
BIT 0006-3835/00/4004-0001 $15.00
2000, Vol. 40, No. 4, pp. 001–004 c© Swets & Zeitlinger

SOLVING A SEQUENCE OF
SPARSE LEAST SQUARES PROBLEMS ∗

ÁNGEL SANTOS-PALOMO and PABLO GUERRERO-GARCÍA

Department of Applied Mathematics, University of Málaga, Complejo Tecnológico,

Campus Teatinos, 29071 Málaga, Spain, emails: {santos,pablito}@ctima.uma.es

Abstract.

We describe how to maintain an explicit sparse orthogonal factorization in order to
solve the sequence of sparse least squares subproblems needed to implement an active-
set method to solve the nonnegative least squares problem for a matrix with more
columns than rows. In order to do that, we have adapted the sparse direct methodology
of Björck and Oreborn of late 80s in a similar way to Coleman and Hulbert, but without
forming the hessian matrix that is only positive semidefinite in this case. We comment
on our implementation on top of the sparse toolbox of Matlab 5, and we emphasize
the importance of Lawson and Hanson’s NNLS active-set method as an alternative to
Dax’s constructive proof of Farkas’ lemma; these methods can be used as Phase I for
a non-simplex active-set linear programming method.

AMS subject classification: 90C05, 90C60.

Key words: Sparse orthogonalization, Givens rotations, active-set methods, Farkas’
lemma, linear programming.

1 The problem we want to solve.

In the linear least squares problem with nonnegative variables:

minimize
1
2
‖Ay − c‖22, A ∈ Rn×m, y ∈ Rm, subject to y ≥ O,(1.1)

it is usual [1, 5, 25] to assume n > m and that the matrix A has full column rank,
so the problem is strictly convex and its solution is unique. To compute such
solution, Lawson and Hanson’s NNLS method [21, §23.3] can be used. However,
they did not make any assumption about the dimensions of the matrix A in
their original presentation; indeed, the proof of the convergence of the NNLS
method only needs that, in the sequence of least squares subproblems of the
form min ‖Akz − c‖2 that this method has to solve, every matrix Ak has full
column rank.

In this paper we shall only deal with the case n < m, with A being a sparse
full row rank matrix. It is also a convex program (although not strictly, so
there is no unique solution) and we call it the convex nonnegative least squares

∗Review (September 2003) of the first version submitted to BIT in October 2001.

2 Á. SANTOS-PALOMO AND P. GUERRERO-GARCÍA

(NNLS) problem. In fact there may be infinitely many vectors y that produce the
(unique) minimum value of the length of the residual. The one we are interested
in does not have any particular distinguishing property as in algorithm 1 of
Lötstedt [22] (i.e., it does not necessarily have the least possible number of
nonzero components, nor the minimum euclidean norm among all solutions).

The availability of a sparse algorithm for (1.1) makes possible an elegantly
simple way (due to Cline) of solving sparse least distance programming (LDP)
problems [21, §23.4]; moreover, least squares full column rank problems with
linear inequality constraints like those arising in constrained curve fitting [21,
§23.7] can be transformed into an LDP as described in [21, §23.5]. Anyhow, our
main interest in problem (1.1) lies in the fact that its solution method constitutes
a suitable Phase I for a non-simplex active-set linear programming method, in
a similar way to the active-set algorithm P1 of Dantzig et al. [8]; even so we do
not want to fail to emphasize in this paper that to obtain a constructive proof of
the Farkas’ lemma it would suffice to apply to problem (1.1) the NNLS method
itself in the original Lawson and Hanson’s [21] form.

Lemma 1.1. (Farkas’ lemma) Let A ∈ Rn×m and c ∈ Rn, then exactly one of
the following propositions must be true: or

c = Ay for some y ≥ O,(1.2)

or else there exists a vector d verifying

AT d ≥ O and cT d < 0.(1.3)

In fact, Dax [10] has given another active-set method (different from NNLS)
to solve the same problem (1.1), thus providing a different constructive proof of
Farkas’ lemma. First, he proves the following theorem, whose corollary acts as
the separating hyperplane theorem.

Theorem 1.2. (Kuhn-Tucker) Let y∗ ∈ Rm, d∗ = Ay∗ − c ∈ Rn and w∗ =
AT d∗ ∈ Rm; then y∗ is a solution of (1.1) if and only if y∗ ≥ O, w∗ ≥ O and
(y∗)T w∗ = 0.

Corollary 1.3. Let y∗ ∈ Rm be a solution of (1.1) and d∗ = Ay∗ − c ∈ Rn.
It holds that if d∗ = O then y∗ is a solution of Ay = c and y ≥ O; otherwise, d∗

is a solution of AT d ≥ O and cT d < 0.
In this way, the only thing that must be established is the existence of a solution
y∗ of (1.1); to do this, Dax [10] has developed his active-set method using the
Kuhn-Tucker conditions, but the NNLS method itself can be used instead.

