uniquely small prob-
lems. Note, nevertheless, that the code linprog with simplex-on option:

• Uses an evolved preprocessing.
• Does not compute the multipliers (a fatal error occurs if the multipliers are

requested!) and, according to the Matlab documentation, it “might save
some time computationally”.

• Computes an optimal solution with deficient quality for some problems.

Moreover, with some bias towards linprog, note that in this comparison we
have left aside all problems not solved by using linprog with simplex-on op-
tion. We point out that problems DEGEN2 and BNL1 are degenerate problems
(see [3, p. 7]) whose solution raises special difficulties to the sagitta method
and, nevertheless, problem DEGEN2 has been included in the comparison.
(Problem DEGEN2 can be solved in only 43.30 seconds using a dual-then-
primal sagitta method [18].) Summing up, the sagitta method can be compet-
itive in running time with the simplex method.

TABLE 7. Totals for code linprog medium-scale versus original sagitta method
when solving 27 Netlib problems

Linprog medium-scale Sagitta MOA rule Sagitta CS rule
Problem size Iter Time Iter Time Iter Time
Small(17) 3983 247.61 3559 24.67 3516 22.97

Medium(10) 8476 18787.55 7280 460.50 7064 454.50
Total(27) 12459 19035.16 10839 485.17 10580 477.47

Considering only those problems solved by using the code linprogwith medium-
scale option except problem BNL1, table 7 shows clearly that our code sagitta
outperforms code linprog with medium-scale option, slightly in number of
iterations but very largely (more than 90%!) in running time.

4 Most-obtuse-angle rule versus corrected sagitta rule

Tables A.1–A.35 and Figures 1–35 in the appendix, one for each problem
solved, are aimed to complement the computational results obtained by using
the sagitta method. Each table or figure collects two blocks of results or two
graphs of the objective function value corresponding to the respective use at
start of strategy A or B.

Tables in the appendix also complement Tables 3–4 by showing additionally,
for each solved problem, the iteration number j, the number of constraints

12

in current working or active set Aj and the objective value for each of the
following events: a) first computed point after the initial phase, b) first feasible
dual point, c) first square basis, d) first feasible primal point, and e) computed
optimal solution.

The independent variable in the graphs is the iteration counter j of the
method. The graphs start with the minimum j for which d(j) = 0, that is
the iteration from which both a primal and dual point, x(j) and y(j) respec-
tively, are available.

Note that the comparison of the totals of both number of iterations and run-
ning time in Tables 3–4, most-obtuse-angle rule versus corrected sagitta rule,
shows apparently advantage for the most-obtuse-angle rule; however, problem
DEGEN2 (a stalling event) is clearly a definite factor in this conclusion. The
performance of the sagitta method using both rules is generally similar, even
though it can vary with the value of the tolerance tol1. Globally, in view of all
these results, we can point out:

• For the method to obtain the first zero projection of the negative gradient,
the rule used at start for which more indices have to be generally added to
the working set is the corrected sagitta rule.

• The objective value for the first computed primal point using both rules
is often (but not always, see figures 16 –SCTAP1 problem–, 23 –SCRS8
problem– and 33 –SCTAP2 problem–) lower than the optimal objective
value.

• A first feasible dual point is obtained generally before, and with fewer con-
straints in the active set Aj, by using the most-obtuse-angle rule at start.

• If the most-obtuse-angle rule is used at start, the final set A∗ has generally
the same or fewer number of constraints.

• Restarting events occur nearly for the same problems, independently of the
used rule used.

• The “basic” iterations, namely those with square basis or |Aj| = n, are
relatively few, if any, for the problems solved. This implies that the greatest
computational effort is done with |Aj| < n.

5 Final remarks

We have used a dense implementation of the sagitta method for solving a set of
36 Netlib problems. The computational results obtained show that this code
sagitta outperfoms the Matlab code linprog (both simplex-on and medium-
scale option) in number of iterations and reliability; furthermore it outperfoms
code linprog with medium-scale option very largely in speed. Although, by
comparing the total running time for only those problem solved by using code

13

linprog with simplex-on option, its speed is lower than (roughly 50%) that of
this code linprog, our opinion is that, globally, the code sagitta is competitive
in running time with the simplex method. Note that, because of reliability,
the sagitta method deserves to be considered a suitable alternative.

We know that the method performance using a sparse implementation is an
important matter. We have developed two sparse techniques [13,14] that lead
to interesting sparse implementations of the sagitta method with encouraging
computational results (see [6,7,17]). We can carry out both a projected or
a reduced implementation; but we are still working in the development of a
compiled code to be able to compare against alternative commercial implemen-
tations of the simplex method. Moreover, the computational results recently
obtained by Pan [11] with an sparse implementation of a basis-deficiency-
allowing simplex algorithm using an LU-decomposition strengthen our opinion
about the competitivity of the non-simplex active-set methods.

References

[1] BJÖRCK, Å. (1996). Numerical Methods for Least Squares Problems. SIAM
Publications, Philadelphia, USA.

[2] BIXBY, R.E. (1992). Implementing the simplex method: The initial basis.
ORSA J. Computing 14(3), pp. 670–676.

[3] GAY, D.M. (1985). Electronic mail distribution of linear programming test
problems. COAL Newsletter 13, 10–12.

[4] GILL, P.E., W. MURRAY and M.H. WRIGHT (1991). Numerical Linear
Algebra and Optimization, Vol. 1. Addison-Wesley Publishing, Redwood City,
California.

