
A fresh view on the sagitta method

¶Angel Santos-Palomo a;¤ Pablo Guerrero-Garc¶³a a

aDepartment of Applied Mathematics, University of M¶alaga, 29071 M¶alaga, Spain

Abstract

A restructuration of the original sagitta method is accomplished by maintaining
its initial phase, but making it up with a normal phase in which primal and/or
dual iterations, successively or interminglely, are carried out. In a primal or dual
iteration, the method searchs for the corresponding feasibility, but does not require
that the other one has been achieved; moreover, once a feasibility is achieved, its
maintenance is not mandatory. The restarting of the original sagitta method is
eliminated and thus, with this new structure, multiple modi¯cations are possible.

The new sagitta methods usually start without any iteration point and in its
initial phase attempt to ¯nd a descent direction of the feasible region. Constraint
indices are added to the foreactive set until this direction is found or until there is
not a null-space descent direction. In this last case, both primal and dual iteration
points are available from the beginning of the normal phase, for every iteration and
if required. Thus, with a global viewpoint using both primal and dual information,
each new sagitta method adopts a di®erent order of primal and dual iterations.
Such methods generalize the simplex methodology and can be implemented using
reduced or projected gradient techniques. An illustrative sample of numerical and
graphical results obtained for a subset of Netlib problems is included.

Key words: linear programming, non-simplex active-set method
1991 MSC: 90C05, 90C60

¤ Corresponding author.
Email addresses: santos@ctima.uma.es (¶Angel Santos-Palomo),

pablito@ctima.uma.es (Pablo Guerrero-Garc¶³a).
URL: http://www.satd.uma.es/matap/personal/pablito/ (Pablo

Guerrero-Garc¶³a).

Preprint submitted to European Journal of Operational Research24 November 2004

1 Introduction

We consider the usual unsymmetric primal-dual pair of linear programs using
a non-standard notation (we have deliberately exchanged the usual roles of b
and c, x and y, n and m, and (P) and (D), as in e.g. [15, x2]):

(P) min `(x)
:
= cTx ; x 2 Rn

s.t ATx ¸ b

(D) max L(y) := bTy ; y 2 Rm

s.t Ay = c ; y ¸ 0

where A 2 Rn£m with m ¸ n. The condition c 6= 0 is added. (In this work
the dimension of the null vector 0 depends on the context, and k ¢ k denotes
the euclidean vector norm.) The importance of this problem is su±ciently
well-known.

The original sagitta method for solving the primal P presented by Santos-
Palomo in [23] is a non-simplex active-set method that starts without any it-
eration point, selects successive foreactive or active sets (in [23] the foreactive-
set term is used because initially the constraints in this set do not have to be
active constraints) and, as long as possible, computes corresponding null-space
descent directions, because the method attempts to ¯nd a descent direction of
the primal feasible region. An iteration point is computed if, for the current
foreactive set, there is not a corresponding null-space descent direction. Then,
while violated constraints exist, a primal-feasibility search loop is carried out.
When suitable strategies are used, the ¯rst primal feasible point obtained by
the method is generally an optimal solution; but, if this does not occur, the
process restarts. The method convergence is not theoretically guaranteed and
it is not possible to rule out the cycling possibility. Nevertheless, in spite of
this potential risk, no cycling has been observed so far using suitable addi-
tion/exchange strategies.

In previous works [23,10] we have set up both theoretical and practical back-
ground for this method. Two sparse techniques have been developed [25,26]
that lead to interesting implementations (as a reduced or projected gradient
method) of the sagitta method with encouraging computational results [10].
Details for both a dense and a sparse implementation of this method and the
computational results obtained by solving several Netlib problems can be
found in [28].

In this paper we present a structural modi¯cation of this method which elim-
inates the restarting and includes di®erent iteration types in an only loop.
Thus, the initial phase of the original method is maintained, but once the
system AA¹ = c is compatible, for AA being the current active-set matrix,
and the multiplier vector yA (solution of this system) can be computed, the
method enters a loop in which primal and/or dual iterations, successively or

2

interminglely, are carried out. A key feature of this loop is that, if it is re-
quired, the method can have both a primal point x(j) and a dual point y(j)

available. The primal point x(j) is solution of the, generally underdetermined,
system ATAx = bA, for bA being the subvector of b with elements bi for all
i 2 Aj. The elements of the dual point y(j) are zeros barring those corre-
sponding to the current multiplier vector yA. Hence, the method can adopt
a global viewpoint using both primal and dual information, and it can alter
the order of the primal and dual iterations. Therefore, with this algorithmic
improvement, multiple sagitta methods arise with unexplored possibilities |
such an exploration is not an aim of this paper| and with the challenge to
be able to guarantee their convergence.

This paper is organized as follows. In section 2 we brie°y describe the initial
phase and the primal-feasibility search loop of the original sagitta method.
In section 3 we establish an algorithm for a loop of successive well-de¯ned
dual iterations, whereas in sections 4 and 5 we provide several modi¯cations
of the original sagitta method, dispensing with detailed formulae, rules and
numerical methods. Computational results obtained with a dense projected
gradient implementation by solving a subset of Netlib problems with both
the original and the new methods are supplied in section 6 as an illustrative
sample. Finally, a summary with conclusions is presented in section 7.

2 Original sagitta method

The original sagitta method is an active-set method because, trying to deter-
mine a subset A¤ of the active set A(x¤) of active constraints at an optimal
solution x¤ for the primal P, it works with a sequence of candidate sets Aj,
Aj μ f1; 2; : : : ; mg. Any set Aj de¯ned by the algorithm with j Aj j> 0
is a set of constraint indices with the property that the normals of the con-
straints in Aj are linearly independent, i.e. the submatrix AA whose columns
are the columns ai of A for all i 2 Aj is of full column rank. But, as Aj is not
required to contain n indices, this sagitta method is a non-simplex active-set
method (see de¯nition in [8, x8.5.4]). Note that, then, it needs to work with
non-square matrices, so numerical methods are needed to solve under- and
over-determined systems.

Next, in accordance with the aim of this paper, this original sagitta method is
described brie°y and without detailed computational formulae, addition/dele-
tion rules nor implementation techniques. Since all foreactive-set or active-set
matrices AA are of full column rank, the wording of the algorithm is simpli¯ed
using statements such as:

² Select p 2 C to be added to Aj; Aj+1 Ã Aj [fpg.