The algorithms of Dantzig et al. [8], Portugal et al. [25, pp. 627–628] and Dax
[10] can be thought of as variants of Lawson and Hanson’s NNLS method [21,
§23.3]. Since NNLS is the most well-known among them, it has been chosen
in this paper to illustrate how its sparse implementation can be accomplished,
attending in this way a claim made in 1993 in the “Future work” section of [8]:

SEQUENCE OF SPARSE LEAST SQUARES PROBLEMS 3

(Algorithm) P1 should be implemented using sparse matrix methods
(. . .) However, this would require substantial effort, as our algorithm
uses QR factorization, and would thus be more complicated to update
than the sparse LU factorization

as well as another one by Saunders in the same paper [8, p. 429]:

These results seem significant enough to spark interest in a sparse
NNLS implementation

This claim has just been done again recently (in October, 2002) by Barnes et
al. in the “Conclusions and future research” section of [3], where (1.1) occurs as
a subproblem in their primal-dual active-set LSPD method (closely related to
that of Dax [9], as we show in [19]) for linear programming:

An efficient implementation of the LSPD algorithm using QR update
techniques for solving the NNLS problem is crucial in order to make
it competitive

This serves to highlight the importance of a sparse implementation of an active-
set method for solving the convex NNLS problem, which constitutes the main
concern of this paper.

The rest of this paper is structured as follows. A description (revealing some
interesting geometrical features) of Lawson and Hanson’s NNLS method and
the analysis of its convergence for the problem mentioned above is given in §2,
along with several remarks about closely related algorithms. In §3 we indicate
how to maintain an explicit suitable sparse orthogonal factorization by adapting
the sparse direct methodology of Björck [4] and Oreborn [23] in a similar way
to Coleman and Hulbert [6], but without forming the hessian matrix that is
only positive semidefinite in this case. Finally, we conclude in §4 with several
algorithmic alternatives based on the dual problem of (1.1) that can also take
advantage of the sparse technique described in §3.

From now on, we shall denote with ‖ · ‖ the euclidean vector norm. I and
O are respectively the identity and the zero matrix of appropriate dimension.
R(·) and N (·) are respectively the range and null space of a certain matrix.
The orthogonal projector onto a subspace S is denoted by PS . Subindexing and
construction of matrices is done using Matlab notation.

2 Active-set methods for convex NNLS problem.

The NNLS method works with complementary solutions, namely those vectors
[y;w] ∈ R2m verifying w = AT (Ay − c) ∈ Rm and yT w = 0. Let us denote the
working set by Bk ⊂ 1 : m (with |Bk| = mk) and its complement by Nk =
(1 : m)\Bk, partitioning accordingly the matrix A = [Ak, Nk] ∈ Rn×m and the
vectors y = [yB ; yN] and w = [wB ;wN]. We include in Bk the indices of the
strictly positive components of y, thus Bk denotes our set of free variables and
Nk our set of fixed variables at their bounds (i.e., active constraints with respect
to y ≥ O). To obtain a complementary solution we set to zero the so-called

4 Á. SANTOS-PALOMO AND P. GUERRERO-GARCÍA

nonbasic variables yN and wB , whereas to obtain the values of the so-called
basic variables yB and wN we solve the unconstrained subproblem

min ‖AkyB − c‖(2.1)

where Ak ∈ Rn×mk has full column rank, and then

wN = NT
k (AkyB − c).(2.2)

Note that if we define d(k) .= AkyB − c then we have wB = AT
k d(k) = O, since

d(k) ∈ N (AT
k) is the opposite of the residual of the linear least squares prob-

lem (2.1). As was pointed out in the refereeing process, the solution technique
employed in (2.1) is crucial for the success of the algorithm; nevertheless, we
shall defer this issue until the beginning of §3 to clearly differentiate between
the description of the method (given below) and its sparse implementation.

Algorithm 2.1. Convex NNLS method

S0. Initialization. Let k ← 0 and define Bk = ∅, Nk = 1 : m, y(k) = O and
w(k) = −AT c.

S1. Check for optimality and pick a constraint to add. Compute wp = min{wi :
i ∈ Nk}. If wp < 0 then add p to Bk and delete p from Nk; otherwise, stop
with y(k) as optimal solution.

S2. Determine the search direction, the maximum step length along such direc-
tion and the constraints to drop. Compute temporal variables ȳB by solving
(2.1). If ȳB > O then let y(k+1) ← [ȳB ;O] and go to S3; otherwise, let q
be a constraint such that

αk =
yq

yq − ȳq
= min

{
yi

yi − ȳi
: (i ∈ Bk) and (ȳi ≤ 0)

}
and let y(k+1) ← [yB+αk(ȳB−yB);O], delete from Bk all index j (q among
them) such that yj = 0, add them to Nk and go back to S2 with k ← k+1.

S3. Prepare the next iteration. Compute wN by (2.2) and go back to S1 with
k ← k + 1.

A complementary solution is feasible if yB ≥ O and wN ≥ O. A principal
pivoting algorithm computes successive infeasible complementary solutions until
it reaches a feasible one, and such algorithm is called single pivoting if there is
only one element changing in the involved sets in every iteration (if not, it is
called block pivoting). The description of the NNLS method that we have done
before is not the same as that given in Portugal et al. [25, pp. 627–628] as single
principal pivoting algorithm, because although both algorithms add constraints
one after another, NNLS can drop a block of constraints and also imposes that
yB > O. The single principal pivoting algorithm of Portugal et al. [25] allows
yB ≥ O, which implies two additional changes in step S2 of algorithm 2.1:

SEQUENCE OF SPARSE LEAST SQUARES PROBLEMS 5

“If ȳB ≥ O” instead of “If ȳB > O”, and “ȳi < 0” instead of “ȳi ≤ 0”.

