
A basis-deficiency-allowing

primal Phase-I algorithm using the

most-obtuse-angle column rule ?

Wei Li a,∗ Pablo Guerrero-Garćıa b Ángel Santos-Palomo b

aSchool of Science, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
bDepartment of Applied Mathematics, University of Málaga, 29071 Málaga, Spain

Abstract

The dual Phase-I algorithm using the most-obtuse-angle row pivot rule is very
efficient for providing a dual feasible basis, in either the classical or the basis-
deficiency-allowing context. In this paper, we establish a basis-deficiency-allowing
Phase-I algorithm using the so-called most-obtuse-angle column pivot rule to pro-
duce a primal (deficient or full) basis. Our computational experiments with the
smallest test problems from the standard Netlib set show that a dense projected-
gradient implementation largely outperforms that of the variation of the primal
simplex method from the commercial code Matlab LinProg v1.17, and that
a sparse projected-gradient implementation of a normalized revised version of the
proposed algorithm runs 34% faster than the sparse implementation of the primal
simplex method included in the commercial code Tomlab LpSolve v3.0.

Key words: simplex method, deficient basis, pivoting rule, most-obtuse-angle rule.

1 Introduction

The pivoting rule used is crucial to the simplex method. As a result, in the
past a variety of pivot rules have been proposed. It is noticeable that among

? The first author of this work was supported by NSFC Grant 10371028 and NSF
Grant of Hangzhou Dianzi University KYS091504025. Review of an early draft by
the first author dated in October, 2002.
∗ Corresponding author.

Email addresses: weilihz@126.com (Wei Li), pablito@ctima.uma.es (Pablo
Guerrero-Garćıa), santos@ctima.uma.es (Ángel Santos-Palomo).

Preprint submitted to Computers & Mathematics with Applications8 February 2005

them the most-obtuse-angle row pivot rule is very efficient for achieving dual
feasibility in the classical simplex context [13,14].

On the other hand, Pan generalized the concept of basis to include the de-
ficient case, and established primal and dual pivot algorithms based on it
[15,16]. Since the basis concept is crucial for pivot algorithms, this generaliza-
tion provides us with a further improvement possibility. Computational results
do show that the proposed basis-deficiency-allowing algorithms perform very
favorably.

It is therefore very attractive to combine the most-obtuse-angle rule and the
basis-deficiency-allowing algorithms. Along this line, Pan, Li and Wang re-
cently developed a new dual Phase-I algorithm using the most-obtuse-angle row
rule in the basis-deficiency-allowing context [18], and demonstrated its promise
of success. On the other hand, similar effort has been made with primal cases
by Santos-Palomo and Guerrero-Garćıa [19,6].

To make further progress, this paper develops a (primal) Phase-I algorithm
using the most-obtuse-angle column pivot rule in the basis-deficiency-allowing
context. For completeness, in the next section we briefly present the basis-
deficiency-allowing pivot algorithms [15,16]. Then in Section 3, we describe
the most-obtuse-angle column rule, and establish the basis-deficiency-allowing
Phase-I procedure which uses it. In Section 4, we make some comments on
the new algorithm. Finally, in Section 5, we report our computational results
obtained with a set of standard test problems from Netlib. These results show
that a dense projected-gradient implementation largely outperforms that of
the variation of the primal simplex method from the commercial code Matlab
LinProg v1.17 [3], and that a sparse projected-gradient implementation
of a normalized revised version of the proposed algorithm runs 34% faster
than the sparse implementation of the primal simplex method included in the
commercial code Tomlab LpSolve v3.0 [10].

For unillustrated terminologies and symbols, we refer the reader to [15,16].

2 Preliminaries

Consider the following linear program in standard form:

min cT x (1)

s.t. Ax = b

x ≥ 0,

2

where A ∈ Rm×n with m < n, and b ∈ Rm, x, c ∈ Rn, 1 ≤ rank(A) ≤ m. It
is assumed that the cost vector c, the right-hand side b, and the columns and
rows of A are nonzero, and that Ax = b is consistent.

Conventionally, a basis is defined as a square nonsingular submatrix from the
coefficient matrix A. The basis-deficiency-allowing variation of the simplex
method generalized the basis as follows [16]:

Definition 1 [16] A basis is a submatrix consisting of any linearly independent
subset of columns of A, whose range space includes b.

According to definition 1, the bases may be classified into two categories.

Definition 2 [16] If the number of basic columns equals the number of rows of
the coefficient matrix, it is a normal basis; else, it is a deficient basis. Clearly,
traditional simplex variants use normal bases only.