3

² Select p 2 C to add to Aj.

The use of the ¯rst statement requires that the selection rule of p is such that
the property of Aj+1 is maintained, whereas it is not so using the second one
and, then, the algorithm has to specify later what to do whether ap 2 R(AA)
or whether ap =2 R(AA), where R(AA) is the range-space of AA.

The initial phase of the sagitta method put forward in [23] can be theoret-
ically thought of as an attempt to determine if the second of the alternative
propositions of Farkas' Lemma holds.

Lemma 1 (Farkas' Lemma) Let A 2 Rn£m and c 2 Rn, then exacly one of
the following propositions must be true, or

Ay = c for some y ¸ 0

or else there exists a vector d 2 Rn verifying

ATd ¸ 0 and cTd < 0: (1)

Then, starting with the \arrow" ¡c as initial descent direction and A1 = ?
(which can be considered an usual cold start), our active-set method computes
successive null-space descent directions d(j) by solving in the jth step the
constrained underdetermined system

ATAd = 0 subject to cTd < 0 (2)

where the foreactive-set matrix AA, corresponding to the current foreactive
set Aj, is of full column rank. Since a solution of (1) is pursued, the contrary
constraints to d(j) (i.e., those that aTi d

(j) < 0) are candidate constraints to be
added to Aj. If (2) has no solution then the corresponding system AA¹ = c is
compatible even though its solution yA does not always satisfy the inequality
y ¸ 0 (i.e., dual feasibility).

Therefore, the original sagitta method with this initial phase, without the de-
tails of its primal-feasibility search loop, is the following:

Original Sagitta Method

j Ã 1; A1 Ã ?; d(1) Ã ¡c (c6= 0)
While ?6= C Ã f i =2 Aj j aTi d(j) < 0 g Do
Select P μ C to be added to Aj; Aj+1 Ã Aj [P.
If there is not a null-space descent direction Then
Primal-Feasibility Search Loop

4

If the optimality conditions are satis¯ed Then Stop
Else Select Q μ Aj to delete; Aj+1 Ã AjnQ; Endif

Endif
Determine a null-space descent direction d(j+1); j Ã j + 1.

Endwhile
Stop (Problem P has no solution or the objective is unbounded below).

Disregarding a restarting event, this initial phase of the sagitta method is a
loop that ends up with a descent direction d which is also a direction of the
primal feasible region (see de¯nition in [15, p. 48], in [9, p. 82] or in [3, p.
58]) and, then, it is shown [23] that the primal problem P has no solution
or the objective is unbounded below, or else it ends because there is not a
corresponding null-space descent direction. Anyway, this ¯rst execution of the
initial phase ends after at most n additions to the foreactive set.

The primal-feasibility search loop of the sagitta method is a loop that
corresponds to an execution of successive primal iterations when there is
not a null-space descent direction, searching for primal feasibility but, in this
method, with such search conditioned to maintain dual feasibility if it is even-
tually achieved. Note that, to avoid clutter, we describe this loop with regard
to primal points, where

ri(x
(j)) = aTi x

(j) ¡ bi
and we get rid of the details of the corresponding primal and dual changes
and the numerical methods used.

Primal-Feasibility Search Loop

Determine a solution x(j) of the system ATAx = bA.
While ?6= VP Ã fi =2 Aj j ri(x(j)) < 0g Do
Select p 2 VP to add to Aj.
If ap =2 R(AA) Then Aj+1 Ã Aj [fpg;
Else
Compute the solution ±A of the system AA´ = ap.
If ±A · 0 Then Stop (Problem P has no feasible solution).
Select q 2 Aj to be exchanged for p; Aj+1 Ã Ajnfqg [fpg.

Endif
j Ã j + 1.
Determine a solution x(j) of the new system ATAx = bA.

Endwhile

We note that, in this primal iteration, an incoming index to the active set is
selected ¯rst and, later and only if required, a leaving index. We also point out
that a selection rule conditioned with an alternative statement is all we need
for di®erent types of primal iterations to be able to exist in the same loop. For

5

example, it can be desirable in a practical implementation that the leaving
index is selected using di®erent rules depending on whether dual feasibility
has been already achieved or not.

Finally, a restarting event occurs in the original sagitta method if the lat-
ter loop ends because a primal feasible point is reached but the optimality
condition y ¸ 0 is not satis¯ed by the associated multiplier vector. Then,
a single (or multiple) constraint deletion makes possible the method restart
with a warm start: the foreactive set without the deleted constraint(s) and the
corresponding solution of (2) as descent direction.

The key point is that a restarting event entails, in general, that the primal
feasibility achieved is lost and that, possibly for several iterations, the corre-
sponding system AA¹ = c becomes incompatible. To rectify the latter we shall
incorporate in the sagitta methodology the use of dual iterations which, in its
search for dual feasibility, always maintain the compatibility of the current
system AA¹ = c.

3 Dual-feasibility search loop

Once primal feasibility has been achieved, an usual dual iteration in an active-
set method consists of selecting a leaving constraint, determining a, usually
null-space, descent search direction and, ¯nally, computing the next primal
feasible point with the maximum step along the direction down to an incom-
ing constraint (see [8, pp. 380{381]) in such a way that primal feasibility is
maintained.

On the other hand, if a restarting event occurs in the original sagitta method,
we note that a constraint deletion makes possible the method restart with
an initial phase that works without any iteration point, but with a descent
direction and an addition rule to select an incoming constraint from amongst
the contrary constraints to such direction. Therefore, we have the essential
elements of a dual iteration available and so, although we dispense with the
maintenance of primal feasibility, we propose a modi¯cation including dual
iterations whose main feature is the maintenance of the compatibility of the
system AA¹ = c.

We describe such a dual iteration just as it often occurs, namely as the body of
a dual-feasibility search loop; to avoid clutter again, its description is carried
out with regard to dual points and we get rid of the details of the changes for
the corresponding primal points and the numerical methods used.

