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Abstract

We describe how to update and downdate an upper trapezoidal sparse
orthogonal factorization, namely the sparse QR factorization of AT

k , where
Ak is a “tall and thin” full column rank matrix formed with a subset of
the columns of a fixed matrix A. In order to do that, we have adapted
to rectangular matrices (with fewer columns than rows) Saunders’ tech-
niques of early 70s for square matrices, by using the static data structure
of George and Heath of early 80s but allowing row downdating on it.
An implicitly determined column permutation allow us to dispense with
computing a new ordering after each update/downdate; it fits well into the
Linpack downdating algorithm and ensures that the updated trapezoidal
factor will remain sparse. We give all the necessary formulae even if the
orthogonal factor is not available, and we comment on our implementation
using the sparse toolbox of Matlab 5.

1. Aims, difficulties and related work

In certain non-simplex active-set methods (also currently known as basis-
deficiency-allowing simplex variations) for linear programming we need to solve
a sequence of sparse compatible systems of the form:

AT
k x = b, and Aky = c or

[
AT

k

cT

]
d =

[
O
−1

]
,

where b and c are iteration-dependent vectors, and x, y, and d are unknown
vectors. Furthermore, the matrix Ak ∈ Rn×mk is a “tall and thin” iteration-
dependent full column rank matrix with mk ≤ n and rank(Ak) = mk. Such
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matrix Ak is a subset of the columns of a fixed matrix A ∈ Rn×m with m ≥ n
and rank(A) = n, and Ak+1 is obtained by appending/deleting columns to/from
Ak with rank(Ak+1) = rank(Ak) ± 1; when exchanging, deletion is done before
appending and rank(Ak+1) = rank(Ak).

In dense implementations, the QR factorization of Ak (or equivalently, the LQ
factorization of AT

k ) is usually maintained [12, pp. 172,234] due to the fact that
it can be computed by a numerically stable method, for 0 < AT

k Ak ∈ Rmk×mk .
(M > 0 (M ≥ 0) stands for “M is symmetric positive (semi)definite”.) Updating
is done column-wise as indicated e.g. by Golub & Van Loan [19, §12.5.2]. But,
as Gilbert & Peierls pointed out in [17, p. 862],

Translating a matrix algorithm from a dense setting to a sparse setting
may involve more than just generalizing indices and using lists instead
of dense arrays.

The sparse implementation of a non-simplex active-set method has its own
difficulties, whose solution is not a trivial matter as will be shown in this and a
forthcoming article [21].

It is well-known that nowadays efficient “black-boxes” exist to compute the
sparse QR factorization using multifrontal techniques, but such a factorization
can only be used when a single least-squares problem is to be solved because
this factorization is not (column-wise) updatable, as Adlers [1, p. 43] recognized
in 1998:

Multi-frontal techniques are more efficient for factorization of sparse
matrices. However, there are no efficient ways yet, to update the QR
factorization using multifrontal techniques.

With respect to this subject, Mitra & Tamiz [30, p. 280] claimed

Considerable progress continues to be made in sparse equation solving
methods which may be looked upon (as) “blackbox” procedures. Not all
of these provide iterative update procedures. Hence methods for sparse
and stable updates to work with sparse and stable solvers can be of
considerable value.

George, Heath & Ng [14] adapted the sparse QR factorization of Ak to solve
a single underdetermined system (hence they did not downdate); furthermore,
they admit [14, pp. 995–996] that this factorization requires more work than the
QR factorization of AT

k when mk � n. Note that we do not have to assume a
restrictive n − mk being relatively small when we the minimum norm solution
(see [26, p. 229]) of the underdetermined system is not required.

The main point is that working with AkA
T
k in a sparse setting is more suitable

than with AT
k Ak; indeed, Hager, Shih & Lundin [24, p. 23] propose to work with

the factorization of AkA
T
k ∈ Rn×n, although it is positive semidefinite, rather

than with AT
k Ak ∈ Rmk×mk , which is positive definite:

The matrix AT
F AF is difficult to work with since its dimension grows
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and contracts during the iterations, and the sparsity structure is diffi-
cult to predict. The matrix σIn +AF AT

F is quite amenable to numerical
work since it has fixed dimensions and its sparsity is predictable.