[5] GOLDFARB, D., and M.J. TODD (1989). Linear Programming. Chap. II in:
NEMHAUSER, G.L., et al. (eds.), Optimization, pp. 73–170.

[6] GUERRERO-GARCÍA, P. (2002) Range-Space Methods for Sparse Linear
Programs (Spanish). Ph.D. thesis, Dept. App. Math., Univ. Málaga, Spain.

[7] GUERRERO-GARCÍA, P., and A. SANTOS-PALOMO (2003). A comparison
of three sparse linear program solvers. Submitted for publication.

[8] LUSTIG, I.J., R.E. MARSTEN and D.F. SHANNO (1994). Interior point
methods for linear programming: Computational state of the art. ORSA Journal
on Computing 6(1), 1–14.

[9] OSBORNE, M.R. (1985). Finite Algorithms in Optimization and Data Analysis.
Wiley, Chichester.

[10] PAN, P.-Q. (1998). A basis-deficiency-allowing variation of the simplex method
for linear programming. Computers Math. Applic. 36(3), 33–53.

14

[11] PAN, P.-Q. (2004). Revised basis-deficiency-allowing simplex algorithm using
LU-decomposition for linear programming. Presented at 6th ICOTA Conf.

[12] SANTOS-PALOMO, A. (2004). The sagitta method for solving linear programs.
European Journal of Operational Research 157(3), 527–539.

[13] SANTOS-PALOMO, A., and P. GUERRERO-GARCÍA (2001a). Updating
and downdating an upper trapezoidal sparse orthogonal factorization. To be
published in IMA Journal of Numerical Analysis.

[14] SANTOS-PALOMO, A., and P. GUERRERO-GARCÍA (2001b). Solving a
sequence of sparse least squares problems. Technical Report, Dept. Appl. Math.,
Univ. Málaga. Submitted for publication.

[15] SANTOS-PALOMO, A., and P. GUERRERO-GARCÍA (2004). A fresh view
on the sagitta method. Submitted for publication.

[16] SANTOS-PALOMO, A., and P. GUERRERO-GARCÍA (2005). Sagitta method
with guaranteed convergence. Submitted for publication.

[17] SANTOS-PALOMO, A., and P. GUERRERO-GARCÍA (2005). Computational
experiences with dense and sparse implementations of the sagitta method.
Submitted for publication.

[18] SANTOS-PALOMO, A., and P. GUERRERO-GARCÍA (2005). Dual-then-
primal sagitta method. Submitted for publication.

6 Appendix

This appendix contains Tables A.1–A.35 and Figures 1–35 that complement
the computational results obtained by using the sagitta method. Each table
or figure collects, for each problem solved, two blocks of results or two graphs
of the objective function value corresponding to the respective use at start of
strategy A or B.

This tables show, for each problem solved, the iteration number j, the number
of constraints in current working or active set Aj and the objective value for
each of the following events: a) first computed point after the initial phase,
b) first feasible dual point, c) first square basis, d) first feasible primal point,
and e) computed optimal solution. The independent variable in the graphs is
the iteration counter j of the method. The graphs start with the minimum j
for which d(j) = 0, that is the iteration from which both a primal and dual
point, x(j) and y(j) respectively, are available.

15

5 10 15 20 25

−400

−200

0

200

400

AFIRO problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

10 15 20 25 30

−400

−200

0

200

400

AFIRO problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
First Feasible Dual Point

Objective Value
First Feasible Dual Point

Fig. 1. Objective of the problem AFIRO solved by using Sagitta Method.

TABLE A.1. Computational results for the Sagitta Method
when solving AFIRO problem (#1, n=27, m=51)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj| Objective value

First computed point 7 7 -4.40000000000000E+2 9 9 -4.40000000000000E+2
First feasible y 7 7 -4.40000000000000E+2 9 9 -4.40000000000000E+2
First square basis – – – – – –
First feasible x 23 20 4.64753142857142E+2 25 22 4.64753142857143E+2
Optimal solution 23 20 4.64753142857142E+2 25 22 4.64753142857143E+2
Restarts 0 0
Time 0.03 0.03

16

10 20 30 40 50 60 70
0

20

40

60

SC50B problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

10 20 30 40 50 60 70
0

20

40

60

SC50B problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
First Feasible Dual Point

Objective Value
First Feasible Dual Point

Fig. 2. Objective of the problem SC50B solved by using Sagitta Method.

TABLE A.2. Computational results for the Original Sagitta Method
when solving SC50B problem (#2, n=50, m=78)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj| Objective value

First computed point 5 5 0.00000000000000E+0 5 5 0.00000000000000E+0
First feasible y 5 5 0.00000000000000E+0 5 5 0.00000000000000E+0
First square basis – – – – – –
First feasible x 67 48 7.00000000000000E+1 67 48 7.00000000000000E+1
Optimal solution 67 48 7.00000000000000E+1 67 48 7.00000000000000E+1
Restarts 0 0
Time 0.08 0.06

17

20 30 40 50 60
0

20

40

60

SC50A problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

25 30 35 40 45 50 55 60
0

20

40

60

SC50A problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
First Feasible Dual Point

Objective Value
First Feasible Dual Point

Fig. 3. Objective of the problem SC50A solved by using Sagitta Method.