6

Dual-Feasibility Search Loop

Compute the solution yA of the compatible system AA¹ = c and the corre-
sponding dual point y(j).
While ?6= VD Ã fi 2 Aj j y(j)i < 0g Do
Select q 2 VD, and such that q = Aj(k), to be deleted from Aj.
Determine a null-space descent direction ~d as if q had been already deleted.
If ? = C Ã fi =2 Aj j aTi ~d < 0g Then
Stop (Problem P has no solution or the objective is unbounded below)

Endif
Select p 2 C to be added to Aj.
If ap =2 R(AA) Then

Aj+1 Ã Aj [fpg; yNew Ã

264 yA
0

375.
Else
Compute the solution ±A of the system AA´ = ap and the corresponding
vector ±(j) (its elements are zeros barring those corresponding to ±A).

¿ Ã y(j)q =±
(j)
q ; y

New Ã

264 ¹yA
0

375+ ¿
264¡¹±A
1

375 for ¹yA and ¹±A respectively the
vectors yA and ±A without their corresponding kth element.
Aj+1 Ã Ajnfqg [fpg.

Endif
j Ã j + 1; yA Ã yNew (y(j) is the updated dual point).

Endwhile

We point out that a leaving constraint is selected ¯rst and later an incoming
one, in both an usual and our dual iteration; the di®erence is that sometimes
in our dual iteration the leaving constraint is not deleted and that the mainte-
nance of a previously achieved primal feasibility is not regarded as a priority.
Moreover, as in a primal iteration, a selection rule conditioned with an alter-
native statement is all we need for di®erent types of dual iterations to be able
to exist in the same loop. For example, it can be desirable in a practical imple-
mentation that the incoming index is selected using di®erent rules depending
on whether primal feasibility has been already achieved or not.

Summing up, the main modi¯cation that we have sketched in this section
makes possible that a modi¯ed sagitta method can adopt a global viewpoint
using both primal and dual information and that it can alter the order between
primal and dual iterations.

7

4 Immediate modi¯cation

An immediate modi¯cation of the original sagitta method consists of the
restarting elimination and the proper inclusion of primal and dual iterations
in an unique normal phase of the new method. The modi¯ed saggita method
is described next, without detailing those items already described in previous
sections: initial phase, primal iteration and dual iteration.

Modi¯ed Sagitta Method

Initial phase searching for an active setAj such that AA¹ = c is compatible.
Compute x(j) solution of ATAx = bA, yA solution of AA¹ = c and the corre-
sponding dual point y(j).
VP Ã fi =2 Aj j ri(x(j)) < 0g; VD Ã fi 2 Aj j y(j)i < 0g.
While VP 6= ? or VD 6= ? Do
If VP 6= ? Then
If VD 6= ? Then
Primal iteration without dual feasibility achieved.

Else
Primal iteration maintaining dual feasibility already achieved.

Endif
Else
Dual iteration.

Endif
VP Ã fi =2 Aj j ri(x(j)) < 0g; VD Ã fi 2 Aj j y(j)i < 0g.

Endwhile

Note that, depending on the dual feasibility status, two types of primal itera-
tion are used. Hence we state that a leaving constraint can be selected with a
conditioned rule, as it frequently occurs in a practical implementation of the
methods (see [28]).

Clearly, this modi¯cation of the sagitta method is essentially structural; nev-
ertheless, the key point is that the paths traversed by both, modi¯ed and
original, sagitta methods can be di®erent even if all formulae and selection
rules were the same (see Figure 1). For this situation to happen it su±ces
that a dual iteration of the modi¯ed method ends up with a constraint ad-
dition and a primal infeasible point, thus this method goes on with a primal
iteration; on the other hand, the restarted initial phase of the original sagitta
method only modi¯es the descent direction (no vanishing) and stays in this
phase until such direction is eventually vanished.

The formulae for the multiplier vector updating are the same in both a primal
iteration and a dual iteration (see x3) and then, as we establish in the following

8

lemma, the variation of the objective value, after any iteration and throughout
the normal phase, can be easily computed.

Lemma 2 Let Aj be the current active-set in a primal or dual iteration
throughout the normal phase of the modi¯ed sagitta method, AA be the corre-
sponding active-set matrix, and p and q = Aj(k) be the incoming and leaving
indices, respectively. Then, the variation of the objective value is

`(x(j+1))¡ `(x(j)) =

8><>: 0 if an addition occurs,

¡¿rp(x(j)) if an exchange occurs,

where ¿ Ã y(j)q =±
(j)
q .

Note that complementary slackness holds in this normal phase and, when
j Aj j< n and an exchange occurs, the objective value `(x(j+1)) is the same
for every primal point x(j+1) which can be computed as solution of the unde-
termined system 264 ¹ATA

aTp

375x =
264¹bA
bp

375 ;
where ¹AA is the matrix AA without its kth column and ¹bA is the vector bA
without their corresponding kth element.

Classical rules in primal and dual iterations are, for example, the following:

Classical Rules in Primal Iteration

Choose incoming constraint: p = argmin
n
ri(x

(j))j ri(x(j)) < 0; i =2 Aj
o

Choose leaving constraint: q = Aj(k) = argmin
(
y
(j)
i

±
(j)
i

j ±(j)i > 0; i 2 Aj

)

Classical Rules in Dual Iteration

Choose leaving constraint: q = Aj(k) = argmin
n
y
(j)
i j y

(j)
i < 0; i 2 Aj

o
Choose incoming constraint: p = argmin

(
ri(x

(j))

¡aTi d(j)
j aTi d(j) < 0; i =2 Aj

)

However, di®erent rules can be devised to determine the incoming constraint,
namely a normalized criterion in primal iteration and a most-obtuse-angle
criterion in dual iteration:

9

60 80 100 120 140 160 180 200 220 240 260
−200

0

200

400

600
Objective of problem SHARE2B solved with Original Sagitta Method

Objective Value
First Basis
Restart
First Dual Feasible Point

60 80 100 120 140 160 180 200 220
−200

0

200

400

600
Objective of problem SHARE2B solved with Modified Sagitta Method

Objective Value
First Basis
Primal Feasible Point
First Dual Feasible Point

Fig. 1.

Sagitta Rules in Primal Iteration

Choose incoming constraint: p = argmin

(
ri(x

(j))

k ai k
j ri(x(j)) < 0; i =2 Aj

)

Choose leaving constraint: q = Aj(k) = argmin
(
y
(j)
i

±
(j)
i

j ±(j)i > 0; i 2 Aj

)

Sagitta Rules in Dual Iteration

Choose leaving constraint: q = Aj(k) = argmin
n
y
(j)
i j y

(j)
i < 0; i 2 Aj

o
Choose incoming constraint: p = argmin

(
aTi d

(j)

k ai k
j aTi d(j) < 0; i =2 Aj

)

Using these latter rules, the variations of the objective value in successive
primal or dual iterations are non-monotonic as long as dual feasibility is not
achieved, as can be seen in Figure 1. The independent variable is the iteration
counter of the method and only the objective values corresponding to the
normal phase are displayed in this graph of the objective function.