Let B be a basis with m1 columns and let N be the corresponding nonbasis,
consisting of the remaining n − m1 columns. Define the ordered basic and
nonbasic index sets respectively by

JB = {j1, . . . , jm1} and JN = {k1, . . . , kn−m1}

where ji, i = 1, . . . ,m1, is the index of the ith column of B, and kj, j =
1, . . . , n − m1, the index of the jth column of N . The subscript of a basic
index ji is called a row index, and that of a nonbasic index kj is called a
column index. Components of x and c, and columns of A, corresponding to a
basis and a nonbasis are subscripted with B and N , respectively. Hereafter,
for simplicity of exposition, components of vectors and columns of matrices
will always be arranged, and partitioned conformably, as the JB, JN changes.
Thus we have

A = [B, N] = [aj1 , · · · , ajm1 ; ak1 , · · · , akn−m1]

cT = [cT
B, cT

N] = [cj1 , · · · , cjm1 ; ck1 , · · · , ckn−m1]

xT = [xT
B, xT

N] = [xj1 , · · · , xjm1 ; xk1 , · · · , xkn−m1].

It is pedagogically convenient to use the tableau form for linear programming.
Assume that the tableau form of (1) is

[B N b] . (2)

Assuming m1 < m, after a series of appropriate Gauss or orthogonal trans-
formations (we use orthogonal transformations here) we obtain:

[B N b]
[
B N b

]
:=

[
B1 N1 b1

0 N2 0

]
(3)

3

where B1 ∈ Rm1×m1 is an upper triangular matrix with nonzero diagonal
entries.

The reduced cost zN = cN − N
T
1 B−T

1 cB and associated primal basic solution
is then

xN = 0, xB = B−1
1 b1, (4)

with corresponding objective value f = cT
BB−1

1 b̄1. These entities are assumed
to be updated after each iteration of the algorithm.

(3) is termed a canonical tableau. Since it is different from a corresponding
basis B by only a non-singular matrix factor, B will be called basis as well.

By using the notation above we have:

Theorem 1 [16] If xB ≥ 0 and zN ≥ 0, then x is an optimal solution to the
linear program (1).

3 The most-obtuse-angle column rule

The primal simplex procedure with a deficient basis needs a primal feasible
basis to get itself started. Once an initial basis is available, which is neither
primally nor dually feasible, a Phase-I procedure is then needed to achieve
primal (or dual) feasibility. Recently, a dual Phase-I algorithm using the most-
obtuse-angle rule with a deficient basis was described to achieve dual feasibility
by Pan, Li and Wang [18]. In this section, we propose a primal version of the
algorithm.

Define the row index sets I and H by

I = {i | xji
< 0, i = 1, . . . ,m1}

H = {j | zkj
< 0, j = 1, . . . , n−m1}

respectively. Suppose now that tableau (3) is primally infeasible, i.e., the set
I is nonempty. If it is dually feasible, i.e., the set H is empty, then the basis-
deficiency-allowing dual simplex algorithm is immediately applicable; other-
wise, H 6= φ and Phase-I steps should be taken to achieve primal feasibility.

Now assume x̄B 6≥ 0 and z̄N 6≥ 0 , i.e., I 6= φ and H 6= φ. Select the pivot row
index p such that

p = Argmin{xji
| i ∈ I}. (5)

4

Denote by

[
B̃, Ñ , b̄

]
:=

[
B̃1 Ñ1 b1

0 Ñ2 0

]
(6)

the matrix resulting from the [B̄, N̄ , b̄] by bringing the pth column of B̄ to
the end of N̄ , with JB and JN adjusted conformably. If p < m1, then B̃1 ∈
Rm1×(m1−1) is upper Hessenberg with nonzero subdiagonal entries in its p
through (m1 − 1)th columns. A sequence of Givens rotations Gj ∈ Rm1×m1,
j = p, . . . , m1− 1, can be determined such that QT

1 B̃1 ∈ Rm1×(m1−1) is upper
triangular, where QT

1 = Gm1−1 . . . Gp. Consequently, we have

diag(QT
1 , Im−m1)

[
B̃, Ñ , b̄

]
=

[
QT

1 B̃1 QT
1 Ñ1 QT

1 b1

0 Ñ2 0

]
(7)

where Im−m1 ∈ R(m−m1)×(m−m1) is the identity matrix.

Denote with

d := N̄T
1 B̄−T

1 ep. (8)

Clearly d is a search direction in zN -space [16]. However, we shall not compute
d by (8), because an orthogonal transformation technique proposed by Pan
[16] can be used to compute d at a lower cost as follows.

If we now redefine

[B, N, b] := diag(QT
1 , Im−m1)

[
B̃, Ñ , b̄

]
then from [16] we know that we can easily compute d̃, the same direction of
d, by the following formula

d̃ = −Sign(bm1)N
T em1. (9)

When the set

J̃ = {j | d̃j < 0, j = 1, . . . , n−m1} (10)

is empty, the dual program is unbounded above, and hence program (1) has
no feasible solution; otherwise, a column index q is chosen by

Rule 1 (most-obtuse-angle column select rule)

q = Argmin{d̃j | j ∈ J̃}. (11)

5

We then bring the qth column of N to the end of B, with JB and JN adjusted
conformably. Thus, after the m through (m1+1)th components of the column
are zeroed using an appropriate sequence of Givens rotations GT

j , j = m −
1, . . . ,m1, the iteration is completed. This is referred to as a full iteration,
since the number of basic columns remains unchanged. The next can be either
a full or a rank-increasing iteration (the number of basic columns grows by
one), depending on whether bm1+1 is equal to zero or not. Clearly, a rank-
increasing one will not include the steps prior to the computation of d̃ by
(9).