TABLE A.3. Computational results for the Original Sagitta Method
when solving SC50A problem (#3, n=50, m=78)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj| Objective value

First computed point 17 17 0.00000000000000E+0 25 25 0.00000000000000E+0
First feasible y 17 17 0.00000000000000E+0 25 25 0.00000000000000E+0
First square basis – – – – – –
First feasible x 64 49 6.45750770585645E+1 59 47 6.45750770585646E+1
Optimal solution 64 49 6.45750770585645E+1 59 47 6.45750770585646E+1
Restarts 0 0
Time 0.08 0.06

18

40 60 80 100 120 140
0

10

20

30

40

50

SC105 problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

50 60 70 80 90 100 110 120 130
0

10

20

30

40

50

SC105 problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
First Feasible Dual Point

Objective Value
First Feasible Dual Point

Fig. 4. Objective of the problem SC105 solved by using Sagitta Method.

TABLE A.4. Computational results for the Original Sagitta Method
when solving SC105 problem (#4, n=105, m=163)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj| Objective value

First computed point 33 33 0.00000000000000E+0 50 50 0.00000000000000E+0
First feasible y 33 33 0.00000000000000E+0 50 50 0.00000000000000E+0
First square basis – – – – – –
First feasible x 141 104 5.22020612117073E+1 128 99 5.22020612117071E+1
Optimal solution 141 104 5.22020612117073E+1 128 99 5.22020612117071E+1
Restarts 0 0
Time 0.30 0.22

19

95 100 105 110 115 120 125 130

2.5

3

3.5

4

4.5
x 10

4STOCFOR1 problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

100 105 110 115 120 125 130 135

2.5

3

3.5

4

4.5
x 10

4STOCFOR1 problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
First Basis
First Feasible Dual Point

Objective Value
First Basis
First Feasible Dual Point

Fig. 5. Objective of the problem STOCFOR1 solved by using Sagitta Method.

TABLE A.5. Computational results for the Original Sagitta Method
when solving STOCFOR1 problem (#8, n=117, m=165)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj| Objective value

First computed point 98 98 2.54686697284763E+4 101 101 2.54686697284763E+4
First feasible y 98 98 2.54686697284763E+4 101 101 2.54686697284763E+4
First square basis 117 117 2.54686697284763E+4 118 117 2.54686697284763E+4
First feasible x 127 117 4.11319762194316E+4 132 117 4.11319762194404E+4
Optimal solution 127 117 4.11319762194316E+4 132 117 4.11319762194404E+4
Restarts 0 0
Time 0.16 0.17

20

40 60 80 100 120 140

−15

−10

−5

x 10
5ADLITTLE problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

40 60 80 100 120 140 160

−8

−6

−4

x 10
5ADLITTLE problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
First Basis
First Feasible Dual Point

Objective Value
First Basis
First Feasible Dual Point

Fig. 6. Objective of the problem ADLITTLE solved by using Sagitta Method.

TABLE A.6. Computational results for the Original Sagitta Method
when solving ADLITTLE problem (#6, n=56, m=138)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj | Objective value

First computed point 39 39 -7.76049131548757E+5 41 41 -7.77067884175367E+5
First feasible y 55 49 -6.66684176213086E+5 57 47 -6.94038753358815E+5
First square basis 90 56 -4.26104441100459E+5 94 56 -4.39859614774195E+5
First feasible x 153 56 -2.25494963162380E+5 161 56 -2.25494963162381E+5
Optimal solution 153 56 -2.25494963162380E+5 161 56 -2.25494963162381E+5
Restarts 0 0
Time 0.31 0.30

21

20 40 60 80 100 120
0

10

20

30

BLEND problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

20 40 60 80 100 120
0

10

20

30

BLEND problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
First Basis
First Feasible Dual Point

Objective Value
First Basis
First Feasible Dual Point

Fig. 7. Objective of the problem BLEND solved by using Sagitta Method.

TABLE A.7. Computational results for the Original Sagitta Method
when solving BLEND problem (#9, n=74, m=114)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj| Objective value

First computed point 8 8 0.00000000000000E+0 12 12 3.55747926829032E-17
First feasible y 8 8 0.00000000000000E+0 12 12 3.55747926829032E-17
First square basis 92 74 2.12024452201228E+1 88 74 1.42170917832970E+1
First feasible x 127 74 3.08121498458327E+1 126 74 3.08121498458312E+1
Optimal solution 127 74 3.08121498458327E+1 126 74 3.08121498458312E+1
Restarts 0 0
Time 0.25 0.23

22

110 120 130 140 150 160 170 180 190
−2.5

−2

−1.5

−1

−0.5

0

x 10
7SCAGR7 problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

120 130 140 150 160 170 180 190 200

−10

−8

−6

−4

−2

0
x 10

7SCAGR7 problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
First Basis
First Feasible Dual Point

Objective Value
First Basis
Restart
First Feasible Dual Point

Fig. 8. Objective of the problem SCAGR7 solved by using Sagitta Method.

TABLE A.8. Computational results for the Original Sagitta Method
when solving SCAGR7 problem (#7, n=129, m=185)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj| Objective value

First computed point 113 113 9.44922916266666E+5 115 115 1.43026947309867E+6
First feasible y 188 129 2.33138982433101E+6 146 117 1.95254933226732E+6
First square basis 158 129 1.89736985378474E+6 174 129 2.25298896756860E+6
First feasible x 182 129 2.33139671215523E+6 197 129 2.33138982433092E+6
Optimal solution 188 129 2.33138982433101E+6 197 129 2.33138982433092E+6
Restarts 3 0
Time 0.61 0.59

23

100 150 200 250 300
0

10

20

30

40

50

SC205 problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

100 120 140 160 180 200 220 240 260 280
0

10

20

30

40

50

SC205 problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
First Feasible Dual Point

Objective Value
First Feasible Dual Point

Fig. 9. Objective of the problem SC205 solved by using Sagitta Method.