10

This non-monotonicity complicates an eventual theoretic proof that guaran-
tees the convergence of both, original and modi¯ed, sagitta methods.

5 Other modi¯cations

It is well-known that the usual way to assure a monotonic variation of the
objective value in simplex methodology is to maintain a feasibility previously
achieved. Then, to solve a given linear program, a frequently used resort is a
two-phase algorithmic scheme, else formulating an auxiliary linear program-
ming problem (usually called a Phase-I linear program) with additional (called
arti¯cial) variables and/or constraints |but in such a way that an obvious fea-
sible point exists with respect to the Phase-I constraints| (see, for example,
[6, x8.4],[8, x8.6.3,x8.6.4]), or else working with a non-monotonic Phase-I with-
out arti¯cial variables (see, for example, [14], [16,19] and the references therein
or the criss-cross methods [32,5]). This friendly resort has been proposed to
be used with di®erent non-simplex active-set methods, else with a di®erent
Phase-I linear program (see, for example, [8, x7.9,x8.6], [17,18,20,27,10]) or
else, working with a non-monotonic Phase-I without arti¯cial variables [11,12].

Bearing in mind that a sagitta method works without arti¯cial variables, other
immediate modi¯cation of the sagitta method consists in ¯rstly carrying out
successive dual iterations until dual feasibility is achieved and, then, successive
primal iterations maintaining the dual feasibility already achieved. Di®erent
methods can have such an algorithmic scheme, in accordance with the rules
used, and we have called them dual-then-primal methods in [11]. Its normal
phase is as follows:

Normal Phase of a Dual-then-Primal Sagitta Method

While VP 6= ? or VD 6= ? Do
If VD 6= ? Then
Dual iteration.

Else
Primal iteration with maintenance of dual feasibility already achieved.

Endif
VP Ã fi =2 Aj j ri(x(j)) < 0g; VD Ã fi 2 Aj j y(j)i < 0g.

Endwhile

The use of a min-ratio rule is required to maintain feasibility, but numerical
di±culties are usual and, as it is su±ciently well-known, an anticycling rule can
be convenient in practice. Anyway, we prefer a normal phase with an unique
loop to the (apparently equivalent) scheme with two successive feasibility loops
because in this way the normal phase includes the possibility of a \restarting

11

50 100 150 200 250 300
0

200

400

600

800

1000

1200

1400

Objective of problem SHARE2B solved with Dual−then−Primal Sagitta Method

Objective Value
First Dual Feasible Point
Primal Feasible Point

300 350 400 450 500 550

−4

−3.5

−3

−2.5

−2

x 10
4 Objective of problem SCFXM1 solved with Dual−then−Primal Sagitta Method

Objective Value
First Dual Feasible Point
Primal Feasible Point

Fig. 2.

event" if, because of rounding errors, a primal iteration does not maintain the
dual feasibility already achieved. A similar device is used in practical simplex
implementations (see [31, x2.3.2]).

The objective functions displayed in Figure 2 illustrate the di®erent perfor-
mance, most likely because of problem speci¯c features, of the successive blocks
of dual and primal iterations when a simple rule (in this case the most-obtuse-
angle rule) is used to choose the incoming constraint. Note that a dual-then-
primal sagitta method works with the original linear program through the
whole process and thus, in its ¯rst block of successive iterations, a global view-
point can be adopted by combining the work of achieving feasibility with the
work of achieving optimality. This often results in fewer iterations |even if the
computational cost per iteration can be greater than in classical methods|
and it is very likely that this combination avoids, at least sometimes, that the
former block of successive dual iterations ends up with a highly-degenerated
dual feasible point, hence also avoiding that a stalling or cycling event is pos-
sible in the later block of successive primal iterations while maintaining the
dual feasibility already achieved. A more detailed analysis can be found in
[29].

12

50 100 150 200
300

350

400

450

500

550

600

650

Objective of problem SHARE2B solved with Monotonic Sagitta Method

Objective Value
Dual Feasible Point
Primal Feasible Point

Fig. 3.

Other feature, with yet unexplored possibilities, of the sagitta methodology
is that, without feasibility maintenance but a suitable dynamic change of the
type of iteration bearing Lemma 2 in mind, a monotonic variation of the objec-
tive value [30] can be obtained. The challenge is to determine global strategies
with piecewise monotonic variations of the objective value in the normal phase,
in such a way that the convergence of the sagitta method is guaranteed. It
seems that, apparently at least, it is more convenient to determine ¯rstly a
primal feasible point and then to carry out a loop of dual iterations with non-
increasing variations of the objective value and without a mandatory primal
feasibility maintenance. We show, for example, in Figure 3 the objective values
obtained using a sagitta method with three stages corresponding to:

² A ¯rst loop of primal iterations with monotonic non-decreasing variations
of the objective value.

² A second loop of dual iterations with monotonic non-increasing variations
of the objective value. Note that, as it is observed in Figure 3, they can do
without primal feasibility maintenance.

² Only if it is necessary and maintaining dual feasibility in such case, a ¯nal
loop of primal iterations with monotonic non-decreasing variations of the
objective value.

The sagitta method just described [30] has an algorithmic trend di®erent from
that of the monotonic build-up simplex variants of Anstreicher and Terlaky

13

[1]. The adaptations to the non-simplex case of either this monotonic build-up
rule or the exterior point simplex algorithm [21,22] could provide other sagitta
modi¯cations of interest. Finally, we do not want to fail to notice that a proper
use of the \local information" supplied by a primal feasible point ought to be
considered too [24], and that the availability of di®erent strategies for solving
di®erent type of problems can be advantageous.

6 Computational results

We have carried out a dense implementation of the original and the modi¯ed
methods, using projected gradient techniques based on an orthogonal factor-
ization (obtained with the classical Gram-Schmidt method with reorthogonal-
ization [2, x2.4]) of the foreactive- or active-set matrix (see details in [28]).