The overall process is summarized as follows:

Algorithm 1

Given an initial canonical tableau (3) and associated sets JB and JN , xB =
B−1

1 b1, xN = 0:

1o Stop if xB ≥ 0;

2o Determine row index p by (5);

3o Bring the pth column of B to the end of N , and adjust JB and JN con-
formably;

4o If p < m1, annihilate nonzero subdiagonal entries in the p through (m1−1)th

columns of B by premultiplying [B, N, b] by appropriate Givens rotations;

5o Compute d̃ by (9);

6o Stop if the set defined by (10) is empty;

7o Determine column index q by (11);

8o Bring the qth column of N to the end of B, and adjust JB and JN con-
formably;

9o If m1 < m, annihilate the m through (m1+1)th components of m1th column
of B by premultiplying [B, N, b] by appropriate Givens rotations;

10o Go to 1o if m1 = m or bm1+1 = 0;

11o Set m1 := m1 + 1;

12o Goto 5o.

It is noted that there is no assumption on set J at all in the above algorithm,
making a key difference from the original dual algorithm with deficient basis

6

[16, §4] in which H = φ is assumed. Once primal feasibility is achieved by
algorithm 1, the main procedure described in [16, §3] can then be used to
complete the whole computation.

Theorem 2 Assuming termination of algorithm 1, it must take place at either
(1) Step 1o, with primal basic feasible solution reached; or
(2) Step 6o, detecting the infeasibility of program (1).

Proof The correctness of the first statement is obvious and hence is omitted.
Let us discuss the second one. From the canonical tableau of (1) we have

xp +
∑

j∈JN

djxj = b̄p (12)

where b̄p < 0 and min{dj | j = 1, . . . , n − m1} ≥ 0. Thus (12) has no
nonnegative solution. This completes the proof.

4 Comments on the pivoting rule

Let us take a look at the finiteness of the algorithm. Since there are only
finitely many bases, the algorithm does not terminate if and only if cycling
occurs. Furthermore, since the number of columns of a basis never decreases
in the process, a cycle never involves any rank-increasing iteration. In other
words, cycling can only occur in full iterations. This algorithm belong to the
class of ’infinite’ algorithms, since the possibility of cycling cannot be ruled
out theoretically at present; in fact, a cycling example has been recently given
by Guerrero-Garćıa and Santos-Palomo [9] in the classical context. From a
practical point of view, finiteness is not a serious problem: first, it is well
known that computational performance of existing ’finite’ simplex variants is
unsatisfactory whereas successful simplex variants are actually ’infinite’, such
as Dantzig’s conventional simplex method. Second, as degeneracy occurs in
practice very frequently, finiteness proofs under non-degeneracy assumption
is only of conceptual or pedagogical interest. It might not be wise to confine
ourselves to develop finite algorithms.

Algorithm 1 has some attractive features. First of all, due to the use of rule 1,
a ratio-test-free pivot rule, it needs fewer computation time per iteration than
conventional algorithms. Second, it can get started from any initial basis and
hence, there will be no need to introduce artificial variables. It is clear that the
problem size and hence the computational effort would increase significantly
if the the process of finding an initial feasible solution was treated in the usual
manner by introducing artificial variables. In addition, the column selection
rule in algorithm 1 chooses a pivot candidate possessing the maximum absolute

7

value, hence this will improve numerical behaviour. Indeed, it is more than
that, the most obtuse angle rule is favorable from the following geometrical
point of view. The direction d̃ is computed in terms of an ascent direction with
respect to the dual objective. Clearly, the gradient of the left-hand side of the
constraint zkq ≥ 0 makes the most obtuse angle with d̃ among all nonnegative

constrains zki
≥ 0, i = 1, . . . , n − m1. It is clear that, if the direction d̃ is

closer to the ascent direction b, the gradient of the dual objective, then the
gradient of the left-hand side of the constraint zkq ≥ 0 also makes the most
obtuse angle with b. Under the spirit of Pan’s geometrical characterization of
an optimal basis (or nonbasis) [12], we know that zkq is therefore eligible to
be used as an optimal nonbasic variable for the dual problem. Thus, xkq is an
optimal basic variable with respected to the primal problem according to the
complementary slackness conditions.

All these remarks makes algorithm 1 a promising Phase-1 for the primal basis-
deficiency allowing (BDA) simplex algorithm.

