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Abstract

In this short note we answer two questions that naturally arise while dealing with

Hoffman’s celebrated 50-years-old cycling example for the primal simplex method

to solve linear programs, where an angle θ and a scaling factor ω are adjustable

parameters in his example. In particular, we determine what conditions have to be

imposed on ω for cycling to occur with θ = 2π/5, and what on θ with |ω| = tan(θ).
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1 A motivating historical misunderstanding

Hoffman’s celebrated 50-years-old cycling example is a linear program for

which cycling occurs when Dantzig’s primal simplex method (cf. [1]) with

certain pivoting rule is used to solve it. There are two adjustable parameters

involved, namely an angle θ and a scaling factor ω. From now on, we shall

shorten the following trigonometric expressions as

c
.
= cos(θ), s

.
= sin(θ), t

.
= s/c, and C

.
= cos(2θ), S

.
= sin(2θ), T

.
= S/C.

Using this notation, Hoffman’s example can be stated as follows:

(D) max −[0, 0, 0, (c− 1)/c, ω, 0, 2ω, 4s2,−2ωC, 4s2, ω(1− 2c)]y,

s.t
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,

y ∈ R11, y ≥ O.

Note that we have used the following unsymmetric primal-dual pair of linear

programs with a non-standard notation (and that we have deliberately ex-

changed the usual roles of b and c, x and y, n and m, and (P ) and (D), as

e.g. in [9, §2]):

(P ) min cT x , x ∈ Rn

s.t AT x ≥ b

(D) max bT y , y ∈ Rm

s.t Ay = c , y ≥ O,
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where A ∈ Rn×m with m ≥ n and rank(A) = n. We denote with F and G the

feasible region of (P ) and (D), respectively. The notation used here is

rj
.
= aT

j x− bj, x
.
= A−T

B bB, and yB
.
= A−1

B c,

where aj is the jth column of A. As usual, B is the ordered index set of basic

variables and N that of the non-basic ones, and the current iteration is noted

by a superindex (k) when it is not clear from context. We assume that the

reader is capable of applying to problem (D) the primal simplex algorithm

(starting from a vertex y ∈ G such that |B| = n) and we do not repeat it here.

As Alan recently confirmed to us, his original report [6] had not been published

until August 2003, date in which a collection of his selected papers done by

Micchelli [8] has seen the light of day. Hence the usual source of information

has been Dantzig’s classical [2, pp. 228–229], although Alan told us that his

example appeared in the first editions of Gass’ book [4]. It has also been

appeared far more recently, in Dantzig and Thapa’s book [3, pp. 149–151] and

Lee’s paper [7, p. 99], but the key point is that θ = 2π/5 and ω > (1−c)/(1−2c)

is the unique requisite in all its published occurrences. We are interested in

particularizing Hoffman’s example to the case |ω| = t, because it is the only

value of ω ∈ R such that ‖aj‖2 is constant for all j ∈ 1: m, an important

feature to design a cycling example for certain sparse linear programming

algorithm in which we have been involved for several years [5].

Let us tell how our misunderstanding arose, because it constitutes the main

motivation of this work. In Hoffman’s example we have to apply the following

rules when operating with the primal simplex method:

(1) The entering variable p is the non-basic whose reduced cost is minimum.
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(2) The leaving variable q is determined with the classical min-ratio test,

with ties resolved in favour of the eligible index appearing leftmost in B.

(3) Variables p and q are interchanged in the corresponding ordered sets.

For θ = 2π/5, t is greater than (1− c)/(1− 2c) but surprisingly there was no

cycle, for the negative reduced costs rj in iteration 1 are those corresponding

to y5, y6 and y8 but the most negative one is not r5. This led us to think that

there must be some typo or even to doubt whether expressions as tan θ/ω and

the like (as appear in [2, p. 229] and [3, pp. 150–151]) should be interpreted

as tan(θ)/ω or as tan(θ/ω), but Lee’s article [7] (that we were not aware of

and to which Alan kindly called our attention) confirmed that the former was

the right interpretation. Moreover, Alan also wrote us

I simply underestimated how big ω had to be. This was called to the at-

tention of Saul Gass when he published the example in his book on linear

programming, Saul told me, but I didn’t do anything about it.

so our interpretation “for all ω > (1− c)/(1− 2c)” was wrong, and the right

interpretation must be “for some ω > (1 − c)/(1 − 2c)”. This fact, that was

also noticed by Saul Gass, lead us to the conclusion that additional conditions

have to be imposed for cycling to occur.