The linear programs for which a restarting event occurs in the original sagitta
method are rare. However, in order to test the method performance, we have
selected the duals of 22 problems |in which neither BOUNDS nor RANGES
sections occur| of the su±ciently well-known Netlib library [7]. All test
problems have been solved without scaling nor preprocessing; they have
been read as linear programs in standard form and then dualized to obtain a
primal problem P [10, x5.3]. Additionally, to be used as a reference, we supply
the corresponding CPU times in seconds for the Matlab code linprog of
the Optimization Toolbox release 2.2, solving the same subset of Netlib
problems with the small and medium scale option that, in accordance with
the documentation of the distributor, is a variation of the simplex method.

The computational results were obtained with an Intel Pentium III at 1.08GHz
with 128MB RAM, using Matlab release 13 and interpreted code, at least
with regard to our source codes.

Code linprog has a large-scale option under which the interior-point compiled
code Lipsol is called instead. While we have developed two sparse techniques
that lead to interesting implementations of the sagitta methods [25,26], a
comparison of computational results using such large-scale option would not
be fair because our source code is interpreted. Moreover, it is well-known [13,
p. 10] that simplex methods outperform interior-point ones when the problem
is not large enough.

In the tables below we shall use a ¯rst column labeled # to hold a number to
recognize each Netlib problem. This number was assigned to each Netlib
problem by Bixby in [4], according to the number of its nonzeros. The name
of each Netlib problem solved is also given in Tables 1 and 5.

14

TABLE 1. Computational results for the Matlab code linprog.

Name n m Optimal value Iter Time MinRes

1 AFIRO 27 51 4.647531428571E+2 33 0.16 -3.4E-15

2 SC50B 50 78 6.999999999998E+1 48 0.44 -4.7E-13

3 SC50A 50 78 6.457507705856E+1 49 0.44 -4.6E-16

4 SC105 105 163 5.220206121128E+1 145 4.29 -6.3E-12

6 ADLITTLE 56 138 -2.254949631624E+5 116 1.32 -5.8E-11

7 SCAGR7 129 185 2.331389823918E+6 269 17.42 -1.7E-06

8 STOCFOR1 117 165 4.113197621944E+4 134 3.46 -5.1E-13

9 BLEND 74 114 3.081214983291E+1 105 5.32 -2.6E-09

10 SC205 205 317 5.220206121083E+1 306 34.77 -1.2E-11

12 SHARE2B 96 162 4.157322407409E+2 163 3.24 -4.5E-10

14 LOTFI 153 366 2.500931312371E+1 339 35.26 -2.2E-05

15 SHARE1B 117 253 7.658931857918E+4 241 8.63 -4.8E-12

17 SCORPION 388 466 -1.878124822738E+3 401 316.71 -2.2E-12

19 SCAGR25 471 671 (*)

20 SCTAP1 300 660 -1.412250000000E+3 692 686.34 -1.1E-12

22 BRANDY 220 303 -1.518509896488E+3 754 585.40 -1.3E-09

23 ISRAEL 174 316 8.966448212766E+5 445 29.77 -2.1E-07

26 SCSD1 77 760 -8.666666674333E+0 109 4.72 -3.8E-15

28 AGG 488 615 (*)

29 BANDM 305 472 (*)

30 E226 223 472 (*)

31 SCFXM1 330 600 (*)

(*) Note: The problem is badly conditioned; the solution may not be reliable.

Table 1 sums up |along with the Bixby's number, the name, the number n
of variables and the number m of constraints of each Netlib problem| the
computational results obtained using Matlab code linprog. Total number
of iterations and running time required to solve each problem are displayed
in two columns labeled Iter and Time, along with two additional columns
(labeled Optimal value and MinRes, respectively) with the computed optimal
value of the objective and the minimum element of the residual vector at the
optimal solution obtained. The displayed note issued by the code linprog,

15

which warns about its di±culties to solve ¯ve Netlib problems of medium
size, is incorporated in Table 1 as a footnote.