These differences are important from both a theoretical and a practical point
of view, because it is not possible to ensure in the latter case that αk > 0 and
thus a strict improvement has to be ruled out; moreover, “If ȳB ≥ −ε” instead
of “If ȳB > ε” would be used in fixed-precision arithmetic, where ε is some
prescribed tolerance, thus allowing small negative elements in yB that can cause
a change in the behaviour of the algorithm. Following Portugal et al. [25, p.
629], the problem we are dealing with cannot be solved with a block principal
pivoting algorithm, because they cannot be applied to rank-deficient linear least
squares problems with nonnegative variables. Although single addition is used
in algorithm 2.1, note that we do not rule out the possibility of multiple deletion;
nevertheless, the implementation given in §3 only deals with single deletion, and
multiple deletion is accomplished by a sequence of single deletions.

Now let us analyze the convergence of algorithm 2.1. It is straightforward to
prove that Ak has full column rank (since the constraints added are contrary to
the null-space descent direction d(k) .= AkyB − c with respect to cT x). It is also
easy to prove1 that if Ak+1 = [Ak, ap] has full column rank and d(k) verifies

AT
k+1d

(k) = wp · emk+1, wp < 0,

then ỹp is stricly positive, where ỹp is the last component of the solution ỹB of
min ‖Ak+1yB−(−d(k))‖. Lastly we need the following theorem too, which is not
proven in [21].

Theorem 2.1. Let Ak+1 = [Ak, ap] be a full column rank matrix, d(k) =
−PN (AT

k)c and aT
p d(k) = wp < 0. Then the last component ỹp of the solution ỹB

of min ‖Ak+1yB − (−d(k))‖ coincides with the last component ŷp of the solution
ŷB of min ‖Ak+1yB − c‖.

Proof. Using Schur complements there exist block-triangular matrices LS

and RS such that LSAT
k+1Ak+1 = RS , namely[

(AT
k Ak)−1 O
−aT

p AT†
k 1

] [
AT

k Ak AT
k ap

aT
p Ak aT

p ap

]
=

[
I A†kap

OT aT
p (ap −AkA†kap)

]
.

Now we can premultiply by LS both sides of the equalities

(AT
k+1Ak+1)ỹB = −AT

k+1d
(k) and (AT

k+1Ak+1)ŷB = AT
k+1c,

leading to the systems

RS ỹB =
[

O
−wp

]
and RS ŷB =

[
A†kc

aT
p (c−AkA†kc)

]
.

From the leftmost system we obtain that ỹp = −wp/(aT
p (ap − AkA†kap)), and

from the rightmost one

ŷp =
aT

p (c−AkA†kc)

aT
p (ap −AkA†kap)

.=
−aT

p d(k)

aT
p (ap −AkA†kap)

.=
−wp

aT
p (ap −AkA†kap)

= ỹp.

1It is an alternative wording of lemma (23.17) of Lawson and Hanson [21].

6 Á. SANTOS-PALOMO AND P. GUERRERO-GARCÍA

From theorem 2.1 we have that if ȳB is the solution of min ‖Ak+1yB−(−d(k))‖
or the solution of min ‖Ak+1yB − c‖, then ȳp > 0. The termination of the inner
loop S2 can be obtained from the facts that at least the index q is deleted from
Bk in each iteration of this step and that at least a positive component has to be
left in Bk, namely that corresponding to ȳp. Hence, if Bk has t indices when S2
is reached, at most t − 1 iterations can be achieved before exiting towards S3.
The finite termination of the whole algorithm is proved from the fact that ‖d(k)‖
has a strictly lower value each time S1 is reached, so y(k) and its associated set
Bk will be different from every one occurred before; since Bk is a subset of 1 : m
and there is only a finite number of such subsets, the whole algorithm finishes
after a finite number of iterations.

Another issue not treated in [21] is the occurrence of ties in S1; an illustrative
example can be found in [18, pp. 78–80]. Although this possibility cannot be
ruled out, the strict decrease of ‖d(k)‖ is not compromised at all. In practice, a
least-index tie-breaker would suffice.

Dax [10] studied the convergence of another active-set method to solve (1.1);
here we only point out that it also has to solve a sequence of least squares
problems (in this case of the form min ‖Ak∆yB − d(k)‖), hence it can also be
implemented with the same sparse techniques we are going to introduce in the
next section. The same is true for the variants of the NNLS method given by
Dantzig et al. [8] and Portugal et al. [25, pp. 627–628].

All the algorithms mentioned so far in this section are “build-up” methods [8,
p. 429] in the sense that they avoid the calculation of an initial factorization of
A, which otherwise may well dominate the rest of the computation. Following
Clark and Osborne [7, p. 26], these algorithms are grouped under the name
RLSA and they have the advantage of being self-starting and avoiding a possibly
badly conditioned full system if the subproblems leading to an optimal solution
are well conditioned. By exchanging the roles of y and w, Clark and Osborne
developed the RLSD class of algorithms, which also dispense with the initial
factorization of A; although A was restricted to have full column rank in the
original description of these algorithms [7, and references therein], the convex
case considered here has been addressed in [24, p. 833]. Henceforth, the sparse
counterpart, which is not treated in these papers, can also be dealt with the
sparse technique of §3.