The algorithm is closely related with that called “dual-then-primal” in [7, §3,
p. 8], which consists in first using a dual BDA algorithm [16, §4] but with
its min-ratio test replaced by a most-obtuse-angle rule, i.e., normalizing the
ratio-test-free rule obtained when

min
j

{
z̄kj

−d̃j

}
is replaced by min

j

{
d̃j

}
where d̃j

.
= aT

kj
dP < 0

to obtain the most-obtuse-angle rule in which

min
j

 z̄kj
/‖akj

‖
−d̃j/‖akj

‖

 is replaced by min
j

{
d̃j/‖akj

‖
}

where d̃j
.
= aT

kj
dP < 0,

and then using a primal BDA algorithm [16, §3] but with a normalized criterion
to determine the entering variable. Note that within this framework, the crash
heuristic [15, §4] employed to obtain the initial basis and the Phase-I given
here form an unique dual phase: the dual BDA algorithm adds constraints for
which aT

kj
dP < 0 one after another in accordance with the normalized ratio-

test-free rule described above until a first basis is available, a suitable deletion
is performed to obtain a new search direction dP and then a sequence of con-
straint additions takes place but now in accordance with the unnormalized
ratio-test-free rule. Furthermore, the column rule used to select the entering
variable in the primal BDA algorithm is not usually normalized. When the
normalized rules are used everywhere, the algorithm obtained is essentially the
sagitta method given by Santos-Palomo in [19] with its restarting procedure
done before entering its primal-feasibility search loop (see [21], where other
possibilities are explored); as we shall illustrate in the next section, the differ-
ences in performance obtained with the unnormalized and normalized sparse
versions are appreciable.

8

Name Optimal value n m nnz(A) nnz(c) nnz(b) nnz dns
1 Afiro −.46475314286e + 3 51 27 102 5 7 114 22
2 Sc50b −.70000000000e + 2 78 50 148 1 5 154 11
3 Sc50a −.64575077059e + 2 78 50 160 1 10 171 12
4 Sc105 −.52202061212e + 2 163 105 340 1 20 361 7
8 Stocfor1 −.41131976219e + 5 165 117 501 27 8 536 13
6 Adlittle .22549496316e + 6 138 56 424 82 37 543 19
9 Blend −.30812149846e + 2 114 74 522 30 8 560 23
7 Scagr7 −.23313898243e + 7 185 129 465 133 53 651 8

10 Sc205 −.52202061212e + 2 317 205 665 1 38 704 4
12 Share2b −.41573224074e + 3 162 96 777 36 24 837 10
14 Lotfi −.25264706062e + 2 366 153 1136 8 49 1193 31
15 Share1b −.76589318579e + 5 253 117 1179 31 103 1313 13
17 Scorpion .18781248227e + 4 466 388 1534 282 76 1892 4
22 Brandy .15185098965e + 4 303 220 2202 2 54 2258 32
19 Scagr25 −.14753433061e + 8 671 471 1725 475 179 2379 3
20 Sctap1 .14122500000e + 4 660 300 1872 360 154 2386 6
16 Duisrael .89664482186e + 6 316 142 2411 171 89 2671 28
23 Israel −.89664482186e + 6 316 174 2443 89 171 2703 22
29 Bandm −.15862801845e + 3 472 305 2494 165 118 2777 17
31 Scfxm1 .18416759028e + 5 600 330 2732 23 116 2871 10
30 E226 −.18751929066e + 2 472 223 2768 189 99 3056 17
26 Scsd1 .86666666743e + 1 760 77 2388 760 1 3149 49
28 Agg −.35991767287e + 8 615 488 2862 131 432 3425 4

Table 1
Linear programming test problems in standard form from Netlib

Optimal value Its CntSc MinRed MinVar DuaGap
1 −4.647531428571369e + 2 34 14 −1e− 14 −1e− 13 −6e− 12
2 −6.999999999998724e + 1 48 17 0e + 00 3e + 01 −1e− 11
3 −6.457507705855319e + 1 49 16 0e + 00 −1e− 14 −1e− 11
4 −5.220206121152414e + 1 155 331 −4e− 17 −1e− 13 −2e− 10
6 2.254949631623806e + 5 109 45 −6e− 14 4e− 15 3e− 11
7 −2.331389824033978e + 6 291 967 2e− 03 1e + 01 −3e− 04
8 −4.113197621943637e + 4 138 425 4e + 00 −6e− 15 0e + 00
9 −3.081214984555769e + 1 102 86 −1e− 15 −2e− 16 −3e− 10
10 −5.220205511471001e + 1 383 4374 −5e− 17 −3e− 12 −6e− 06
12 −4.157322407413797e + 2 192 203 −1e− 13 −9e− 14 −4e− 11
14 −2.526463392655504e + 1 586 2072 1e− 19 −4e− 11 −7e− 05
15 −7.658931857917045e + 4 244 361 7e− 04 8e− 01 −2e− 08
16 8.966448218630457e + 5 351 327 1e + 00 −4e− 16 2e− 09
17 1.878124822738103e + 3 396 14380 0e + 00 −2e− 14 7e− 12
19a 1.069507249599776e + 7 1185 81699 −3e− 01 −9e− 13 −2e + 07
20 1.412249999999994e + 3 849 38545 −3e− 12 −5e− 14 6e− 12
22b 0.000000000000000e + 0 1101 36550 0e + 00 0e + 00 0e + 00
23a −8.724890524549816e + 5 494 1786 −5e + 01 1e− 03 −1e + 03
26 8.666666674333362e + 0 113 341 −1e− 15 −6e− 16 −7e− 15