In their work, the matrix AF has the same meaning as our Ak, but mk ≥ n is
allowed. Thus, when AF is full row rank, AF AT

F > 0 and the QR factorization
of AT

F yields a regular triangular factor (hence σ = 0); when AF is not full
row rank, AF AT

F ≥ 0 and they regularize to compute the Cholesky factor of
σIn + AF AT

F . The dynamic work with the Cholesky factor of AF AT
F has been

recently published by Davis & Hager [10], where they explicitly impose mk ≥ n.
The result given above has been exploited in interior point methods for linear

programming (see, e.g., [39]) nearly since their inception; in these methods,
the full row rank matrix A plays the role of the matrix AF above. Interior
point methods based on the normal equations approach work with a sequence
of weighted systems whose matrix is AWkA

T , where Wk > 0 is an iteration-
dependent diagonal matrix. As the number of iterations in an interior point
method is small, the Cholesky factor of AWk+1A

T is usually recomputed from
scratch rather than updated from that of AWkA

T , although some recent sparse
updating proposals have been done by Baryamureeba & Steihaug [3] in a robust
linear regression context, also with Wk > 0.

We could modify the interior point updating techniques cited above if we were
able to deal with a binary diagonal matrix Wk ≥ 0 with sum(diag(Wk)) ≤ n. In
fact, Edlund [11] has been working with sum(diag(Wk)) ≥ n and he can (row-
wise) update and downdate the QR factorization of AT

k in a dynamic multifrontal
sparse setting, using hyperbolic rotations to perform the downdating. When Ak

is not full row rank or when mk < n, Edlund also regularize to yield the Cholesky
factor of σIn + AkA

T
k . Furthermore, note that Adlers’ claim of a (column-wise)

updatable sparse multifrontal QR factorization of Ak remains at present unsolved
in spite of Edlund’s work.

In this paper we describe how to update and downdate the sparse orthogonal
QR factorization of the full row rank matrix AT

k when mk ≤ n without using
regularization. As we work on top of a static structure, we do not have to deal
with intricate data structures as Edlund does. Row updating and downdating
of AT

k is done as in the dense case [19, §12.5.3], but we have had to consider an
implicitly defined column permutation and several additional sparse issues. This
factorization is naturally updatable by adding rows [13, 27], the row order in
AT

k does not affect the density of the triangular factor, small non-zeros which
actually would be structural zeros [2] can be avoided, and the sequence of down-
dates is expected to have a good numerical behaviour because we dispense with
hyperbolic rotations, as pointed out by Stewart [36].

Accurate algorithms to update and downdate in the mk ≥ n full rank case
was given by Björck, Eldén & Park [6], where they explicitly assume that no
change in range occurs after the update or the downdate. They did not consider
a static structure in spite of dispensing with the orthonormal factor [37, p. 56] by
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combining corrected seminormal equations as a previous stage for the Linpack
downdate. Also in the mk ≥ n full rank case, Chan & Brandwajn [7] have been
working with the static sparsity structure in the field of power system analysis.

To the best of our knowledge, the only (dense) downdating experiments with a
QR factorization of AT

k in the mk ≤ n case was done by Powell [32], but the dense
nature of the matrix leads to do not have to deal with the column permutation,
or else to permute only for numerical purposes rather than for sparsity purposes.
Saunders [34] already used this sparse idea of factorizing AT

k orthogonally for the
case mk = n; his (still unpublished) work was pushed aside because the fill-in
tends to be worse than those of LU-based methods [8, p. 43], but note that this
assertion was done in terms of dynamic factors. The static alternative proposed
by Coleman [8, p. 41], which consists on symmetrically permuting the sparsity
structure of AkA

T
k for its Cholesky factor to be as sparse as possible, would not

be efficient since it would need a new ordering in each iteration. On the other
hand, Coleman [8, pp. 43,45] proposed the following research problem:

The Cholesky-based method of Saunders attempts to maintain a sparse
Cholesky factor. This general approach does have some appeal from
a stability point of view and probably warrants further examination.
Suggest and investigate ways in which a structured Cholesky factor
can be maintained.

What we do here is to adapt Saunders’ methodology to the case mk < n
(in fact, his proposal to do an exchange was to delete before adding, and he
proclaimed the numerical stability of this exchange in spite of the rank reduction
after the deletion). We use the data structure of George & Heath [13, 26],
but we allow row downdating on such static structure, even if the orthogonal
factor is not available. As we shall see in the following sections, the key point
is the management of an implicitly defined column permutation in order to
dispense with determining a new ordering in each step; we shall also show that
it fits well into the Linpack downdating algorithm and that ensures that the
updated trapezoidal factor will remain sparse. We also provide mathematically
rigorous descriptions of both the updating and downdating processes, which are
usually avoided when dealing with static structures in sparse settings, as well as
illustrative examples.