The aim of this short note is to answer the following questions (that naturally

arise and that have not been addressed before, to the best of our knowledge):

(1) What conditions have to be imposed on ω for cycling to occur in Hoff-

man’s cycling example with θ = 2π/5?

(2) What conditions have to be imposed on θ for cycling to occur in Hoffman’s

cycling example with |ω| = tan(θ)?
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We shall address the fomer in §2, and the latter in §3.

2 Answering the first question: θ set up to 2π/5

In Hoffman’s cycling example, primal simplex method is started from B(0) =

[1, 2, 3], thus x(0) = [0; 0; 0], r(0) = −b and y
(0)
B = c. Using the criterion given

in §1, the basis in the kth iteration (k ∈ N) has to be

B(k) =

[
1, 2

(⌈
k

2

⌉
mod 5 + 1

)
, 2

(⌊
k

2

⌋
mod 5 + 1

)
+ 1

]
,

hence B(10) = B(0) and Hoffman’s cycle takes place. The tableaux with θ =

2π/5 for iterations 0, 1 and 2 can be found in [2, p. 229] and [3, pp. 150–151],

so we do not repeat them here.

When θ = 2π/5 we have t =
√

5 + 2
√

5 ≈ 3.08. In iteration 0, the condition

for r4 = (c − 1)/c to be the most negative reduced cost is ω > 0. In fact, if

such condition holds then r4 is the only negative reduced cost. In iteration 1,

there are three negative reduced costs with ω > 0, namely r5 = ω(2c − 1)/c,

r6 = −2st and r8 = (c− 1)/c; for r5 < r8 the usual condition ω > (1− c)/(1−

2c) = (5 +
√

5)/4 ≈ 1.81 must hold, but for r5 < r6 it turns out that

ω > 2s2/(1− 2c) = 5/2 +
√

5 ≈ 4.74.

Therefore, ω > 2s2/(1−2c) —instead of ω > (1−c)/(1−2c)— is the condition

for cycling to occur with θ = 2π/5. It is an astonishing thing that such a

condition for y5 to be the entering variable in iteration 1 has been in the

shadow for fifty years! Anyway, |ω| = t does not satisfy this inequality, hence

our interest in the second question.
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3 Answering the second question: |ω| set up to tan(θ)

Firstly, note that we have to recompute the tableaux from [2] or [3] because

they are only valid for θ = 2π/5. Now let us show what conditions arise on θ.

0 0.5 1 1.5
−2

−1

0

1

2

3

4

5

6

θ

Reduced costs for 0≤θ≤π/2 in iteration 0

0 0.5 1 1.5
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

θ

Difference between r
6
 and r

5
 for 0≤θ≤π/2 in iteration 1

Fig. 1. Graphs to help in the study of reduced costs

With ω = t, we can restrict ourselves to θ ∈ [0, π/2], because r4 6< 0 if

θ ∈ [π/2, 3π/2] and r5 < r4 if θ ∈ [3π/2, 2π] in iteration 0. As shown in

the left-hand side of Figure 1, the negative reduced costs in iteration 0 are

r4 = (c − 1)/c, r9 = −2Ct and r11 = t(1 − 2c). There is a value of θ from

which r4 is the most negative reduced cost, and such a value is π/4 ≈ 0.79. But

in iteration 1, it turns out that x(1) = [0; (1− c)/c2; 0] and (see the right-hand

side of Figure 1)

C(1− c)

c2
= r6 < r5 =

s(2c− 1)

c2
, ∀θ ∈ [0, π/2],

so y5 is not the entering variable in iteration 1. A totally analogous reasoning

can be done with ω = −t for θ ∈ [3π/2, 2π] in this case, and then we can

conclude that |ω| = t entails no cycling for any value of θ.
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