There exist alternative approaches based upon identifying (1.1) as a quadratic
programming (QP) problem of a rather simple special kind and particularizing
general QP primal techniques. As an example, the celebrated general QP primal
algorithm of Gill and Murray [13] has been particularized to obtain “build-down”
algorithms for (1.1), like algorithm 1 of Lötstedt [22] and LSSOL (LS1 option)
of Gill et al. [15]:

(i) Lötstedt [22, p. 210] updates a dense QR decomposition of a matrix AF

that consists of the columns of A corresponding to his set F of free vari-
ables. Moreover, F is selected in such a way that AF has full column rank
initially and such that rank(A) = rank(AF); thus, our assumption that

SEQUENCE OF SPARSE LEAST SQUARES PROBLEMS 7

rank(A) = n would imply that |F| = n and then his procedure would need
an initial QR factorization of A to choose the initial F .

(ii) The LS1 option of LSSOL maintains the dense QR factorization of A [8,
p. 427]. As pointed out in [15, §2] and [5, §5.2.3], in the full rank case this
method is essentially equivalent to Stoer’s 1971 algorithm, which is not
restricted to the full-column rank case [31, p. 405]. Björck and Oreborn
have developed a sparse implementation for a particularization of Stoer’s
algorithm to simple bounds [4] and non-negative constraints [23], but their
algorithms only consider the positive definite case [6, p. 375] and would
not be efficient in the n� m context [8, p. 429].

On the other hand, we can also particularize general QP dual algorithms to
obtain “build-up” methods for (1.1). In fact, Dantzig et al. pointed out in [8,
p. 421, and references therein] that Lawson and Hanson’s NNLS method can be
obtained in this way from that of van de Panne and Whinston, and NNLS has
been generalized to deal with simple bounds [21, pp. 279–283] or general linear
inequality constraints [32]. The sparse case for this generalizations, not treated
in these works, could be addressed as described in §3.

A numerical comparison between a “build-up” (Dantzig et al.’s P1) and a
“build-down” (Gill et al.’s LSSOL) method for the dense version of the convex
NNLS problem corresponding to the smallest Netlib linear programs is included
in [8, §5.2], where a clear advantage was obtained by the former in both iteration
counts and run times, and so we do not treat this issue further here. What we
are going to show now is how the sparse methodology (not the algorithm!) of
Björck [4] and Oreborn [23] to implement a “build-down” method in the full-
column rank case can also be adapted to implement a “build-up” one in the
n� m full-row rank context.

3 A sparse implementation.

In this section we are going to adapt the sparse direct methodology of Björck
[4] and Oreborn [23] to be able to apply the sparse NNLS algorithm with a
“short-and-fat” matrix A, i.e., with more columns than rows. They proposed an
active-set algorithm for the sparse least squares problem

minimize 1
2yT Cy + dT y, y ∈ Rm

subject to l ≤ y ≤ u

with C positive definite. In our problem

C = AT A and d = −AT c and ∀i ∈ 1 : m , li = 0 and ui = +∞

but C is positive semidefinite, hence to maintain a sparse QR factorization of
the working set matrix we proceed in a similar way as in Coleman and Hulbert
[6], but without forming the hessian matrix C.

Given a fixed matrix A ∈ Rn×m of full row rank with m ≥ n, we recur
the triangular factor Rk of the sparse QR factorization of Ak ∈ Rn×mk with

8 Á. SANTOS-PALOMO AND P. GUERRERO-GARCÍA

mk ≤ n, where Ak is a linearly independent subset of the columns of A and
it is generated from Ak−1 by adding/dropping a column. Furthermore, A is
not restricted to be triangular as in [4]. It is worth noting that in a sparse
Matlab NNLS implementation due to Adlers [1, §5.7], Rk is not updated but
recomputed from scratch every iteration by calling a sparse Cholesky routine
after explicitly forming the matrix of the normal equations. To be as close to
the implementation as possible, we shall use Lk

.= RT
k to explain implementation

details and reserve Rk for more theoretical explanations.
Since we are going to do without the orthogonal factor due to sparsity con-

siderations, the solution of the least squares subproblem (2.1) is done by the
CSNE method (see, for example, [5, p. 126]) as suggested by Björck [4, §5],
which amounts to perform a step of iterative refinement after having found the
solution ȳB of the seminormal equations

RT
k RkyB = AT

k AkyB = AT
k c,

and then computing d(k) = AkȳB − c and wN = AT
k d(k). This contrasts with

the dense updatable QR-based approach used by Lötstedt [22, p. 210]. The
reason why we have chosen a direct approach to solve (2.1) is that we only have
to solve one isolated convex NNLS problem in the Phase I linear programming
application described in §1. However, a sequence of closely related convex NNLS
problems has to be solved in the primal-dual active-set application, and an
iterative approach would perhaps be more efficient in this case as reported by
Lötstedt [22] and recommended by Dax [9]. Nevertheless, Dantzig et al. [8, §5.3]
and Barnes et al. [3] solve each convex NNLS problem with a dense NNLS direct
subroutine, thus avoiding slow convergence when dealing with ill-conditioned
problems.