TABLE A.9. Computational results for the Original Sagitta Method
when solving SC205 problem (#10, n=205, m=317)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj| Objective value

First computed point 60 60 0.00000000000000E+0 95 95 0.00000000000000E+0
First feasible y 60 60 0.00000000000000E+0 95 95 0.00000000000000E+0
First square basis – – – – – –
First feasible x 312 203 5.22020612117081E+1 282 199 5.22020612117076E+1
Optimal solution 312 203 5.22020612117081E+1 282 199 5.22020612117076E+1
Restarts 0 0
Time 2.03 1.80

24

50 100 150 200 250

−1000

−500

0

500

SHARE2B problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

50 100 150 200 250

−1000

−500

0

500

SHARE2B problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
First Basis
Restart
First Feasible Dual Point

Objective Value
First Basis
Restart
First Feasible Dual Point

Fig. 10. Objective of the problem SHARE2B solved by using Sagitta Method.

TABLE A.10. Computational results for the Original Sagitta Method
when solving SHARE2B problem (#12, n=96, m=162)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj| Objective value

First computed point 47 47 3.26616397459167E+2 47 47 3.26616397459167E+2
First feasible y 254 96 4.15347895178645E+2 254 96 4.15347895178645E+2
First square basis 190 96 4.70915753840341E+2 190 96 4.70915753840341E+2
First feasible x 170 86 5.02590239312383E+2 170 86 5.02590239312383E+2
Optimal solution 258 96 4.15732240741420E+2 258 96 4.15732240741420E+2
Restarts 5 5
Time 0.63 0.64

25

100 150 200 250 300
−250

−200

−150

−100

−50

0

LOTFI problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

100 150 200 250 300
−250

−200

−150

−100

−50

0

LOTFI problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
First Basis
First Feasible Dual Point

Objective Value
First Basis
First Feasible Dual Point

Fig. 11. Objective of the problem LOTFI solved by using Sagitta Method.

TABLE A.11. Computational results for the Original Sagitta Method
when solving LOTFI problem (#14, n=153, m=266)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj | Objective value

First computed point 85 85 -2.37761499990000E+2 86 86 -2.37761499990000E+2
First feasible y 303 153 2.41748704660468E+1 304 153 2.43863704594371E+1
First square basis 222 153 -1.77817295941729E+2 243 153 -1.63719955570958E+2
First feasible x 313 153 2.52647060623677E+1 317 153 2.52647060567239E+1
Optimal solution 313 153 2.52647060623677E+1 317 153 2.52647060567239E+1
Restarts 0 0
Time 1.78 1.80

26

120 140 160 180 200 220

−3

−2

−1

0

x 10
5SHARE1B problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

120 140 160 180 200 220

−3

−2

−1

0

x 10
5SHARE1B problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
First Basis
First Feasible Dual Point

Objective Value
First Basis
First Feasible Dual Point

Fig. 12. Objective of the problem SHARE1B solved by using Sagitta Method.

TABLE A.12. Computational results for the Original Sagitta Method
when solving SHARE1B problem (#15, n=117, m=253)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj | Objective value

First computed point 117 117 -9.31044263104192E+4 117 117 -9.31044263104192E+4
First feasible y 201 117 7.43291615207847E+4 201 117 7.43291615207847E+4
First square basis 117 117 -9.31044263104192E+4 117 117 -9.31044263104192E+4
First feasible x 228 117 7.65893185791879E+4 228 117 7.65893185791879E+4
Optimal solution 228 117 7.65893185791879E+4 228 117 7.65893185791879E+4
Restarts 0 0
Time 0.80 0.83

27

260 280 300 320 340 360 380
−15000

−10000

−5000

SCORPION problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

280 300 320 340 360 380

−2800

−2600

−2400

−2200

−2000

−1800

SCORPION problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
First Feasible Dual Point

Objective Value
Restart
First Feasible Dual Point

Fig. 13. Objective of the problem SCORPION solved by using Sagitta Method.

TABLE A.13. Computational results for the Original Sagitta Method
when solving SCORPION problem (#17, n=388, m=466)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj | Objective value

First computed point 260 260 -2.17283406314009E+3 278 278 -2.11822973885512E+3
First feasible y 382 336 -1.87812482273811E+3 353 328 -1.92746413901251E+3
First square basis – – – – – –
First feasible x 381 336 -1.87507050455629E+3 375 339 -1.87812482273811E+3
Optimal solution 382 336 -1.87812482273811E+3 375 339 -1.87812482273811E+3
Restarts 1 0
Time 4.84 4.72

28

200 250 300 350 400 450 500

−8

−6

−4

−2

x 10
4BRANDY problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

200 250 300 350 400 450 500

−8

−6

−4

−2

x 10
4BRANDY problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
First Feasible Dual Point

Objective Value
First Feasible Dual Point

Fig. 14. Objective of the problem BRANDY solved by using Sagitta Method.