2. Initial factorization and sparse issues

Let us consider the sparse QR factorization of a “short and fat” matrix AT
k , e.g.,

with mk = 3 rows and n = 7 columns. When we compute this factorization with
the Matlab 5 qr “black-box” we would obtain, say, the Wilkinson’s diagram

qr

 X X X X X X X

X X X X X X X

X X X X X X X


︸ ︷︷ ︸

AT
k

=

 X X X

X X X

X X X


︸ ︷︷ ︸

Qk

·

 X X X X X X X

O O X X X X X

O O O O O X X


︸ ︷︷ ︸

Rk·Πk

.
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Note that RkΠk is a staircase-shaped, permuted upper trapezoidal matrix, where
permutation Πk is implicitly defined by the staircase shape of the structure; in
this case

ΠT
k = [e1, e3, e6, e2, e4, e5, e7], or Πk = [e1, e4, e2, e5, e6, e3, e7],

where ei ∈ R7 is the ith column of the identity matrix I7. Even it could be the
case that

qr

 X X X X X X X

X X X X X X X

X X X X X X X


︸ ︷︷ ︸

AT
k

=

 X X X

X X X

X X X


︸ ︷︷ ︸

Qk

·

 O O X X X X X

O O O X X X X

O O O O O O X


︸ ︷︷ ︸

Rk·Πk

,

ΠT
k = [e3, e4, e7, e1, e2, e5, e6], or Πk = [e4, e5, e1, e2, e6, e7, e3].

In a more general framework, let Ak ∈ Rn×mk be sparse and rank(Ak) = mk ≤ n.
We know that there exists an implicitly defined permutation ΠT

k of the columns
of AT

k such that

AT
k ΠT

k = QkRk
.
= Qk

[
Ri Rd

]
, (Qk, Ri ∈ Rmk×mk)and(Rd ∈ Rmk×(n−mk)),

with Rk upper trapezoidal, Ri upper triangular and nonsingular, and Qk orthog-
onal. (We have used Ri and Rd rather than a more standard notation R1 and R2

to avoid subindex clash problems with Rk.) Nevertheless, the permutation ΠT
k is

not explicitly performed, thus RkΠk is what we are going to maintain. Note also
that a reordering of the columns of Ak has no impact in Rk, for

ST
k AT

k ΠT
k = (ST

k Qk)Rk,

thus only a reordering of the rows of Qk would take place.
This factorization is computable with the black-box qr in Matlab 5 (but

not every AT
k can be factorized in this way with the sparse sqr packages of

Matstoms [29] and Adlers [1], because they are intended for matrices with more
rows than columns). However, this factorization is not updatable with qrupdate

in Matlab 5 because that only works with dense matrices. Also, there are no
efficient ways yet to update this QR factorization using multifrontal techniques.

Enlarging Rk below with n − mk zero rows we obtain the sparse Cholesky
factor of ΠkAkA

T
k ΠT

k ≥ 0 (see Higham [28, Thm. 10.9, p. 210]). Computing this
factor from the sparse QR given above makes unnecessary both the formation
of the product AkA

T
k and the complete pivoting that we would have to perform

whether a dense semidefinite Cholesky method on AkA
T
k were used; in other

words, our Πk is only defined for sparsity purposes rather than for numerical
purposes. This is not expected to cause numerical difficulties because it amounts
to a row-skipping strategy in a modified Cholesky factorization (see [39, §11.5]),
which is a successful device to mimic diagonal pivoting in AkA

T
k (i.e., column
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pivoting in the QR factorization of AT
k ) that is used in interior point methods

in order to avoid the modification of the sparsity structure that such pivoting
would imply.

It is well known that when Ak is a subset of the columns of a fixed matrix
A ∈ Rn×m with m ≥ n and rank(A) = n, a static structure (i.e., a priori set up)
can be used to try to minimize fill in the triangular factor. The sparse structure
of AkA

T
k is a subset of that of AAT [13], hence an a priori permutation P of the

rows of A can be chosen (e.g., with colperm(A’) in Matlab 5) to sparsify the
Cholesky factor R of PAAT P T . This permutation P is set up at the beginning
and it is explicitly applied to the original A matrix, and it is not related with
the permutation Πk that is implicitly defined every time by the staircase shape
of the trapezoidal factor. In other words, we do not have to analyze which Πk is
most suitable in a given iteration for the upper trapezoidal factor Rk of AT

k ΠT
k

to be as sparse as possible because it is determined by the static structure itself.
On the other hand, the principal aim in papers like [13, 27] was to solve a single
problem min ‖AT x−b‖2, so none of them considered the case of deleting a row of
this least squares problem. However, it is reasonable to think that when a row is
deleted there must be space in the static structure, due to the formal equivalence
(already established by Golub [18] in 1969) between deleting a real row aT and
adding a complex row

√
−1aT (both rows have the same structure and hyperbolic

rotations modify the structure in the same way as Givens rotations).
The column order of A does not affect the density of the Cholesky factor R

of PAAT P T , but does affect the amount of intermediate work to compute it.
If the columns of A do not vary widely in norm, this column order does not
affect the numerical stability and can be chosen based solely in sparse issues [5,
p. 244–245]. We append rows to the bottom of AT

k in order to take advantage
of the work already done, but when we have to refactorize AT

k (or to calculate
an initial factorization of AT

0 ), an a priori ordering of the columns of A can
be beneficial, using the corresponding subordering for Ak. A refactorization is
triggered with respect to a fixed tolerance [31, p. 34], and can be performed with
the QR black-box mentioned above.