TABLE 2. Computational results for the Original Sagitta Method solving

Netlib problems and using Most-Obtuse-Angle rule at start

Optimal value Iter Time MinRes j A¤ j IPh RS %Itb

1 4.647531428571E+2 23 0.06 -1.8E-15 20 7 0 0.0

2 7.000000000000E+1 67 0.22 0.0E+00 48 5 0 0.0

3 6.457507705856E+1 64 0.22 -1.2E-16 49 17 0 0.0

4 5.220206121171E+1 141 1.15 -1.9E-16 104 33 0 0.0

6 -2.254949631624E+5 153 0.93 -3.8E-12 56 39 0 41.8

7 2.331389824331E+6 188 2.64 -6.2E-12 129 113 3 16.5

8 4.113197621943E+4 127 0.82 -3.1E-13 117 98 0 8.7

9 3.081214984583E+1 127 0.66 0.0E+00 74 8 0 28.3

10 5.220206121171E+1 313 10.00 -6.5E-17 203 60 0 0.0

12 4.157322407415E+2 258 2.20 -2.8E-12 96 47 5 26.7

14 2.526470606237E+1 313 7.25 -9.4E-15 153 85 0 29.4

15 7.658931857919E+4 228 3.02 -9.8E-11 117 117 0 49.1

17 -1.878124822738E+3 383 18.84 -1.1E-12 336 260 1 0.0

19 1.475343306077E+7 757 95.19 -7.5E-12 448 419 0 0.0

20 -1.412250000000E+3 468 29.11 -1.1E-11 278 223 7 0.0

22 -1.518509896488E+3 489 13.79 -1.5E-13 170 159 0 0.0

23 8.966448218631E+5 401 10.66 -1.7E-11 174 171 0 25.9

26 -8.666666674333E+0 123 1.70 -1.3E-08 77 7 0 14.6

28 3.599176728654E+7 574 56.19 -2.6E-09 486 459 1 0.0

29 1.586280184509E+2 783 50.59 -1.9E-13 303 288 0 0.0

30 1.875192906631E+1 808 32.40 -2.4E-14 213 139 0 0.0

31 -1.841675902835E+4 558 38.12 -1.0E-12 320 273 0 0.0

16

TABLE 3. Computational results for the Modi¯ed Sagitta Method solving

Netlib problems and using Most-Obtuse-Angle rule at initial phase

Optimal value Iter Time MinRes j A¤ j IPh %Itb

1 4.647531428571E+2 23 0.06 -1.8E-15 20 7 0.0

2 7.000000000000E+1 67 0.17 0.0E+00 48 5 0.0

3 6.457507705856E+1 64 0.22 -1.2E-16 49 17 0.0

4 5.220206121171E+1 141 1.16 -1.9E-16 104 33 0.0

6 -2.254949631624E+5 153 1.54 -3.8E-12 56 39 41.8

7 2.331389824331E+6 188 2.52 -8.9E-13 129 113 16.5

8 4.113197621943E+4 127 0.77 -3.1E-13 117 98 8.7

9 3.081214984583E+1 127 1.27 0.0E+00 74 8 28.3

10 5.220206121171E+1 313 9.62 -6.5E-17 203 60 0.0

12 4.157322407414E+2 222 1.81 -3.0E-13 96 47 14.9

14 2.526470606237E+1 313 6.76 -9.4E-15 153 85 29.4

15 7.658931857919E+4 228 2.92 -9.8E-11 117 117 49.1

17 -1.878124822738E+3 383 16.48 -4.7E-13 336 260 0.0

19 1.475343306077E+7 757 85.58 -7.5E-12 448 419 0.0

20 -1.412250000000E+3 468 24.39 -1.5E-10 278 223 0.0

22 -1.518509896488E+3 489 13.08 -1.5E-13 170 159 0.0

23 8.966448218631E+5 401 10.32 -1.7E-11 174 171 25.9

26 -8.666666674333E+0 123 1.43 -1.3E-08 77 7 14.6

28 3.599176728661E+7 574 48.93 -6.2E-12 486 459 0.0

29 1.586280184509E+2 783 47.45 -1.9E-13 303 288 0.0

30 1.875192906631E+1 808 29.27 -2.4E-14 213 139 0.0

31 -1.841675902835E+4 558 33.67 -1.0E-12 320 273 0.0

Tables 2{4 sum up the computational results obtained for the original, mod-
i¯ed and dual-then-primal sagitta method, using the same initial phase with
the most-obtuse-angle rule to choose the incoming constraint. In these tables,
apart from the ¯ve columns labeled #, Optimal value, Iter, Time and MinRes
(displaying the Bixby's number and the corresponding computational results
obtained with the respective method), other columns with additional numer-
ical information of interest are included, on which we comment now:

17

TABLE 4. Computational results for Dual-then-Primal Sagitta Method solving

Netlib problems and using Most-Obtuse-Angle rule at initial phase

Optimal value Iter Time MinRes j A¤ j IPh Itd Itp

1 4.647531428571E+2 23 0.11 -7.4E-32 20 7 0 16

2 7.000000000000E+1 64 0.27 0.0E+00 48 5 0 59

3 6.457507705856E+1 64 0.21 -5.1E-32 49 17 0 47

4 5.220206121171E+1 143 1.16 -6.2E-32 104 33 0 110

6 -2.254949631624E+5 163 1.04 -2.4E-13 56 39 12 112

7 2.331389824331E+6 200 2.59 -8.9E-13 129 113 51 36

8 4.113197621944E+4 127 0.71 -3.1E-13 117 98 0 29

9 3.081214984583E+1 127 0.77 0.0E+0 74 8 0 119

10 5.220206121171E+1 310 8.46 -3.5E-32 203 60 0 250

12 4.157322407414E+2 332 3.13 -2.3E-14 96 47 202 83

14 2.526470606188E+1 292 6.37 -5.0E-16 153 85 6 201

15 7.658931857919E+4 243 3.51 -9.8E-11 117 117 46 80

17 -1.878124822738E+3 383 18.07 -4.7E-13 335 260 24 99

19 1.475343306077E+7 678 76.40 -7.5E-12 449 419 108 151

20 -1.412250000000E+3 788 43.39 -6.0E-13 277 223 469 96

22 -1.518509896488E+3 732 19.71 -1.5E-13 170 159 387 186

23 8.966448218630E+5 401 10.44 -4.5E-13 174 171 0 230

26 -8.666666674333E+0 123 1.48 -1.3E-08 77 7 0 116

28 3.599176728658E+7 589 52.95 -7.6E-13 484 459 66 64

29 1.586280184501E+2 744 44.82 -1.9E-13 304 288 136 320

30 1.875192906637E+1 971 36.58 -2.1E-14 215 139 130 702

31 -1.841675902835E+4 545 33.51 -9.9E-14 320 273 42 230

² Column labeled j A¤ j, in Tables 2{4, shows the cardinal of the ¯nal active
set A¤, subset of the active set A(x¤) of active constraints at the computed
optimal solution x¤. We can check that j A¤ j< n for 13 out of the 22
problems solved, or in other words, that such problems are solved by sagitta
methods working with basis de¯ciency throughout the whole process.

² Column labeled IPh, in Tables 2{4, shows the number of iterations per-
formed in the initial phase, which coincides with the cardinal of the active
set at the end of such phase and the beginning of the normal phase. Since

18

the initial phase has been the same for these three sagitta methods, such
numbers coincide in the three tables. Note that only for problem SHARE1B
the cardinal of the active set at the end of the initial phase is equal to n.

² Column labeled RS, in Table 2, shows the number of restarting events when
the original sagitta method is used. The computational results obtained by
the original and modi¯ed sagitta methods have to coincide if this number is
zero, but the results could di®er if it is nonzero. These di®erences are patent
for problem SHARE2B, as we showed in Figure 1.

² Column labeled %Itb, in Tables 2{3, shows the percentage of square ba-
sis iterations, i.e. iterations with j Aj j= n. It is worth noting that such
percentage is zero or less than 50% for all problems solved.

² Columns labeled Itd and Itp, in Table 4, show the number of dual and
primal iterations performed in the normal phase of the dual-then-primal
sagitta method. Note that the same initial phase has been implemented for
the three sagitta methods and that it obtains a dual feasible point for those
problems, nine in total, in which the number in column Itd is zero. Note also
that, when the initial phase does not end up with a dual feasible point, the
number of dual iterations needed to obtain it varies greatly, ranging from
relatively small for some problems like, for example, LOTFI and SCFXM1,
to signi¯cantly large for other problems like, for example, SHARE2B or SC-
TAP1. The di®erent performance of the successive blocks of dual and primal
iterations, most likely because of problem speci¯c features, is illustrated in
Figure 2, which shows the variations of the objective value for SHARE2B
and SCFXM1, respectively.