TABLE A.14. Computational results for the Original Sagitta Method
when solving BRANDY problem (#22, n=220, m=303)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj | Objective value

First computed point 159 159 -2.92143186848942E+3 159 159 -2.92143186848942E+3
First feasible y 268 168 -2.68976446338926E+3 268 168 -2.68976446338926E+3
First square basis – – – – – –
First feasible x 504 170 -1.51850989648819E+3 504 170 -1.51850989648819E+3
Optimal solution 504 170 -1.51850989648819E+3 504 170 -1.51850989648819E+3
Restarts 0 0
Time 3.67 3.25

29

450 500 550 600 650
−4

−3

−2

−1

0
x 10

8SCAGR25 problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

500 600 700 800 900

−8

−6

−4

−2

0
x 10

8SCAGR25 problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
First Feasible Dual Point

Objective Value
First Feasible Dual Point

Fig. 15. Objective of the problem SCAGR25 solved by using Sagitta Method.

TABLE A.15. Computational results for the Original Sagitta Method
when solving SCAGR25 problem (#19, n=471, m=671)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj| Objective value

First computed point 419 419 2.45890659952000E+6 421 421 4.87474326490666E+6
First feasible y 646 448 1.47126612296777E+7 749 424 9.63207728098069E+6
First square basis – – – – – –
First feasible x 694 448 1.47534330607685E+7 969 448 1.47534330607688E+7
Optimal solution 694 448 1.47534330607685E+7 969 448 1.47534330607688E+7
Restarts 0 0
Time 23.03 36.25

30

250 300 350 400 450 500

−10000

−8000

−6000

−4000

−2000

0

SCTAP1 problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

250 300 350 400 450

−15000

−10000

−5000

0

SCTAP1 problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
Restart
First Feasible Dual Point

Objective Value
Restart
First Feasible Dual Point

Fig. 16. Objective of the problem SCTAP1 solved by using Sagitta Method.

TABLE A.16. Computational results for the Original Sagitta Method
when solving SCTAP1 problem (#20, n=300, m=660)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj | Objective value

First computed point 223 223 1.08894536289278E+3 227 227 1.09413552936798E+3
First feasible y 511 279 -1.41224999999999E+3 456 281 -1.42443749999998E+3
First square basis – – – – – –
First feasible x 466 279 -1.41224999999998E+3 438 281 -1.41224999999997E+3
Optimal solution 511 279 -1.41224999999999E+3 457 281 -1.41224999999997E+3
Restarts 2 8
Time 9.05 7.75

31

200 250 300 350 400

4

6

8

x 10
5ISRAEL problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

200 250 300 350 400

−4

−3

−2

−1

0

x 10
6ISRAEL problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
First Basis
First Feasible Dual Point

Objective Value
First Basis
First Feasible Dual Point

Fig. 17. Objective of the problem ISRAEL solved by using Sagitta Method.

TABLE A.17. Computational results for the Original Sagitta Method
when solving ISRAEL problem (#23, n=174, m=316)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj| Objective value

First computed point 171 171 2.23216716865422E+5 172 172 4.13456017338819E+5
First feasible y 171 171 2.23216716865422E+5 234 172 5.96415605689331E+5
First square basis 298 174 8.50716980182927E+5 336 174 8.76466763965410E+5
First feasible x 401 174 8.96644821863053E+5 402 174 8.96644821863053E+5
Optimal solution 401 174 8.96644821863053E+5 402 174 8.96644821863053E+5
Restarts 0 0
Time 2.83 2.69

32

300 350 400 450 500 550 600 650 700 750
−8

−6

−4

−2

0
x 10

6BANDM problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

300 400 500 600 700 800 900 1000

−3

−2

−1

0
x 10

7BANDM problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
First Feasible Dual Point

Objective Value
First Feasible Dual Point

Fig. 18. Objective of the problem BANDM solved by using Sagitta Method.

TABLE A.18. Computational results for the Original Sagitta Method
when solving BANDM problem (#29, n=305, m=472)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj| Objective value

First computed point 288 288 -1.24642632143687E+3 297 297 -1.09061934776363E+2
First feasible y 446 296 8.43951594911324E+1 622 303 6.05632473611761E+1
First square basis – – – – – –
First feasible x 754 304 1.58628018449912E+2 1008 304 1.58628018407146E+2
Optimal solution 754 304 1.58628018449912E+2 1008 304 1.58628018407146E+2
Restarts 0 0
Time 13.42 19.19

33

300 350 400 450 500 550

−5

−4

−3

−2

−1

x 10
6SCFXM1 problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

300 350 400 450 500 550

−8

−6

−4

−2

x 10
6SCFXM1 problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
First Feasible Dual Point

Objective Value
First Feasible Dual Point

Fig. 19. Objective of the problem SCFXM1 solved by using Sagitta Method.

TABLE A.19. Computational results for the Original Sagitta Method
when solving SCFXM1 problem (#31, n=330, m=600)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj| Objective value

First computed point 273 273 -3.82153236631949E+4 274 274 -3.20545988067005E+4
First feasible y 4 455 300 -1.89978792706094E+4 352 285 -2.69459962643029E+4
First square basis – – – – – –
First feasible x 554 320 -1.84167590283553E+4 573 319 -1.84167590283421E+4
Optimal solution 554 320 -1.84167590283553E+4 573 319 -1.84167590283421E+4
Restarts 0 0
Time 10.50 11.22

34

200 300 400 500 600 700 800

−10000

−8000

−6000

−4000

−2000

0
E226 problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

200 300 400 500 600 700 800

−10000

−8000

−6000

−4000

−2000

0
E226 problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
First Feasible Dual Point

Objective Value
First Feasible Dual Point

Fig. 20. Objective of the problem E226 solved by using Sagitta Method.