We have developed a Matlab toolbox based upon the following subsections,
and it has been successfully used to implement linear programming methods
[28, 18, 20]. The proof of the result (given in §3.1) needed to set up the static
data structure, as well as the correctness of the techniques to drop (§3.2) and
add (§3.3) a constraint, are essentially due to Björck [4] (see also [6, 5]). The
reason why these details are included is that we want to emphasize the fact (not
included in [4, 5, 6]) that a different choice in the order in which Givens rotations
are used in the classical dense case (see, e.g., [17, §12.5.2]) leads us to an efficient
sparse updating scheme. Moreover, in our sparse scheme Ak is not restricted to
be a column-echelon submatrix (as RFk

is in [4, 5]) nor AT
k Ak has to be formed

(as in [6]). To describe these techniques we use the notation of Coleman and
Hulbert [6], where `∨p denotes the bottom part of L(:, p) and `∧p the top part.
The notation for the Givens rotations is given in [17, p. 216].

3.1 Setting up the static structure.

First we determine a permutation matrix P such that PT AT AP has a Cholesky
factor as sparse as possible. In Matlab we can resort to:

>> p = colmmd(A);

SEQUENCE OF SPARSE LEAST SQUARES PROBLEMS 9

>> A = A(:,p);
>> [count,h,parent,post,R]=symbfact(A,’col’);
>> spy(R’);

Note that we do not form (AP)T AP and that both colmmd and symbfact per-
form correctly even although AT A ∈ Rm×m is only positive semidefinite; fur-
thermore, we a priori permute the columns of A in such a way that the natural
order coincides with the computed order. This static structure RT has enough
space to accommodate any Lk, so it constitutes an upper bound for the memory
needed [4, Theorem 4.1]. To do that, it is crucial that instead of labeling each
row and column of both AT

k Ak and Lk with consecutive numbers, we label them
with the number of the row and column of AT A from which it comes. As an
example, if m = 6 and Bk = [2, 4, 5], then the matrix Lk will be stored in the
triangular mk×mk matrix R(Bk,Bk)T constructed by intersecting the rows and
columns of RT whose indices are in Bk:

Bk = [2, 4, 5] and RT =


×
⊗

× ×
⊗ × ⊗

⊗
× × × × × ×

 Lk = R(Bk,Bk)T .

Therefore, the column ordering of A dictates that of Ak.

3.2 Dropping a constraint.

Let Bk = [B1, B2, . . . , Bi, . . . , Bmk
] be the current working set and let us drop

the constraint q
.= Bi to get Bk+1. Then, to obtain the factor Lk+1 of AT

k+1Ak+1

given the factor Lk of AT
k Ak, we first delete the row q of Lk to get a lower

Hessenberg matrix Hk such that HkHT
k = AT

k+1Ak+1:

Lk =

 L11

`T
∧q `qq

L21 `∨q L22

 Hk =
[

L11

L21 `∨q L22

]
=


X
X X X
X X X X
X X X X X

 .

To obtain Lk+1 from Hk we could proceed [17, p. 608] as Gill and Murray
[12] did in the dense case, annihilating the diagonal of L22 by applying Givens
rotations to the column pairs (q, Bi+1), (Bi+1, Bi+2), . . . , (Bmk−1, Bmk

) and
then dropping the last column, namely

Gk
.= G(q, Bi+1)G(Bi+1, Bi+2) . . . G(Bmk−1, Bmk

),

HkGk =
[

L11

L21 L̃22 O

]
 Lk+1 =

[
L11

L21 L̃22

]
.

However, using this procedure L̃22 would be stored in the columns from q to
Bmk−1; nevertheless, L̃22 must be stored in the same place set up (and possibly

10 Á. SANTOS-PALOMO AND P. GUERRERO-GARCÍA

only partially used) for L22, i.e., in the columns from Bi+1 to Bmk
. This can

be done by annihilating `∨q with Givens rotations applied to the column pairs
(Bi+1, q), (Bi+2, q), . . . ,(Bmk

, q), namely

Gk
.= G(Bi+1, q)G(Bi+2, q) . . . G(Bmk

, q),

HkGk =
[

L11

L21 O L̃22

]
 Lk+1 =

[
L11

L21 L̃22

]
.

Furthermore, as `∨q is sparse we only have to perform some of the rotations
described above.