It is worth pointing out that an advantage of this static sparse approach is the
great simplicity of the data structures involved (unlike those occurring in sparse
dynamic techniques). In linear programming we usually reorder the constraint
matrix A of a linear program in standard form to be in lower block triangular
form (LBTF) at the beginning; in fact, it is considered the canonical form of a
sparse matrix [23, p. 280]. We can use the Dulmage-Mendelsohn decomposition
(dmperm(A’) in Matlab 5) to compute the upper block triangular form of AT .
In this way we obtain right from the beginning both a suitable row ordering (to
be used in refactorizations) and a suitable column ordering P T , and hence we
have an upper bound for the static structure needed for ΠT

k RT
k , correctly predicted

for RT in the sense of Coleman, Edenbrandt & Gilbert [9] if AT has the strong
Hall property. Note that we do not pursuit that the Ak matrix to be factorized
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is in block triangular form for all iteration k, and that we could also have used
cheaper minimum degree routines like colmmd to obtain P T .

Both A and RT are stored by a simple compressed column scheme, because
we are going to access them by columns and thus we can take advantage of the
locality of reference (see Stewart [37, p. 110]) in Matlab 5 sparse packed storage
scheme [16]. As pointed out by Davis & Hager [10, §7.1], in Matlab every
change in the structure of a sparse matrix would entail a new copy of the entire
matrix. Hence we take advantage of the fact that when Matlab annihilates
an element of a sparse matrix, the operating system does not deallocate the
memory locations previously allocated for that element of the sparse matrix.
Thus, rather than overlaying a data structure on the triangular factor (as did
Vempati, Slutsker & Tinney [38]), we mark with an special value (e.g., NaN

in Matlab) the elements not used in the structure previously set up, and we
convert them into zeros just before selecting the submatrix to operate with.
This allow us to take advantage of the sparse numerical linear algebra primitives
of the sparse toolbox, but we have to recover the structure after the algebraic
operation involved, reinserting NaNs in those elements where fill-in did not occur
yet; this overhead would be avoided with low-level programming. It is reasonable
to think that orderings that correctly predict the sparsity structure of R (like that
obtained with dmperm) outperform those that only yield an upper bound (like
those obtained with colmmd or colperm) when trying to minimize the overhead
mentioned above.

The astute reader will have realized how we take advantage of the following
fact. Suppose that we start the computation of the QR factorization of AT (e.g.,
to solve min ‖AT x−b‖2) by a row-sequential algorithm (that of George & Heath),
but we stop the computation after mk ≤ n rows of AT have been rotated into
the structure for R. This intermediate result obtained in the kth stage of this QR
factorization of AT is just the QR factorization of AT

k ΠT
k , and the indices of the

rotated rows can be just the indices of the columns of A being in the working
set (hence mk ≤ n) of a non-simplex active-set method in that iteration k. To
the best of our knowledge, Hanson & Wisniewski [25] were the first authors to
point out this analogy between minimizing ‖AT x−b‖2 by processing AT ∈ Rm×n

row by row, and solving the linear program in standard form that consists of
maximizing bT y subject to Ay = c, y ≥ O, by processing A ∈ Rn×m column by
column in the fixed order dictated by an active-set method, thus fully exploiting
that Ak is a subset of the columns of a given fixed matrix A when their dense
work is translated to a sparse setting.

3. Updating the factorization

When we add the pth constraint to the active set we have to add a new column
to the right of Ak, i.e., we have to add a new row aT

p to the bottom of AT
k :

AT
k+1 =

[
AT

k

aT
p

]
.
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Then, given the QR factorization of AT
k ΠT

k , we want to determine the new QR
factorization after the addition of aT

p ; this problem is known as updating the QR
factorization.

Since AT
k = QkRkΠk, we can write

AT
k+1 =

[
AT

k

aT
p

]
=

[
Qk O
OT 1

] [
RkΠk

aT
p

]
,

so we have

[
QT

k O
OT 1

] [
AT

k

aT
p

]
=

[
RkΠk

aT
p

]
=


X X X X X X X

O O X X X X X

O O O O O X X

X X X X X X X

 . (1)

Let fj be the index of the column of ΠT
k where ej appears; e.g., regarding the

first Wilkinson diagram of §2,

f1 = 1, f3 = 2, f6 = 3, and f2 = 4 > 3
.
= mk;

or even, with respect to the second Wilkinson diagram of §2,

f3 = 1, f4 = 2, f7 = 3, and f1 = 4 > 3
.
= mk;