The numerical results in Tables 2 and 3 are nearly the same, because the
modi¯ed sagitta method is, in essence, a structural modi¯cation of the original
sagitta method. From now on, the modi¯ed sagitta method will be considered
the de¯nitive version of the sagitta method.

A systematic comparison of the methods based on the ratios of iterations and
running time is displayed in Table 5. At a glance, we can observe that the
Matlab code linprog does not solve ¯ve problems of the set (see table foot-
note in Table 1) and that, moreover, there are di®erences in the quality of
several of the optimal solutions obtained. Thus, comparing results for prob-
lems like SCAGR7, LOTFI and ISRAEL in columns labeled MinRes, code
linprog commits a greater violation of the constraints. As a consequence, the
third digit of the objective value computed at the optimal solution of problem
LOTFI obtained is not correct.

19

TABLE 5. Ratios for method comparison

Netlib problem Lp/Sag Lp/DtPSag Sag/DtPSag

Name Iter Time Iter Time Iter Time

1 AFIRO 1.43 2.67 1.43 1.45 1.00 0.55

2 SC50B 0.72 2.59 0.75 1.63 1.05 0.63

3 SC50A 0.77 2.00 0.77 2.10 1.00 1.05

4 SC105 1.03 3.70 1.01 3.70 0.99 1.00

6 ADLITTLE 0.76 0.86 0.71 1.27 0.94 1.48

7 SCAGR7 1.43 6.91 1.35 6.73 0.94 0.97

8 STOCFOR1 1.06 4.49 1.06 4.87 1.00 1.08

9 BLEND 0.83 4.19 0.83 6.91 1.00 1.65

10 SC205 0.98 3.61 0.99 4.11 1.01 1.14

12 SHARE2B 0.73 1.79 0.49 1.04 0.67 0.58

14 LOTFI 1.08 5.22 1.16 5.54 1.07 1.06

15 SHARE1B 1.06 2.96 0.99 2.46 0.94 0.83

17 SCORPION 1.05 19.22 1.05 17.53 1.00 0.91

19 SCAGR25 0.00 0.00 0.00 0.00 1.12 1.12

20 SCTAP1 1.48 28.14 0.88 15.82 0.59 0.56

22 BRANDY 1.54 44.76 1.03 29.70 0.67 0.66

23 ISRAEL 1.11 2.88 1.11 2.85 1.00 0.99

26 SCSD1 0.89 3.30 0.89 3.19 1.00 0.97

28 AGG 0.00 0.00 0.00 0.00 0.97 0.92

29 BANDM 0.00 0.00 0.00 0.00 1.05 1.06

30 E226 0.00 0.00 0.00 0.00 0.83 0.80

31 SCFXM1 0.00 0.00 0.00 0.00 1.02 1.00

Average 1.05 8.19 0.97 6.52 0.95 0.96

Table 5 displays ratios of iterations and time of Matlab code linprog ver-
sus ourMatlab codes for modi¯ed and dual-then-primal sagitta methods (in
columns headed Lp/Sag and Lp/DtPSag, respectively), and for both sagitta
methods (in column headed Sag/DtPSag) too. The iteration results are re-
ported to allow the checking that they are not signi¯cantly di®erents in av-
erage, although they are for some speci¯c problems. Nevertheless, since the
computational e®ort involved in a single iteration of the sagitta methods is far

20

less than that of linprog, the performance of the codes should be ranked prop-
erly by running times. The time ratios are quite impressive in general, but spe-
cially for problems of medium size like SCORPION, SCTAP1 and BRANDY.
Summing up (but bearing in mind only those problems solved by linprog),
the average time ratios (see bottom line in Table 5) are Lp/Sag= 8:19 and
Lp/DtPSag= 6:52. Therefore, it is clearly established that, solving this subset
ofNetlib problems, both sagitta codes largely outperform linprog. The
comparison between sagitta codes with average time ratio Sag/DtPSag= 0:96
allows us to conclude that the modi¯ed sagitta is slightly better than the
dual-then-primal method.

The average time ratios in Table 5 are more impressive than those obtained by
Pan (see Table 6 in [18, p. 47]) for his compiled FORTRAN implementations
of the revised two-phase simplex method versus his basis-de¯ciency-allowing
variations of the simplex method. Note that his simplex code solves all the
Netlib problems included in our table, but Pan makes explicit in his paper
[18, p. 50] that the problems were ¯rst reduced in size by a preprocessor to
remove redundant rows before executing this code. The use of a preprocessor
can change the method performance, but the performance variations for a
sagitta method using a suitably adapted preprocessing procedure is a question
to be analysed; nevertheless, we have already checked [10, x5] that a scaling
of the rows and columns of the constraint matrix generally improves both the
iterations and running time of the sagitta methods.

7 Summary

A set of modi¯cations of the original sagitta method has been presented,
based upon de¯nitive and clearly established de¯nitions of primal and dual
iteration. These de¯nitions allow us to consider the sagitta methodology as a
generalization of the simplex methodology because, using a global viewpoint,
a sagitta method:

² Starts usually without any iteration point and in its initial phase, bearing
the objective in mind, attempts to ¯nd a descent direction of the feasible
region or, alternatively, a solution of Ay = c.

² Works in its normal phase as an active-set method, generally with basis
de¯ciency, i.e. with j Aj j< n, although it can end up with a square basis,
i.e. with j Aj j= n. Every active-set Aj has the property that the normals
of the constraints in Aj are linearly independent, and in this phase every
system AA¹ = c is compatible even if j Aj j< n.

² Works without a previous feasibility achieved and, then, can perform primal
and dual iterations, successively or interminglely; moreover, it can accom-
plish di®erent primal or dual iterations, depending on the addition/exchange

21

rules used.

Our aim in this paper has been to specify this methodological modi¯cation,
calling attention to its possibilities. We consider specially interesting the pos-
sible existence of e±cient and monotonic convergent sagitta methods working
without an usual \permanent maintenance" of feasibility, that is to say ¯rstly
in Phase-I and later in Phase-II. Furthermore, in view of the performance of
the non-monotonic sagitta methods, we suspect, as Pan [16, p. 155] did,

that undue emphasis has been laid on such monotonicity for so long as might
have con¯ned ourselves from making further progress.