TABLE A.20. Computational results for the Original Sagitta Method
when solving E226 problem (#30, n=223, m=472)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj | Objective value

First computed point 139 139 -2.24463304539531E+2 139 139 -2.24433565178187E+2
First feasible y 283 194 -6.79392418090953E+0 283 194 -6.70684024729339E+0
First square basis – – – – – –
First feasible x 831 213 1.87519290663021E+1 818 214 1.87519290662851E+1
Optimal solution 831 213 1.87519290663021E+1 818 214 1.87519290662851E+1
Restarts 0 0
Time 9.02 8.70

35

20 40 60 80 100 120
−10.5

−10

−9.5

−9

−8.5

−8

SCSD1 problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

40 60 80 100 120 140 160

−16

−14

−12

−10

−8
SCSD1 problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
First Basis
First Feasible Dual Point

Objective Value
First Basis
First Feasible Dual Point

Fig. 21. Objective of the problem SCSD1 solved by using Sagitta Method.

TABLE A.21. Computational results for the Original Sagitta Method
when solving SCSD1 problem (#26, n=77, m=760)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj | Objective value

First computed point 7 7 -9.66666671073451E+0 43 43 -1.56736112595916E+1
First feasible y 7 7 -9.66666671073451E+0 50 46 -1.27000000489486E+1
First square basis 106 77 -8.80000001349314E+0 129 77 -8.96000001703773E+0
First feasible x 123 77 -8.66666667433337E+0 161 77 -8.66666667433336E+0
Optimal solution 123 77 -8.66666667433337E+0 161 77 -8.66666667433336E+0
Restarts 0 0
Time 0.52 0.72

36

460 480 500 520 540 560

−3

−2

−1

0

x 10
8AGG problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

460 480 500 520 540 560 580
−4

−3

−2

−1

0

x 10
8AGG problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
Restart
First Feasible Dual Point

Objective Value
Restart
First Feasible Dual Point

Fig. 22. Objective of the problem AGG solved by using Sagitta Method.

TABLE A.22. Computational results for the Original Sagitta Method
when solving AGG problem (#28, n=488, m=615)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj| Objective value

First computed point 459 459 2.38048815442252E+7 461 461 2.41332005704515E+7
First feasible y 562 486 3.59917672865776E+7 582 486 3.59917672866520E+7
First square basis – – – – – –
First feasible x 561 486 3.63130844697354E+7 581 486 3.63130844695022E+7
Optimal solution 563 486 3.59917672865776E+7 582 486 3.59917672866520E+7
Restarts 1 1
Time 14.47 15.64

37

200 300 400 500 600 700 800 900 1000 1100

−6

−5

−4

−3

−2

−1

x 10
4SCRS8 problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

200 300 400 500 600 700 800 900

−1500

−1000

−500

SCRS8 problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
Restart
First Feasible Dual Point

Objective Value
Restart
First Feasible Dual Point

Fig. 23. Objective of the problem SCRS8 solved by by using Sagitta Method.

TABLE A.23. Computational results for the Original Sagitta Method
when solving SCRS8 problem (#34, n=490, m=1275)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj| Objective value

First computed point 154 154 -3.65040485878916E+2 154 154 -3.65040485878916E+2
First feasible y 1164 479 -9.04296953800780E+2 961 478 -9.04296953800832E+2
First square basis – – – – – –
First feasible x 1163 479 -9.04296953800782E+2 959 478 -9.04296953800830E+2
Optimal solution 1164 479 -9.04296953800780E+2 961 478 -9.04296953800832E+2
Restarts 1 2
Time 57.38 46.00

38

120 125 130 135 140 145

−3.6

−3.4

−3.2

x 10
4BEACONFD problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

120 125 130 135 140 145

−3.6

−3.4

−3.2

x 10
4BEACONFD problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
First Feasible Dual Point

Objective Value
First Feasible Dual Point

Fig. 24. Objective of the problem BEACONFD solved by using Sagitta Method.

TABLE A.24. Computational results for the Original Sagitta Method
when solving BEACONFD problem (#35, n=173, m=295)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj | Objective value

First computed point 122 122 -3.39642730702000E+4 122 122 -3.39642730702000E+4
First feasible y 122 122 -3.39642730702000E+4 122 122 -3.39642730702000E+4
First square basis – – – – – –
First feasible x 141 122 -3.35924858072000E+4 141 122 -3.35924858072000E+4
Optimal solution 141 122 -3.35924858072000E+4 141 122 -3.35924858072000E+4
Restarts 0 0
Time 0.39 0.36

39

500 1000 1500 2000 2500 3000 3500 4000
−10000

−8000

−6000

−4000

−2000

0

DEGEN2 problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

2000 4000 6000 8000 10000

−15000

−10000

−5000

0

DEGEN2 problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
First Feasible Dual Point

Objective Value
First Feasible Dual Point

Fig. 25. Objective of the problem DEGEN2 solved by using Sagitta Method.