28cd −9.714485304728061e + 7 0 1145 0e + 00 0e + 00 0e + 00
29ab 1.079112845981221e + 7 1526 62109 0e + 00 0e + 00 0e + 00
30a −1.874248957270827e + 1 1044 30575 −5e− 15 −5e− 14 −9e− 03
31a 3.059466008444887e + 9 1267 120208 −1e + 05 −8e− 11 −3e + 09

Table 2
10657 dense iterations in 66.1 minutes with Matlab LinProg v1.17: (a) The
problem is badly conditioned (the solution may not be reliable); (b) Maximum
number of iterations exceeded; (c) Divide by zero; (d) The constraints are overly
stringent (no feasible starting point found)

9

Optimal value Its CntSc MinRed MinVar DuaGap
1 −4.64753142857143e + 2 23 2 −7e− 32 −9e− 16 −2e− 13
2 −7.00000000000000e + 1 60 9 0e + 00 3e + 01 1e− 13
3 −6.45750770585645e + 1 60 8 0e + 00 0e + 00 7e− 14
4 −5.22020612117072e + 1 132 39 −1e− 34 −1e− 15 2e− 13
6 2.25494963162380e + 5 138 34 −1e− 13 2e− 15 2e− 10
7 −2.33138982433098e + 6 188 141 2e− 03 1e + 01 9e− 10
8 −4.11319762194364e + 4 140 36 4e + 00 −1e− 14 9e− 11
9 −3.08121498458282e + 1 119 31 0e + 00 −1e− 15 −1e− 14
10 −5.22020612117072e + 1 263 247 −3e− 33 2e− 17 −6e− 13
12 −4.15732240741418e + 2 172 86 −4e− 16 0e + 00 2e− 12
14 −2.52647060618800e + 1 316 292 −1e− 18 −8e− 14 5e− 13
15 −7.65893185791856e + 4 305 220 7e− 04 8e− 01 −4e− 10
16 8.96644821863046e + 5 265 169 1e + 00 −2e− 17 1e− 09
17 1.87812482273811e + 3 376 1017 0e + 00 −2e− 15 7e− 13
19 −1.47534330607685e + 7 665 5063 5e− 02 −9e− 12 −1e− 08
20 1.41225000000000e + 3 369 995 −6e− 14 −7e− 16 1e− 12
22 1.51850989648813e + 3 310 375 −1e− 16 −1e− 13 9e− 13
23 −8.96644821863046e + 5 386 402 −6e− 14 1e− 03 5e− 10
26 8.66666667433337e + 0 143 100 −9e− 16 −6e− 16 −1e− 14
28 −3.59917672865765e + 7 556 3241 −2e− 15 −2e− 11 8e− 06
29 −1.58628018450121e + 2 570 1678 0e + 00 −3e− 15 −6e− 13
30 −1.87519290663705e + 1 601 1041 0e + 00 −5e− 16 −2e− 14
31 1.84167590283489e + 4 481 1628 −2e− 15 −9e− 14 2e− 11

Table 3
6638 dense iterations in 2.8 minutes (unnormalized rule)