For each j ∈ 1: n, we proceed to annihilate the jth element (if nonzero) of the
updated version of aT

p ; such annihilation is done by a Givens rotation G(fj, mk +

1)T ∈ R(mk+1)×(mk+1) [19, §5.1.8] only if fj ≤ mk, since otherwise we are done.
Hence, after mk rotations (in the worse case) we have

GT .
= G(fn, mk + 1)T · · ·G(f2, mk + 1)T G(f1, mk + 1)T ,

F T GT

[
RkΠk

aT
p

]
.
= Rk+1Πk+1, (2)

where Πk+1 is a permutation matrix such that Rk+1 is trapezoidal with nonzero
diagonal elements, and F T is a suitable row permutation for Rk+1Πk+1 to be
staircase shaped. Then, from (1) and (2),

AT
k+1Π

T
k+1 =

[
Qk O
OT 1

]
GFF T GT

[
RkΠk

aT
p

]
ΠT

k+1
.
= Qk+1Rk+1.

It is well known that in practical algorithms we can dispense with the orthog-
onal factor, since Rk can be updated even if Qk is not available. Furthermore,
as we shall illustrate in the following example, the static sparsity structure itself
implicitly defines both the updated column permutation Πk+1 and the suitable
row permutation F T ; in fact, the actual Givens rotation used to annihilate
the jth element is G(j, n + 1) ∈ R(n+1)×(n+1). This ensures that the updated
trapezoidal factor will remain sparse.
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3.1. Example of updating

Let us consider the matrix whose structure is given in [15, p. 104]. In Matlab,
symbfact(A’,’col’) accomplishes the symbolic analysis of AAT directly on AT

and consequently returns an upper bound structure for RT :

AT =



× ×
× ×

1 −1
× × ×

1 1
1 2

−1 −1
× ×


, RT =


×

×
× ×

× × ×
×

× × × × × ×

 .

Note that we have considered RT instead of R because of locality of reference
issues (Matlab stores the sparse matrices by columns). We have chosen to
proceed row-wise in the mathematical description of the updating due to famil-
iarity reasons; however, for the example to be as real as possible, we shall work
column-wise, postmultiplying by Givens matrices rather than premultiplying by
their transposes.

We have rotated rows aT
6 and aT

7 into R and now we are going to rotate aT
3

(i.e., k = 2, Ak = [a6 a7] and Ak+1 = [a6 a7 a3], where ai is column i of A):

[RT |a3] =


1 1

×
× −1 −1

× −1 ×
×

2 × × × × ×

 and [ΠT
2 RT

2 |a3] =


1 0 1
0 0 0
0 −1 −1
0 −1 0
0 0 0
2 0 0

 ,

where the working vector is located to the right of the vertical bar. Postmulti-

plying by

[
1/
√

2 −1/
√

2

1/
√

2 1/
√

2

]
and by

[ √
6/3 −1/

√
3

1/
√

3
√

6/3

]
, first columns 1 and 3

and then columns 2 and 3, the elements of the working vector are annihilated
downhill using Givens rotations:

√
2 0 0

0 0 0

−1/
√

2 −1 −1/
√

2
0 −1 0
0 0 0√
2 0 −

√
2

 and ΠT
3 RT

3 =



√
2 0 0

0 0 0

−1/
√

2 −
√

6/2 0

0 −
√

6/3 1/
√

3
0 0 0√
2 −

√
6/3 −2/

√
3

 .

Note that fill is restricted to the working vector and the column with respect to
which we are rotating. The column just created has appeared in the last position
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(hence F = I), but it does not happen so in general. Although we have shown
here only the columns of RT that occur in ΠT

k RT
k , we actually work within the

whole structure to avoid the explicit computation of the permutations Πk and F ,
so the mathematical application of F amounts to a simple copy of the working
vector to the right position within the sparsity structure. Finally, the addition
of the 5th constraint entails no rotations:

ΠT
4 RT

4 =



√
2 0 0 0

0 0 0 0

−1/
√

2 −
√

6/2 0 0

0 −
√

6/3 1/
√

3 0
0 0 0 1√
2 −

√
6/3 −2/

√
3 1

 ,

thus obtaining the permuted trapezoidal matrix for A4 = [a6 a7 a3 a5] or any
column permutation A4S4.

4. Downdating the factorization

When we delete the qth constraint from the active set we can assume that it is
the first row of AT

k :

AT
k =

[
aT

q

AT
k+1

]
,

because if it were not the first row we only have to exchange beforehand the
corresponding row and the first row in AT

k . Then, given the QR factorization of
AT

k ΠT
k , we want to determine the new QR factorization after aT

q is deleted; this
problem is known as downdating the QR factorization.