TABLE A.25. Computational results for the Original Sagitta Method
when solving DEGEN2 problem (#40, n=444, m=757)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj | Objective value

First computed point 309 309 1.44072500000000E+3 313 313 1.36633000000000E+3
First feasible y 2943 440 1.34483333333336E+3 9794 442 1.33444999999989E+3
First square basis – – – – – –
First feasible x 4211 440 1.43517800000001E+3 11386 442 1.43517799999991E+3
Optimal solution 4211 440 1.43517800000001E+3 11386 442 1.43517799999991E+3
Restarts 0 0
Time 245.08 702.64

40

500 520 540 560 580 600

−4

−2

0

2
x 10

7AGG2 problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

500 520 540 560 580 600

−4

−2

0

2
x 10

7AGG2 problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
First Basis
First Feasible Dual Point

Objective Value
First Basis
First Feasible Dual Point

Fig. 26. Objective of the problem AGG2 solved by using Sagitta Method.

TABLE A.26. Computational results for the Original Sagitta Method
when solving AGG2 problem (#41, n=516, m=758)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj | Objective value

First computed point 485 485 -4.99352395270087E+7 485 485 -4.99352395270087E+7
First feasible y 515 492 7.18059166916128E+6 515 492 7.18059166916128E+6
First square basis 564 516 1.79182965891465E+7 564 516 1.79182965891465E+7
First feasible x 607 516 2.02392523559771E+7 607 516 2.02392523559771E+7
Optimal solution 607 516 2.02392523559771E+7 607 516 2.02392523559771E+7
Restarts 0 0
Time 21.02 20.98

41

500 520 540 560 580 600

−8

−6

−4

−2

x 10
7AGG3 problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

500 520 540 560 580 600

−8

−6

−4

−2

x 10
7AGG3 problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
First Basis
First Feasible Dual Point

Objective Value
First Basis
First Feasible Dual Point

Fig. 27. Objective of the problem AGG3 solved by using Sagitta Method.

TABLE A.27. Computational results for the Original Sagitta Method
when solving AGG3 problem (#42, n=516, m=758)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj | Objective value

First computed point 486 486 -7.89146265845531E+7 486 486 -7.89146265845531E+7
First feasible y 487 486 -6.94393521678370E+7 487 486 -6.94393521678370E+7
First square basis 571 516 -1.26801439626805E+7 571 516 -1.26801439626805E+7
First feasible x 602 516 -1.03121159350892E+7 602 516 -1.03121159350892E+7
Optimal solution 602 516 -1.03121159350892E+7 602 516 -1.03121159350892E+7
Restarts 0 0
Time 20.33 20.38

42

100 200 300 400 500

−6000

−5000

−4000

−3000

−2000

−1000

SCSD6 problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

50 100 150 200 250 300 350 400 450 500

−250

−200

−150

−100

−50

SCSD6 problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
First Basis
First Feasible Dual Point

Objective Value
First Basis
First Feasible Dual Point

Fig. 28. Objective of the problem SCSD6 solved by using Sagitta Method.

TABLE A.28. Computational results for the Original Sagitta Method
when solving SCSD6 problem (#43, n=516, m=758)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj | Objective value

First computed point 43 43 -4.90000000722709E+1 46 46 -5.42500000195656E+1
First feasible y 210 131 -6.93583147751484E+1 273 140 -6.89026580011426E+1
First square basis 447 147 -5.26650000653126E+1 444 147 -5.07500000810573E+1
First feasible x 564 147 -5.05000000771442E+1 503 147 -5.05000000776411E+1
Optimal solution 564 147 -5.05000000771442E+1 503 147 -5.05000000776411E+1
Restarts 0 0
Time 7.86 6.86

43

300 350 400 450 500 550

−2

−1.9

−1.8

−1.7

x 10
6SHIP04S problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

350 400 450 500

−2.2

−2

−1.8

x 10
6SHIP04S problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
Restart
First Feasible Dual Point

Objective Value
Restart
First Feasible Dual Point

Fig. 29. Objective of the problem SHIP04S solved by using Sagitta Method.

TABLE A.29. Computational results for the Original Sagitta Method
when solving SHIP04S problem (#44, n=402, m=1506)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj | Objective value

First computed point 300 300 -1.85761853959199E+6 307 307 -1.91457450260128E+6
First feasible y 554 325 -1.80055024260359E+6 537 327 -1.79878605195513E+6
First square basis – – – – – –
First feasible x 482 323 -1.79483272031952E+6 501 327 -1.79677347725534E+6
Optimal solution 557 325 -1.79871470044539E+6 538 327 -1.79871470044539E+6
Restarts 24 17
Time 24.41 21.44

44

600 700 800 900 1000 1100 1200

−2

−1.5

−1

−0.5

x 10
7SCFXM2 problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

600 700 800 900 1000 1100 1200

−3

−2.5

−2

−1.5

−1

−0.5

x 10
8SCFXM2 problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
First Feasible Dual Point

Objective Value
First Feasible Dual Point

Fig. 30. Objective of the problem SCFXM2 solved by using Sagitta Method.