Additionally, our opinion is that the computational results obtained with non-
simplex active-set methods (or basis-de¯ciency-allowing simplex variations,
see [18]) are nowadays impressive enough to be able to claim the suitability
for code of these methods to be included in optimization program libraries.
Moreover, even though the simplex methodology is strongly established, we
are convinced of the insightful possibilities of the methodological modi¯cation
presented.

References

[1] ANSTREICHER, K.M., and T. TERLAKY (1994). A monotonic build-up
simplex algorithm for linear programming. Operations Research 42, pp. 556{
561.

[2] BJÄORCK, ºA. (1996). Numerical Methods for Least Squares Problems. SIAM
Publications, Philadelphia, USA.

[3] BAZARAA, M.S., J.J. JARVIS, and H.D. SHERALI (1990). Linear
Programming and Network Flows. Second Edition. John Wiley & Sons, New
York.

[4] BIXBY, R.E. (1992). Implementing the simplex method: The initial basis.
ORSA J. Computing 14(3), pp. 670{676.

[5] FUKUDA, K., and T. TERLAKY (1997). Criss-cross methods: A fresh view on
pivot algorithms. Mathematical Programming 79, pp. 369{395.

[6] FLETCHER, R. (1987). Practical Methods of Optimization. Second Edition.
John Wiley & Sons, Chichester.

[7] GAY, D.M. (1985). Electronic mail distribution of linear programming test
problems. COAL Newsletter 13, 10{12.

[8] GILL, P.E., W. MURRAY, and M.H. WRIGHT (1991). Numerical Linear
Algebra and Optimization, Vol. 1. Addison-Wesley Publishing, Redwood City,
California.

22

[9] GOLDFARB, D., and M.J. TODD (1989). Linear Programming. Chap. II in:
Nemhauser, G.L., et al. (eds.), Optimization, pp. 73{170.

[10] GUERRERO-GARC¶IA, P. (2002) Range-Space Methods for Sparse Linear
Programs (Spanish). Ph.D. thesis, Dept. App. Math., Univ. M¶alaga, Spain.

[11] GUERRERO-GARC¶IA, P., and A. SANTOS-PALOMO (2003). A non-simplex
active-set framework for basis-de¯ciency-allowing simplex variations. Presented
at the 20th Biennial Conference on Numerical Analysis, Dundee (Scotland),
June 2003. Submitted for publication.

[12] LI, W., P. GUERRERO-GARC¶IA, and A. SANTOS-PALOMO (2004). A
basis-de¯ciency-allowing primal Phase-I algorithm using the most-obtuse-angle
column rule. In preparation.

[13] LUSTIG, I.J., R.E. MARSTEN, and D.F. SHANNO (1994). Interior point
methods for linear programming: Computational state of the art.ORSA Journal
on Computing 6(1), 1{14.

[14] MAROS, I. (1986). A general Phase-I method in linear programming. European
Journal of Operational Research 23, pp. 64{77.

[15] OSBORNE, M.R. (1985). Finite Algorithms in Optimization and Data Analysis.
Wiley, Chichester.

[16] PAN, P.-Q. (1995). New non-monotone procedures for achieving dual feasibility.
Journal of Nanjing University 12(2), pp. 155{162.

[17] PAN, P.-Q. (1998). A dual projective simplex method for linear programming.
Computers and Mathematics with Applications 35(6), 119{135.

[18] PAN, P.-Q. (1998). A basis-de¯ciency-allowing variation of the simplex method
for linear programming. Computers and Mathematics with Applications 36(3),
pp. 33{53.

[19] PAN, P.-Q., and W. LI (2003). A non-monotone Phase-I method in linear
programming. Journal of Southeast University (English Edition) 19(3), pp. 293{
296.

[20] PAN, P.-Q., and Y. PAN (2001). A Phase-I approach for the generalized simplex
algorithm. Computers and Mathematics with Applications 42, pp. 1455{1464.

[21] PAPARRIZOS, K. (2003). An exterior point simplex algorithm for (general)
linear programming problems. Annals of Operations Research 32, pp. 497{508.

[22] PAPARRIZOS, K., N. SAMARAS, and G. STEPHANIDES (2003). An e±cient
simplex type algorithm for sparse and dense linear programs. European Journal
of Operational Research 148, pp. 323{334.

[23] SANTOS-PALOMO, A. (2004). The sagitta method for solving linear programs.
European Journal of Operational Research 157(3), pp. 527{539.

23

[24] SANTOS-PALOMO, A., and P. GUERRERO-GARC¶IA (1998). The sagitta
method for solving linear programs as a feasible point method. Presented at
Optimization 98, Univ. Coimbra (Portugal), July 1998.

[25] SANTOS-PALOMO, A., and P. GUERRERO-GARC¶IA (2001a). Solving a
sequence of sparse compatible systems. Presented at the 19th Biennial
Conference on Numerical Analysis, Dundee (Scotland), June 26{29, 2001.
Submitted for publication.

[26] SANTOS-PALOMO, A., and P. GUERRERO-GARC¶IA (2001b). Solving a
sequence of sparse least squares problems. Technical report, Dept. App. Math.,
Univ. M¶alaga. Submitted for publication.

[27] SANTOS-PALOMO, A., and P. GUERRERO-GARC¶IA (2001c). A non-simplex
method for linear programs in standard form. Presented at the XXVI Congreso
Nacional de Estad¶³stica e Investigaci¶on Operativa, ¶Ubeda, Spain, November
6{9, 2001. Submitted for publication.

[28] SANTOS-PALOMO, A., and P. GUERRERO-GARC¶IA (2004). Computational
experiences wih dense and sparse implementations of the sagitta method.
Submitted for publication.

[29] SANTOS-PALOMO, A., and P. GUERRERO-GARC¶IA (2004). Sagitta method
with guaranteed convergence. Submitted for publication.

[30] SANTOS-PALOMO, A., and P. GUERRERO-GARC¶IA (2004). Monotonic
sagitta methods. In preparation.

[31] SAUNDERS, M.A. (2003). Large-scale numerical optimization. Technical
report, Dept. Management Science and Engineering, Stanford Univ., Stanford.
Handouts of the MS&E 318 course.

[32] ZIONTS, S. (1969). The criss-cross method for solving linear programming
problems. Management Science 15, pp. 426{445.

24