It can be shown (see [20, §3.2.4]) that the presence of the permutation matrix
does not modify in essence the classical downdating algorithm, although it turns
out not to be suitable to be combined with the static structure unless a separate
working vector is introduced. As was pointed out by one of the referees, the
computations of the classical downdating method could be reorganized to rotate
into the bottom row (more precisely, into the row corresponding to the bottom-
most nonzero element of the vector q ∈ Rmk defined below), with that row being
the working vector. What we are (equivalently) going to do here is to reorganize
the computation to rotate into a new top row, with that row being the working
vector, to illustrate the suitability of the proposal to be used in a Linpack
setting.

In a sparse setting it is usual to dispense with Qk. Let us show how the
implicitly determined column permutation fits well into the Linpack algorithm
[34] to downdate the Cholesky factor, because the system ΠT

k RT
k q = aq is also

compatible with only one solution, and solving it we obtain q; furthermore, it does
not destroy the predicted static structure. First we enlarge the matrix RkΠk with
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a suitable number δn to be determined below:

R̄k
.
=

[
δn OT

q RkΠk

]
=


X O O O O O O O

X X X X X X X X

X O O X X X X X

X O O O O O X X

 .

Now if we apply to R̄k several Givens rotations G(1, j)T ∈ R(mk+1)×(mk+1) with
j ∈ mk + 1:−1: 2 to annihilate the nonzeros of q, we obtain

F T GT R̄k
.
= F T G(1, 2)T · · ·G(1, mk)

T G(1, mk + 1)T R̄k
.
=

[
R̄k+1

OT

]
,

where R̄k+1 is the enlarged matrix corresponding to the new factor with Rk+1

trapezoidal with nonzero diagonal elements:

R̄k+1
.
=

[
α αvT Πk+1

O Rk+1Πk+1

]
(α = ±1),

and F T is the permutation needed to move the zero row just created to the mk+1
position. Being G and F orthogonal matrices implies that R̄T

k+1R̄k+1 = R̄T
k R̄k:[

α OT

αΠT
k+1v ΠT

k+1R
T
k+1

] [
α αvT Πk+1

O Rk+1Πk+1

]
=

[
δn qT

O ΠT
k RT

k

] [
δn OT

q RkΠk

]
,

multiplying out and comparing blocks we have that ΠT
k+1v = ΠT

k RT
k q = aq and

that δ2
n = 1− ‖q‖2

2 = 0, because[
1 vT Πk+1

ΠT
k+1v ΠT

k+1(R
T
k+1Rk+1 + vvT )Πk+1

]
=

[
δ2
n + ‖q‖2

2 qT RkΠk

ΠT
k RT

k q ΠT
k RT

k RkΠk

]
.

Thus ΠT
k+1R

T
k+1Rk+1Πk+1 = ΠT

k RT
k RkΠk − aqa

T
q ; that is what we wanted, for

Ak+1A
T
k+1 = ΠT

k+1R
T
k+1Rk+1Πk+1 = ΠT

k RT
k RkΠk − aqa

T
q = AkA

T
k − aqa

T
q .

As in the algorithm given above, the Givens matrices are (mk + 1)× (mk + 1).
Using the additional working row we can get useful information to trigger the
refactorization when ΠT

k+1v and aq differ substantially; furthermore, the data
structure always has enough space allocated to work, and the fill-in is confined to
the working row, as in the updating algorithm but not in the classical downdating
algorithm [20, §3.2.4].

There is a subtle difference with the mk > n Linpack case, in which q is the
first row of an orthonormal matrix and hence ‖q‖2 6= 1 in general. On the other
hand, we can ensure ‖q‖2 = 1 in exact arithmetic when mk ≤ n, since q is the
first row of an orthogonal matrix. This case was excluded from Linpack because
it leads to a reduction in rank after the downdate but, as was pointed out in
1972 by Saunders [34], numerical difficulties are not expected.
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4.1. Example of downdating

Let us go on with the example of §3.1; now we want to delete aT
7 . First we solve

the compatible system ΠT
4 RT

4 q = a7 to obtain q = [0;
√

6/3;−1/
√

3; 0]; as was
pointed out by Heath [26, p. 229] (with his R1 being the same as our Ri),

It is unnecessary to extract R1 from the data structure or write a special
back substitution routine to skip over the zero rows, since the same
effect may be obtained by simply setting the “zero” diagonal elements
equal to 1 and noting that the corresponding components of the right-
hand sides will already be zero.

and hence solving this system does not need any special back substitution
routine, since we can proceed by overlaying ΠT

4 RT
4 on I6 to obtain

[0; 0;
√

6/3;−1/
√

3; 0; 0] and then select the first, third, fourth and fifth
components. Now we enlarge ΠT

4 RT
4 and rotate with respect to the first column

to annihilate the nonzero elements of qT westbound:

R̄T
4

.
=

[
δn qT

O ΠT
4 RT

4

]
=



0 0
√

6/3 −1/
√

3 0

0
√

2 0 0 0
0 0 0 0 0

0 −1/
√

2 −
√

6/2 0 0

0 0 −
√

6/3 1/
√

3 0
0 0 0 0 1

0
√

2 −
√

6/3 −2/
√

3 1


,

where the working vector is now located to the left of the vertical bar; postmul-

tiplying by

[
0 1
−1 0

]
and by

[
−1/

√
3

√
6/3

−
√

6/3 −1/
√

3

]
, first columns 1 and 4 and

then columns 1 and 3, we obtain

1/
√

3 0
√

6/3 0 0

0
√

2 0 0 0
0 0 0 0 0

0 −1/
√

2 −
√

6/2 0 0

−1/
√

3 0 −
√

6/3 0 0
0 0 0 0 1

2/
√

3
√

2 −
√

6/3 0 1


, [R̄T

5 O]F
.
=



−1 0 0 0 0

0
√

2 0 0 0
0 0 0 0 0

1 −1/
√

2 1/
√

2 0 0
1 0 0 0 0
0 0 0 0 1

0
√

2
√

2 0 1


.

Note that the result is the same (barring signs and the last column) as just after
having annihiled the first element when we were rotating aT

3 , that the vector a7

has been recovered in the additional column, and that in this case α = −1. We
have to reset to NaN the zeros shown in bold in order to conserve the predicted
structure for RT in the columns involved. The zero column just created has not
appeared in the last position, hence F 6= I in general. Once again, the work with
the static structure avoids the explicit computation of the permutation F . We
can check the result using Matlab with [Q,R]=qr(sparse([1 0 0 0 0 2; 1

0 -1 0 0 0; 0 0 0 0 1 1])).



Á. Santos & P. Guerrero: Downdating a sparse orthogonal factorization 13

5. Conclusions and future work

We have described how to update and downdate an upper trapezoidal sparse
orthogonal factorization. We have adapted to rectangular matrices (with fewer
columns than rows) the techniques of Saunders [34] for square matrices, by using
the static data structure of George & Heath [13, 26] but allowing sparse row
downdating on it. An implicitly determined column permutation allow us to
dispense with its recomputing; we have shown how it fits well into the Linpack
downdating algorithm and ensures that the updated trapezoidal factor will
remain sparse.

The updatable sparse factorization described in this paper has been imple-
mented in a Matlab toolbox, which has been used to solve the sequence of sparse
compatible systems needed to implement certain non-simplex active-set methods
for linear programming. The formulae needed and the computational results
obtained when solving the first 15 smallest Netlib problems with a highly-
degenerate Phase I are the subject of a forthcoming article [21], in which we
also comment on several advantages of using QR rather than LU, its suitability
to a combined interior-point simplex methodology and several paralellizability
issues.

The numerical analysis of the behaviour in floating-point arithmetic when
solving dense quadratic programs with an orthogonal factorization of AT

k similar
to the one given in §2 was developed by Powell [32, and references therein]. We
have devised [21] a combination with corrected seminormal equations to obtain
an accurate downdating in the spirit of [6], an estimate of the condition number
can be maintained (see [35]) and, when numerical difficulties with the rank arise,
the matrix Rk can be postprocessed as indicated by Heath [26] to obtain a rank-
revealing factorization. Postprocessing Rk for Ri to be well-conditioned can also
be the subject of future research, as well as several paralellizable algorithmic
modifications of the Linpack algorithm given by Bischof et al. [4].

At present we only manage problems in which we can choose an a priori
permutation P of the rows of A such that the Cholesky factor of PAAT P T is
sparse. When this cannot be done (e.g., when A has dense columns), it would be
better to use dynamic techniques as in [10, 11], adapting them to the semidefinite
case to work with AkA

T
k or else regularizing the problem to work with σIn+AkA

T
k .

To deal with this case, we are developing [22] the necessary formulae to use the
Cholesky factor of σIn + AkA

T
k within non-simplex active-set algorithms. We

have also devised (see [33]) sparse orthogonal techniques to deal with AT
k Ak, but

they work on top of the static structure of AT A ∈ Rm×m rather than in that of
AAT ∈ Rn×n, so the combination with interior-point techniques is more difficult;
anyway, they can be used when A has dense columns.