TABLE A.30. Computational results for the Original Sagitta Method
when solving SCFXM2 problem (#50, n=660, m=1200)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj| Objective value

First computed point 548 548 -8.06800181458234E+4 545 545 -7.21650355030312E+4
First feasible y 1085 613 -3.80672801667306E+4 843 586 -4.53931152832170E+4
First square basis – – – – – –
First feasible x 1291 649 -3.66602615650319E+4 1207 647 -3.66602615650484E+4
Optimal solution 1291 649 -3.66602615650319E+4 1207 647 -3.66602615650484E+4
Restarts 0 0
Time 99.47 90.88

45

350 400 450 500 550 600 650 700 750

−2.5

−2

−1.5

−1

−0.5
x 10

6FFFFF800 problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

400 500 600 700 800
−2.5

−2

−1.5

−1

−0.5

x 10
7FFFFF800 problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
Restart
First Feasible Dual Point

Objective Value
Restart
First Feasible Dual Point

Fig. 31. Objective of the problem FFFFF800 solved by using Sagitta Method.

TABLE A.31. Computational results for the Original Sagitta Method
when solving FFFFF800 problem (#53, n=524, m=1028)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj | Objective value

First computed point 336 336 -4.62310312292295E+5 346 346 -5.43894509903694E+5
First feasible y 763 470 -5.55682032912169E+5 853 475 -5.55682032912253E+5
First square basis – – – – – –
First feasible x 709 450 -5.38535872057561E+5 806 469 -5.38907215735688E+5
Optimal solution 764 470 -5.55679564817521E+5 854 475 -5.55679564817608E+5
Restarts 6 12
Time 31.92 36.69

46

300 350 400 450 500 550 600 650
−2.1

−2

−1.9

−1.8

−1.7

x 10
6SHIP04L problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

350 400 450 500 550 600

−2.2

−2

−1.8

x 10
6SHIP04L problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
Restart
First Feasible Dual Point

Objective Value
Restart
First Feasible Dual Point

Fig. 32. Objective of the problem SHIP04L solved by using Sagitta Method.

TABLE A.32. Computational results for the Original Sagitta Method
when solving SHIP04L problem (#54, n=402, m=2166)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj | Objective value

First computed point 299 299 -1.85266529842326E+6 306 306 -1.92965743392868E+6
First feasible y 661 323 -1.79332453797035E+6 600 327 -1.79334734385524E+6
First square basis – – – – – –
First feasible x 579 322 -1.78813945225358E+6 580 326 -1.79322642359446E+6
Optimal solution 661 323 -1.79332453797035E+6 602 327 -1.79332453797036E+6
Restarts 16 7
Time 36.05 35.78

47

800 850 900 950 1000 1050

−2000

−1500

−1000

−500

SCTAP2 problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

800 850 900 950 1000 1050

−5000

−4000

−3000

−2000

SCTAP2 problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
Restart
First Feasible Dual Point

Objective Value
Restart
First Feasible Dual Point

Fig. 33. Objective of the problem SCTAP2 solved by using Sagitta Method.

TABLE A.33. Computational results for the Original Sagitta Method
when solving SCTAP2 problem (#55, n=1090, m=2500)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj| Objective value

First computed point 777 777 -2.65235040374149E+1 792 792 -1.96303730937751E+3
First feasible y 1053 869 -1.72480714285714E+3 1085 879 -1.72665967741935E+3
First square basis – – – – – –
First feasible x 1051 869 -1.72480714285714E+3 1077 876 -1.72337857142857E+3
Optimal solution 1053 869 -1.72480714285714E+3 1088 879 -1.72480714285714E+3
Restarts 2 1
Time 167.61 173.89

48

500 550 600 650 700

−2.4

−2.2

−2

−1.8

x 10
6SHIP08S problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

500 550 600 650 700

−2.4

−2.2

−2

−1.8

x 10
6SHIP08S problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
Restart
First Feasible Dual Point

Objective Value
Restart
First Feasible Dual Point

Fig. 34. Objective of the problem SHIP08S solved by using Sagitta Method.

TABLE A.34. Computational results for the Original Sagitta Method
when solving SHIP08S problem (#57, n=778, m=2735)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj | Objective value

First computed point 463 463 -2.00049358446913E+6 465 465 -2.01664972229644E+6
First feasible y 742 503 -1.92009821053462E+6 726 506 -1.92009821053462E+6
First square basis – – – – – –
First feasible x 710 503 -1.91818310904259E+6 707 506 -1.91938829500898E+6
Optimal solution 742 503 -1.92009821053462E+6 727 506 -1.92009821053462E+6
Restarts 14 7
Time 79.47 76.84

49

1000 1200 1400 1600 1800

−15

−10

−5

x 10
8SCFXM3 problem− Original Sagitta Method with Most−Obtuse−Angle Rule at Start

900 1000 1100 1200 1300 1400 1500 1600 1700 1800

−6

−4

−2

x 10
8SCFXM3 problem− Original Sagitta Method with Sagitta Rule at Start

Objective Value
First Feasible Dual Point

Objective Value
First Feasible Dual Point

Fig. 35. Objective of the problem SCFXM3 solved by using Sagitta Method.

TABLE A.35. Computational results for the Original Sagitta Method
when solving SCFXM3 problem (#59, n=990, m=1800)

Rule at Start: Most-Obtuse-Angle Sagitta
j |Aj| Objective value j |Aj| Objective value

First computed point 822 822 -1.08299088954604E+5 814 814 -1.12145136427305E+5
First feasible y 1286 896 -8.71171626080006E+4 1687 929 -5.56797212171525E+4
First square basis – – – – – –
First feasible x 1930 974 -5.49012545486129E+4 1881 977 -5.49012545493280E+4
Optimal solution 1930 974 -5.49012545486129E+4 1881 977 -5.49012545493280E+4
Restarts 0 0
Time 325.98 306.39

50