Optimal value Its CntSc MinRed MinVar DuaGap
1 −4.647531428571428e + 2 23 72 −5e− 32 1e + 01 −6e− 14
2 −7.000000000000000e + 1 54 30 0e + 00 3e + 01 −4e− 14
3 −6.457507705856452e + 1 59 31 −6e− 02 3e + 00 0e + 00
4 −5.220206121170725e + 1 122 156 −1e− 02 2e + 00 −9e− 14
6 2.254949631623804e + 5 151 88 −2e− 13 5e− 13 −5e− 10
7 −2.331389824330984e + 6 196 311 2e− 03 1e + 01 1e− 09
8 −4.113197621943641e + 4 154 186 4e + 00 2e− 15 −5e− 11
9 −3.081214984582823e + 1 150 98 0e + 00 2e− 16 −5e− 14
10 −5.220206121170725e + 1 258 938 −1e− 02 1e− 16 −2e− 13
12 −4.157322407414187e + 2 169 175 −8e− 02 2e− 16 −2e− 12
14 −2.526470606187998e + 1 345 778 −1e− 18 −3e− 14 1e− 14
15 −7.658931857918580e + 4 407 492 7e− 04 8e− 01 1e− 07
16 8.966448218630460e + 5 579 1056 1e + 00 4e− 16 2e− 09
17 1.878124822738106e + 3 414 5066 0e + 00 −3e− 16 2e− 12
19 −1.475343306076853e + 7 952 15216 5e− 02 −3e− 13 −6e− 09
20 1.412250000000000e + 3 549 4195 −1e + 01 −8e− 16 2e− 12
22 1.518509896488128e + 3 588 1958 −2e− 16 −3e− 14 8e− 12
23 −8.966448218630455e + 5 585 1400 −6e− 14 1e− 03 1e− 09
26 8.666666674333365e + 0 583 803 −2e− 08 1e− 18 0e + 00
28 −3.599176728657644e + 7 523 9591 −8e + 00 −9e− 11 −1e− 08
29 −1.586280184501208e + 2 1191 8436 0e + 00 −1e− 14 −1e− 12
30 −1.875192906637055e + 1 864 3058 −2e− 31 −3e− 15 1e− 13
31 1.841675902834895e + 4 670 5938 −2e− 15 −4e− 14 3e− 11

Table 4
9586 sparse iterations in 10.0 minutes with Tomlab LpSolve v3.0

10

Optimal value Its CntSc MinRed MinVar DuaGap
1 −4.647531428571428e + 2 23 13 −1e− 31 5e− 30 −6e− 14
2 −7.000000000000000e + 1 60 27 0e + 00 3e + 01 3e− 14
3 −6.457507705856450e + 1 60 22 0e + 00 −2e− 29 1e− 14
4 −5.220206121170725e + 1 128 100 0e + 00 0e + 00 0e + 00
6 2.254949631623804e + 5 139 122 −2e− 13 1e− 27 9e− 11
7 −2.331389824330984e + 6 237 328 2e− 03 1e + 01 0e + 00
8 −4.113197621943641e + 4 142 178 4e + 00 −2e− 17 0e + 00
9 −3.081214984582824e + 1 114 130 0e + 00 −2e− 30 4e− 14
10 −5.220206121170725e + 1 265 405 −1e− 31 −1e− 27 1e− 14
12 −4.157322407414193e + 2 200 181 −2e− 15 −3e− 28 3e− 13
14 −2.526470606187999e + 1 326 3047 −3e− 17 −1e− 14 −7e− 15
15 −7.658931857918580e + 4 368 573 7e− 04 8e− 01 2e− 10
16 8.966448218630462e + 5 280 839 1e + 00 −2e− 17 −5e− 10
17 1.878124822738106e + 3 401 1066 0e + 00 −2e− 28 7e− 13
19 −1.475343306076853e + 7 748 3939 5e− 02 −1e− 26 9e− 09
20 1.412250000000000e + 3 379 1113 −4e− 14 −5e− 17 −2e− 13
22 1.518509896488128e + 3 373 2925 −5e− 16 −2e− 27 0e + 00
23 −8.966448218630456e + 5 381 1259 −1e− 14 1e− 03 −1e− 10
26 8.666666674333365e + 0 165 13774 −1e− 15 −5e− 17 2e− 15
28 −3.599176728657644e + 7 591 1364 −2e− 15 −1e− 13 −7e− 08
29 −1.586280184501208e + 2 598 11769 0e + 00 −3e− 29 2e− 13
30 −1.875192906637055e + 1 601 5156 −2e− 28 −3e− 28 4e− 15
31 1.841675902834894e + 4 508 6175 −8e− 31 −3e− 15 −4e− 12

Table 5
7087 sparse iterations in 9.1 minutes (unnormalized rule)