Acknowledgements

The authors thank the referees for having put a lot of work into producing
the reports and marking up our previous manuscript, and for providing us
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20. P. Guerrero-Garćıa. Range-Space Methods for Sparse Linear Programs
(Spanish). Ph.D. thesis, Department of Applied Mathematics, University
of Málaga, Spain, July 2002.
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Appendix

Let us show how the presence of the permutation matrix does not modify in
essence the classical downdating algorithm, although as we shall see below it
turns out not to be suitable to be combined with the static structure. If we add
a column e1 = [1; 0; . . . ; 0] ∈ Rmk , we have

QT
k

[
e1 AT

k

]
= [q RkΠk] , (3)

where eT
1 Qk

.
= qT ∈ Rmk . Now we use a Givens rotation G(j, j + 1)T ∈ Rmk×mk

with j ∈ mk−1:−1: 1 to annihilate the (j +1)th element of q; after mk rotations
(in the worse case) we have

GT q
.
= G(1, 2)T · · ·G(mk − 2, mk − 1)T G(mk − 1, mk)

T q = αe1 (4)

with α = ±1, so

GT [q RkΠk] =

[
α αvT Πk+1

O Rk+1Πk+1

]
, (5)

where Rk+1Πk+1 ∈ R(mk−1)×n with Rk+1 upper trapezoidal with nonzero diagonal
elements. In this way, since the first row of the orthogonal matrix QkG is
eT
1 QkG = αeT

1 from (4), we can write —entering in (3) the identity matrix
GGT and applying (5)— that[

e1 AT
k

]
= QkGGT [q RkΠk] =

[
α OT

O Qk+1

] [
α αvT Πk+1

O Rk+1Πk+1

]
,

so now we can compare terms on both sides of the equation to obtain, with
vT .

= aT
q ΠT

k+1, that[
1 aT

q

O AT
k+1

]
=

[
e1 AT

k

]
=

[
1 vT Πk+1

O Qk+1Rk+1Πk+1

]
,

or, to put it differently, AT
k+1Π

T
k+1 = Qk+1Rk+1.

We have assumed that q is dense in the worse case; when q is sparse, each
rotation is done with respect to the last two rows in which q has nonzero elements,
and finally a rotation is done with respect to the first row to obtain αe1. The
disadvantages of this algorithm in the sparse case is that the product QkG has
to be computed to obtain its submatrix Qk+1, and the static structure cannot be
maintained unless a separate working vector is introduced, see §4. To illustrate
that the mere introduction of the implicitly defined column permutation on
the classical downdating algorithm does not suffice to fit well into a static
sparsity structure, it is instructive to compare the Linpack algorithm against
the classical downdating algorithm. We start with A3 = (ΠT

3 RT
3 )QT

3 from §3.1:
1 0 1
0 0 0
0 −1 −1
0 −1 0
0 0 0
2 0 0

 =



√
2 0 0

0 0 0

−1/
√

2 −
√

6/2 0

0 −
√

6/3 1/
√

3
0 0 0√
2 −

√
6/3 −2/

√
3


 1/

√
2 −1/

√
6 −1/

√
3

0
√

6/3 −1/
√

3

1/
√

2 1/
√

6 1/
√

3

T

.
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Since we want to delete a7 we first have to exchange the first and second rows
of AT

3 and Q3:
0 1 1
0 0 0
−1 0 −1
−1 0 0
0 0 0
0 2 0

 =



√
2 0 0

0 0 0

−1/
√

2 −
√

6/2 0

0 −
√

6/3 1/
√

3
0 0 0√
2 −

√
6/3 −2/

√
3


 0

√
6/3 −1/

√
3

1/
√

2 −1/
√

6 −1/
√

3

1/
√

2 1/
√

6 1/
√

3

T

.

Using Givens rotations, we first postmultiply columns 2 and 3 by[ √
6/3 1/

√
3

−1/
√

3
√

6/3

]
and then columns 1 and 2 by

[
0 1
−1 0

]
:

[
qT

ΠT
3 RT

3

]
G(2, 3)G(1, 2) =



0
√

6/3 −1/
√

3√
2 0 0

0 0 0

−1/
√

2 −
√

6/2 0

0 −
√

6/3 1/
√

3
0 0 0√
2 −

√
6/3 −2/

√
3


G(2, 3)G(1, 2) =

=



0 1 0√
2 0 0

0 0 0

−1/
√

2 −1 −1/
√

2
0 −1 0
0 0 0√
2 0 −

√
2


G(1, 2) =



−1 0 0

0
√

2 0
0 0 0

1 −1/
√

2 −1/
√

2
1 0 0
0 0 0

0
√

2 −
√

2


.

Note that after the first rotation an unexpected fill-in (shown in bold) has
appeared in the static structure. The new orthogonal factor results from 0

√
6/3 −1/

√
3

1/
√

2 −1/
√

6 −1/
√

3

1/
√

2 1/
√

6 1/
√

3

 1 0 0

0
√

6/3 1/
√

3

0 −1/
√

3
√

6/3

 0 1 0
−1 0 0
0 0 1

 =

= Q3G(2, 3)G(1, 2) =

[
α OT

O Q4

]
=

 −1 0 0

0 1/
√

2 −1/
√

2

0 1/
√

2 1/
√

2

 .