Summing up, if we allocate a dense intermediate column vector as column
m + 1 in our static structure to act as accumulator, we first initialize it with
the column q of Hk, restore the static structure of L(q, :) and L(:, q) (to be used
later if needed), and start the annihilation process of the elements of L(:,m+1)
from top to bottom, by rotating with the corresponding column of L and taking
into account the intermediate fill-in in the accumulator:

Algorithm 3.1. Dropping a constraint

L(Bk,m + 1)← [O; `∨q]

while there are nonzero elements in L(:,m + 1) do

j ← index of first nonzero element of L(:,m + 1)

G← Givens(L(j, j), L(j, m + 1)) {G ∈ R2×2}

L(j : m, [j m + 1])← L(j : m, [j m + 1]) ·G {Sparse product}

end while

3.3 Adding a constraint.

Adding a constraint to the working set implies adding a new row aT
p to the

matrix AT
k . As the computational effort is minimized when the new row is added

at the bottom of the matrix, we will perform this addition in two stages: first
we will form the working set

B̃k+1 = [B1, B2, . . . , Bi−1, Bi+1, . . . , Bmk+1 , Bi], p
.= Bi

and then we will reorder it to obtain

Bk+1 = [B1, B2, . . . , Bi−1, Bi, Bi+1, . . . , Bmk+1],

because the order is crucial to maintain the static structure (cf. §3.1).
Let AT

k Ak = LkLT
k and Ãk+1 = [Ak, ap]; denoting with [`T , σ] the new row

to add to the bottom of Lk we have that there exists an orthogonal matrix Ṽk+1

such that

ÃT
k+1 =

[
AT

k

aT
p

]
=

[
Lk O O
`T σ 0

]
Ṽk+1

.= [L̃k+1 O]Ṽk+1,

SEQUENCE OF SPARSE LEAST SQUARES PROBLEMS 11

so then

ÃT
k+1Ãk+1 =

[
AT

k Ak O
O 0

]
+

[
O AT

k ap

aT
p Ak aT

p ap

]
.

However, it also holds that

L̃k+1L̃
T
k+1 =

[
LkLT

k O
O 0

]
+

[
O Lk`

`T LT
k `T ` + σ2

]
,

and from a comparison of the two equations above we conclude

Lk` = AT
k ap and σ =

√
aT

p ap − `T `.

Note that this technique, due to Gill and Murray [12], avoid the formation of the
column p of the matrix AT A in [6]. Moreover, it is more accurate to proceed as
in [5, §3.3.3] and consider `

.= LT
k δ, so CSNE can be applied to min ‖Akδ − ap‖

and then compute σ = ‖Akδ − ap‖.
Now we partition L̃k+1 in blocks by grouping on one side the rows and columns

with index less than p and those with index greater than p on the other side:

L̃k+1 =

 L11

L21 L22

`T
∧ `T

∨ σ

 Hk+1 =

 L11

`T
∧ σ `T

∨
L21 O L22

 =


X
X X X X X
X O X
X O X X
X O X X X

 .

Reordering in accordance with Bk+1, we have obtained a matrix Hk+1 that
verifies Hk+1H

T
k+1 = AT

k+1Ak+1 and is lower triangular but has a horizontal
spike in row p. So in order to get Lk+1 from Hk+1 we only have to apply
Givens rotations to the column pairs (p, Bmk+1), (p,Bmk+1−1), . . . , (p, Bi+1) to
annihilate the elements of `T

∨ from right to left using column p, thus

Lk+1 = Hk+1G(p, Bmk+1)G(p, Bmk+1−1) . . . G(p, Bi+1).

Furthermore, as `T
∨ is sparse we only have to perform some of the rotations

described above. Note that in the dense case [17, p. 609–610] the usual way to
proceed is

L̃k+1 =

 L11

L21 L22

`T
∧ `T

∨ σ

 Hk+1 =

 L11

`T
∧ `T

∨ σ
L21 L22 O

 =


X
X X X X X
X X O
X X X O
X X X X O

 ,

Lk+1 = Hk+1G(Bmk+1−1, Bmk+1)G(Bmk+1−2, Bmk+1−1) . . . G(p, Bi+1),

but as in §3.2, the L̃22 matrix obtained after the rotations would not occupy the
same place as L22.

12 Á. SANTOS-PALOMO AND P. GUERRERO-GARCÍA

Summing up, once ` and σ has been calculated, firstly we locate `T
∧ at the

beginning of the row p of Lk+1. Next, we allocate as column 0 of our static
structure a dense intermediate column vector initially zero to act as accumu-
lator for column p of Lk+1, and as row 0 a sparse vector whose first element
is initialized to σ and whose last part is initialized to `T

∨ . Then we start the
annihilation process of the elements of L(0, p + 1:m) from right to left, by ro-
tating column 0 with the corresponding column of L and taking into account
the intermediate fill-in in the accumulator; the sparsity of row 0 is exploited to
know which columns have to be rotated. Finally we move the contents of col-
umn 0 taking care of the static structure of L(: , p), since Barlow has proven in
[2] that non-structural non-zero elements (i.e., those that do not fit into the pre-
dicted structure due to rounding errors) can be omitted without compromising
the numerical accuracy.

Algorithm 3.2. Adding a constraint

L(p, [0 Bk])← [0, `T
∧ , OT]

L(0, [0 Bk])← [σ, OT , `T
∨]

while there are nonzero elements in L(0, p + 1:m) do

j ← index of last nonzero element of L(0, p + 1:m)

G← Givens(L(0, 0), L(0, j)) {G ∈ R2×2}

L([0 j:m], [0 j])← L([0 j:m], [0 j]) ·G {Sparse product}

end while

L([0 p], 0)← L([p 0], 0)

L(: , p)← L(: , 0) {Sparse assignement}

4 Final remarks.

We have analyzed how to maintain an explicit sparse orthogonal factorization
in order to solve the sequence of sparse least squares subproblems needed to
implement an active-set method to solve the nonnegative least squares problem
for a matrix with more columns than rows. These active-set methods constitute
constructive proofs of Farkas’ lemma, as well as suitable Phase I’s for a non-
simplex active-set method for linear programming [30]; in this sense, let us now
see that there are more algorithmic alternatives that can take advantage of the
sparse technique described in the previous section.