Optimal value Its CntSc MinRed MinVar DuaGap
1 −4.647531428571428e + 2 24 6 −1e− 31 2e− 30 −6e− 14
2 −7.000000000000000e + 1 63 30 0e + 00 3e + 01 3e− 14
3 −6.457507705856450e + 1 60 22 0e + 00 −2e− 29 1e− 14
4 −5.220206121170725e + 1 130 98 0e + 00 0e + 00 0e + 00
6 2.254949631623803e + 5 143 133 −1e− 13 −1e− 28 0e + 00
7 −2.331389824330984e + 6 220 295 2e− 03 1e + 01 0e + 00
8 −4.113197621943641e + 4 141 163 4e + 00 −2e− 17 0e + 00
9 −3.081214984582824e + 1 119 125 −4e− 16 −3e− 31 2e− 14
10 −5.220206121170725e + 1 287 503 −2e− 32 −3e− 27 1e− 14
12 −4.157322407414200e + 2 218 208 −7e− 16 0e + 00 1e− 12
14 −2.526470606188001e + 1 278 1720 −3e− 17 −9e− 16 1e− 14
15 −7.658931857918580e + 4 305 425 7e− 04 8e− 01 2e− 10
16 8.966448218630463e + 5 304 980 1e + 00 −8e− 17 −7e− 10
17 1.878124822738107e + 3 393 1103 0e + 00 −6e− 28 5e− 13
19 −1.475343306076852e + 7 745 4078 5e− 02 −2e− 26 7e− 09
20 1.412250000000000e + 3 382 1289 −4e− 14 −2e− 16 0e + 00
22 1.518509896488128e + 3 389 3152 −2e− 16 −4e− 27 5e− 13
23 −8.966448218630457e + 5 434 1594 −7e− 15 1e− 03 −2e− 10
26 8.666666674333365e + 0 118 2131 −4e− 10 −3e− 18 −4e− 15
28 −3.599176728657644e + 7 582 1345 −7e− 15 −3e− 20 −7e− 08
29 −1.586280184501207e + 2 556 10675 0e + 00 0e + 00 3e− 14
30 −1.875192906637055e + 1 546 4173 −2e− 30 −4e− 28 4e− 15
31 1.841675902834894e + 4 526 5056 −2e− 15 −2e− 15 0e + 00

Table 6
6963 sparse iterations in 6.6 minutes (normalized rule)

11

5 Computational results

We have carried out a dense implementation using projected gradient tech-
niques based on an orthogonal factorization of AB, in particular, that obtained
with the classical Gram-Schmidt method with reorthogonalization [2, §2.4]. A
systematic update and downdate of the factor Q ∈ Rm×m1 with orthonormal
columns and the triangular factor B1 ∈ Rm1×m1 is carried out in this revised
implementation, see details in [22].

We have conducted some dense computational experiments using Matlab
v5.3 (with an Intel Pentium 4, 3.0 Ghz, 512 Mb RAM) to compare the un-
normalized revised version of the Phase-I given above against the Matlab
LinProg v1.17 [3] dense implementation of a variation of the usual primal
simplex method. Our computational experiment has been performed by using
a subset of the standard Netlib benchmark [5]; all problems with less than
3500 nonzeros in which neither BOUNDS nor RANGES sections occur has
been selected. The details of a quite similar sparse computational experience
can be found in [6, §5] and [8], where the ordering and scaling techniques ap-
plied to the test problems in table 1 are described. The density (in percentage)
of the Cholesky factor of AT A for the ordering chosen (not relevant for dense
tables) has been included as the right-most column of the table. No additional
preprocessing techniques have been used.

The information that has been included in each row of the tables 2–6 (from left
to right) is: the number in table 1 of the test problem, the optimal value, the
number of iterations performed, the elapsed time (in hundredths of a second),
the minimum reduced cost, the minimum value of the computed solution, and
the duality gap.

The main outcome obtained in the dense case is that 6638 (in 2.8 minutes, cf.
table 3) iterations were performed by the unnormalized version, versus 10657
(in 66.1 minutes, cf. table 2) needed by LinProg. Furthermore, LinProg
was unable to solve several problems in less than 5m iterations, and some of
them faced with numerical problems. Hence the unnormalized version largely
outperforms Linprog.

A suitable sparse orthogonal approach is to adapt the methodology of Björck
[1] and Oreborn [11] to be able to apply the sparse NNLS algorithm (via cor-
rected seminormal equations (CSNE) with the Cholesky factor RB of AT

BAB)
with a “short-and-fat” matrix A. They proposed an active set algorithm for
the sparse least squares problem

minimize 1/2 · xT Cx + dT x, x ∈ Rn subject to l ≤ x ≤ u

with C > 0. It turns out that our Phase-I is also related with the problem in

12

which

C = AT A ∧ d = −AT b ∧ ∀i ∈ 1: n , li = 0 ∧ ui = +∞

but C ≥ 0, hence to maintain a sparse QR factorization of AB we have had
to adapt [20] the proposed technique as in [4], but without forming C. The
column ordering of A dictates that of AB, although this fact does not prevent
us to maintain the order of arrival in the basic index set.

We have also conducted some sparse computational experiments using Mat-
lab v5.3 (with an Intel Pentium 4, 2.8 Ghz, 512 Mb RAM) to compare both
the unnormalized and the normalized revised versions of the Phase-I’s given
above against the Tomlab LpSolve v3.0 [10] sparse implementation of the
usual primal simplex method.

The main outcome obtained in the sparse case is that 7087 (in 9.1 minutes,
cf. table 5) and 6963 (in 6.6 minutes, cf. table 6) iterations were performed by
the unnormalized and normalized versions respectively, versus 9586 (in 10.0
minutes, cf. table 4) needed by LpSolve. A non-trivial implementation [22]
of the primal min-ratio test for the Phase-II allowed us to improve the run
time of the unnormalized version until 8.9 minutes (7161 iterations), but it is
worth noting that:

(1) Excluding Scagr25 (#19) from the test set, only the normalized version
outperforms LpSolve, turning out to run 21% faster.