Using the definition of the `2 norm, it is straightforward to write (1.1) as a
semidefinite quadratic program

minimize 1
2yT AT Ay − (AT c)T y , y ∈ Rm,

subject to y ≥ O.
(4.1)

SEQUENCE OF SPARSE LEAST SQUARES PROBLEMS 13

Although there exist several active-set methods to treat directly this problem
(e.g., [6]), (4.1) can be thought of as the dual problem of the quadratic program

maximize 1
2yT AT Ay − (AT c)T y − wT y , y, w ∈ Rm,

subject to AT Ay −AT c− w = O , w ≥ O,
(4.2)

where we have considered the Wolfe dual of (4.1). If we proceed as in Fletcher
[11, p. 249], we can eliminate w = AT (Ay − c) from the objective function of
(4.2) and letting u

.= Ay, we obtain the least distance problem

minimize 1
2uT u , u ∈ Rn,

subject to AT u ≥ AT c
.= v,

(4.3)

where the nonnegative variables y occurring in (1.1) and in (1.2) are Kuhn-
Tucker multipliers for this dual problem of (1.1). Note that w can be eliminated
even although AT A is singular, and that when c ∈ R(A) we can assume without
loss of generality that r = rank(A) = rank([A, c]) = n, for if r < n we can append
additional linearly independent columns to A with associated zero multiplier to
expand this matrix until its rank is n.

Since (4.3) is strictly convex, we can particularize any of the existing primal,
dual and primal-dual methods (e.g., those of Goldfarb and Idnani (see [16] and
the references therein), or those developed by Santos-Palomo [26] (see also [27])),
where we consider (4.3) as the primal problem and (4.1) as the dual problem. All
of them would be constructive proofs of Farkas’ lemma, as well as suitable Phase
I’s for a non-simplex active-set method for linear programming. As a trivial
primal feasible point we can take u(0) = c with the m constraints being active
(primal degeneracy), whereas in a dual method we can use u(0) = O, B0 = ∅
and y(0) = O. Dual degeneracy (i.e., in the dual non-negative constraints y ≥ O)
cannot occur in this strictly convex quadratic program, and primal degeneracy
—which does not pose any difficulties in exact arithmetic— is under control
in presence of round-off errors. In this case we also have to solve a sequence
of least squares problems, so the techniques given in the previous section can
be directly applied; we plan as future work to compare all these strategies to
analyze whether any of them provides a dual feasible point more suitable than
the others to solve min{cT x : AT x ≥ b}.

The vector ȳB of §2 can be regarded as a first order estimation of the Lagrange
multipliers [14, §5.1.5] for min{cT x : AT x ≥ b}. Then, if AT

k = [AT
1 , AT

2]
with A1 nonsingular and c are partitioned accordingly, we can also use the
variable reduction method to develop a reduced version2 of algorithm 2.1; in
this case the estimation is obtained by solving A1ȳB = c1 and computing wN =
NT

k d(k), where now d(k) = −ZkZT
k c with ZT

k = [−AT
2 A−T

1 , I]. The advantage
of this reduced version is that the implementation could be done solving sparse
compatible systems (as in [29]) and not least squares problems.

2The version given in this paper can be regarded as projected.

14 Á. SANTOS-PALOMO AND P. GUERRERO-GARCÍA

Acknowledgements.

The authors thank Michael Saunders at Stanford who, with respect to the
technical report prior to Dantzig et al. [8], commented us: “Their method is
equivalent to the known (and very simple) NNLS algorithm for non-negative
least squares. Their real contribution was to apply it to linear programs to find
a feasible solution”. We also thank Åke Björck at Linköping and Achiya Dax at
Hydrological Service for providing us the references [4, 22] and [9] that we were
not aware of. Finally, we gratefully acknowledge the referees for their helpful
corrections and remarks, which have improved the quality of the paper.

REFERENCES

1. M. Adlers, Sparse Least Squares Problems with Box Constraints, Licentiat thesis,
Department of Mathematics, Linköping University, 1998.

2. J. L. Barlow, On the use of structural zeros in orthogonal factorization, SIAM J.
Sci. Statist. Comput., 11 (1990), pp. 600–601.

3. E. Barnes, V. Chen, B. Gopalakrishnan and E. L. Johnson, A least-squares primal-
dual algorithm for solving linear programming problems, Oper. Res. Lett., 30 (Oc-
tober, 2002), pp. 289–294.

4. Å. Björck, A direct method for sparse least squares problems with lower and upper
bounds, Numer. Math., 54 (1988), pp. 19–32.

5. Å. Björck, Numerical Methods for Least Squares Problems, SIAM Publications,
Philadelphia, USA, 1996.

6. T. F. Coleman and L. A. Hulbert, A direct active set algorithm for large sparse
quadratic programs with simple lower bounds, Math. Progr., 45 (1989), pp. 373–
406.

7. D. I. Clark and M. R. Osborne, On linear restricted and interval least-squares
problems, IMA J. Numer. Anal., 8 (1988), pp. 23–36.

8. G. B. Dantzig, S. A. Leichner, and J. W. Davis, A strictly improving linear pro-
gramming phase I algorithm, Ann. Oper. Res., 46/47 (1993).

9. A. Dax, Linear programming via least squares, Linear Algebra Appl., 111 (1988),
pp. 313–324.

10. A. Dax, An elementary proof of Farkas’ lemma, SIAM Rev., 39 (1997), pp. 503–507.

11. R. Fletcher, Practical Methods of Optimization, 2nd edition, John Wiley and Sons,
New York, NY, USA, 1987.

12. P. E. Gill, and W. Murray, A numerically stable form of the simplex algorithm,
Linear Algebra Appl., 7 (1973), pp. 99–138.

13. P. E. Gill, and W. Murray, Numerically stable methods for quadratic programming,
Math. Prog., 14 (1978), pp. 349–372.

14. P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press,
London and New York, 1981.

15. P. E. Gill, and S. J. Hammarling, and W. Murray, and M. A. Saunders, and M. H.
Wright, User’s guide for LSSOL (version 1.0): A FORTRAN package for con-
strained linear least-squares and convex quadratic programming, Technical report,
Department of Operations Research, Stanford University, USA, January 1986.

16. D. Goldfarb, Efficient primal algorithms for strictly convex quadratic programs, in
Lecture Notes in Mathematics, 1230 (1986), pp. 11–25, Springer-Verlag, Berlin.

SEQUENCE OF SPARSE LEAST SQUARES PROBLEMS 15

17. G. H. Golub, and C. F. Van Loan, Matrix Computations, 3rd edition, The Johns
Hopkins University Press, Baltimore, MD, USA, 1996.

18. P. Guerrero-Garćıa, Range-Space Methods for Sparse Linear Programs (Spanish),
Ph.D. thesis, Department of Applied Mathematics, University of Málaga, Spain,
July 2002.

19. P. Guerrero-Garćıa and Á. Santos-Palomo, Gyula Farkas would also feel proud,
Technical Report, Department of Applied Mathematics, University of Málaga,
Spain, October 2002. Submitted for publication to OMS.

20. P. Guerrero-Garćıa and A. Santos-Palomo, A comparison of three sparse linear pro-
gram solvers, Technical Report, Department of Applied Mathematics, University
of Málaga, October 2003. Submitted for publication to BIT.

21. C. L. Lawson, and R. J. Hanson, Solving Least Squares Problems, revised republi-
cation in 1995 by SIAM of the original work published by Prentice-Hall, Englewood
Cliffs, NJ, USA, 1974.

22. P. Lötstedt, Solving the minimal least squares problem subject to bounds on the
variables, BIT Numer. Math., 24 (1984), pp. 206–224.

23. U. Oreborn, A Direct Method for Sparse Nonnegative Least Squares Problems, Li-
centiat thesis, Department of Mathematics, Linköping University, Sweden, 1986.

24. M. R. Osborne, Degeneracy: Resolve or avoid?, J. Opl. Res. Soc., 43:8 (1992),
pp. 829–835.

25. L. F. Portugal, J. J. Júdice, and L. N. Vicente, A comparison of block pivoting
and interior-point algorithms for linear least squares problems with nonnegative
variables, Math. Comp., 63 (1994), pp. 625–643.

26. A. Santos-Palomo, New Quadratic Programming Methods (Spanish), Ph.D. thesis,
Department of Applied Econometrics, University of Málaga, Spain, 1995.

27. A. Santos-Palomo, New range-space active-set methods for strictly convex quadratic
programming, in the proceedings of the III Conference on Operations Research,
Universidad de La Habana, Cuba, P. Olivares-Rieumont (ed.), p. 27, March 1997

28. Á. Santos-Palomo, The sagitta method for solving linear programs, Technical Re-
port, Department of Applied Mathematics, University of Málaga, April 1998. Ac-
cepted for publication to EJOR.

29. A. Santos-Palomo, and P. Guerrero-Garćıa, Solving a sequence of sparse compatible
systems, in the proceedings of the 19th Biennial Conference on Numerical Analysis,
Dundee, Scotland, D. Griffiths and G. A. Watson (eds.), Tech. report NA/201,
pp. 23–24, June 2001. Submitted for publication to IMAJNA.

30. A. Santos-Palomo, and P. Guerrero-Garćıa, A non-simplex active-set method for
linear programs in standard form, in the proceedings of the XXVI Congreso Na-
cional de Estad́ıstica e Investigación Operativa, Úbeda, Spain, J. C. Ruiz-Molina
(ed.), p. 246(5), November 2001. Submitted for publication to CMA.

31. J. Stoer, On the numerical solution of constrained least squares problems, SIAM
J. Numer. Anal., 8 (1971), pp. 382–411.

32. J. Stoer, A dual algorithm for solving degenerate linearly constrained linear least
squares problems, J. Num. Alg. App., 1 (1992), pp. 103–131.