(2) Excluding Scsd1 (#26) from the test set, both the unnormalized and
the normalized version outperforms LpSolve considerably, turning out
to run 31% and 37% faster, respectively.

(3) With the full test set, both the unnormalized and the normalized version
outperforms LpSolve, turning out to run 11% and 34% faster, respec-
tively.

These preliminary experiments lead us to conclude that a clear advantage was
obtained in number of iterations, quality of solutions and execution time in
both the dense and sparse case when suitable pivot strategies are used and
with no special anti-cycling tools.

Acknowledgements

The authors thank Ping-Qi Pan for many helpful comments and suggestions
that greatly improve the quality of the paper.

13

References

[1] Å. Björck. A direct method for sparse least squares problems with lower and
upper bounds. Numer. Math., 54:19–32, 1988.

[2] Åke Björck. Numerical Methods for Least Squares Problems. SIAM Pubs.,
Philadelphia, 1996.

[3] T. Coleman and M. A. Branch and A. Grace. Optimization Toolbox v2.1 for
use with Matlab, user’s guide. Technical report, The Math Works Inc., 1999.

[4] T. F. Coleman and L. A. Hulbert. A direct active set algorithm for large sparse
quadratic programs with simple lower bounds. Math. Progr., 45:373–406, 1989.

[5] D. M. Gay. Electronic mail distribution of linear programming test problems.
Committee on Algorithms (COAL) Newsletter, 13:10–12, 1985.

[6] P. Guerrero-Garćıa. Range-Space Methods for Sparse Linear Programs
(Spanish). Ph. D. thesis, Department of Applied Mathematics, University of
Málaga, Spain, July 2002.

[7] P. Guerrero-Garćıa and Á. Santos-Palomo. A non-simplex active-set framework
for basis-deficiency-allowing simplex variations. In D. Griffiths and G. A.
Watson, editors, Proceedings of the 20th Biennial Conference on Numerical
Analysis, page 19, Dundee, Scotland, June 2003. Submitted for publication.

[8] P. Guerrero-Garćıa and Á. Santos-Palomo. A comparison of three sparse
linear program solvers. Technical report, Department of Applied Mathematics,
University of Málaga, October 2003. Submitted for publication.

[9] P. Guerrero-Garćıa and Á. Santos-Palomo. Phase-I cycling under the most-
obtuse-angle pivot rule. Europ. J. Operl. Res. 167(1):20–27, November 2005.

[10] K. Holmström. The TOMLAB optimization environment v3.0 user’s guide.
Technical report, Mälardalen University, Sweden, April 2001.

[11] U. Oreborn. A Direct Method for Sparse Nonnegative Least Squares Problems.
Licentiat thesis, Department of Mathematics, Linköping University, Sweden,
1986.

[12] P.-Q. Pan. Practical finite pivoting rules for the simplex method. OR Spektrum,
12:219–225, 1990.

[13] P.-Q. Pan. New non-monotone procedures for achieving dual feasibility. Journal
of Nanjing University Mathematical Biquarterly, 12(2):155–162, November
1995.

[14] P.-Q. Pan. The most-obtuse-angle row pivot rule for achieving dual feasibility:
A computational study. Europ. J. Operl. Res. 101(1):167–176, August 1997.

[15] P.-Q. Pan. A dual projective simplex method for linear programming.
Computers Math. Applic., 35(6):119–135, March 1998.

14

[16] P.-Q. Pan. A basis-deficiency-allowing variation of the simplex method for linear
programming. Computers Math. Applic., 36(3):33–53, August 1998.

[17] P.-Q. Pan and Y.-P. Pan. A Phase-1 approach for the generalized simplex
algorithm. Computers Math. Applic., 42(10/11):1455–1464, November 2001.

[18] P.-Q. Pan and W. Li and Y. Wang. A Phase-I algorithm using the most-
obtuse-angle rule for the basis-deficiency-allowing dual simplex method. OR
Transactions (Chinesse), 8(3):88–96, 2004.

[19] Á. Santos-Palomo. The sagitta method for solving linear programs. Europ. J.
Operl. Res. 157(3):527–539, September 2004.

[20] Á. Santos-Palomo and P. Guerrero-Garćıa. Solving a sequence of sparse least
squares problems. Technical report, Department of Applied Mathematics,
University of Málaga, September 2001. Submitted for publication.

[21] Á. Santos-Palomo and P. Guerrero-Garćıa. Sagitta method with guaranteed
convergence. Technical report, Department of Applied Mathematics, University
of Málaga, February 2005. Submitted for publication.

[22] Á. Santos-Palomo and P. Guerrero-Garćıa. Computational experiences with
dense and sparse implementations of the sagitta method. Technical report,
Department of Applied Mathematics, University of Málaga, February 2005.
Submitted for publication.

15

