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Abstract. A second scheme for the sagitta method is presented. This
method uses a “global” viewpoint of the linear problem, and, in this
feasible-point version, it also takes advantage of the additional “local”
information that a feasible point supplies. The computational results
obtained are highly encouraging.
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1. Introduction

We consider the linear problem

(ILP ) Minimize
x∈Rn

`(x) = cT x

subject to AT x ≥ b

where A is an n×m matrix. The condition c 6= 0 is added and we use aT
i to

denote the ith row of AT .
A first scheme of the sagitta method for solving this problem has been

recently presented [1]. This new method, which is an intent to resolve the
“myopia” of the simplex method [2, 3, 4, 5, 6], is similar to non-simplex active-
set methods [7, 4], but it has innovative characteristics.

The sagitta method attempts to determine a set of constraints possibly
active at an optimal solution of the (ILP ), using a global viewpoint of the
problem. The first scheme does not use an initial feasible point and it works
with a candidate set (which we call foreactive set) and a corresponding null-
space descent direction. The constraint addition to the foreactive set attempts
initially to determine if a direction of the feasible region exists and, hence, if the
(ILP ) problem is unbounded below. When there is not a null-space descent
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direction, an iteration point is determined (usually exterior to the feasible
region) and, also, a multiplier vector associated. Then, the method continues
undertaking a primal-feasibility search loop, by modifying conveniently the
foreactive set and trying that, if the iteration point is feasible, the associated
multiplier vector is nonnegative.

This work presents a feasible-point sagitta approach that tries, maintaining
this previous basic methodology, to take advantage of the “local” information
upon the feasible region that a feasible point supplies. As feasible-point or
primal method, the method steps down the feasible point whenever possible.

This work is organized as follows. In the following section we sum up basic
preliminary results. In section 3 the second scheme of the sagitta method and
relative formulae are provided, as well as a convergence theorem. In section
4 some linear programs are solved as an example. A particular range space
implementation of the algorithm is described briefly in section 5. Then in
section 6 we give the results of comparative computational tests carried out,
and finally, a summary of remarks and conclusions are presented in section 7.

2. Preliminaries

Basically, the sagitta method is an active-set method since it tries to de-
termine a linearly independent subset A∗ of the active set A(x∗) of active
constraints at an optimal solution x∗ of the (ILP ) problem, working with a
sequence of candidate sets Aj , Aj ⊆ M for M = {1, 2, . . . , m}. However,
the sagitta method presents some innovative characteristics.

Commonly, an active-set method generates a sequence of pairs (x(j),Aj).
The set Aj (usually called active-set or working-set) is a set of constraint
indices with two properties:

(i) if constraint p is in Aj , constraint p is active at the iteration point x(j);

(ii) the normal vectors of constraints in Aj are linearly independent.

Well now, each set Aj defined by the sagitta method (which we call fore-
active set) is a set of constraint indices with only property (ii). And, although
in a feasible-point approach this new method has available a feasible solution
x(j), non-active constraints at x(j) are added to the set Aj . A foreactive set
Aj is not required to contain n indices.

As in a general active-set method, the constraints in the foreactive set are
treated as equalities in order to choose, if it is possible, a null-space descent
direction d(j). That is to say, d(j) as null-space direction satisfies

AT
j d(j) = 0 (1)

and, as descent direction, it is such that

cT d(j) < 0 (2)
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where Aj is the foreactive-set matrix. However, no movement takes place
along the direction d(j) in the first scheme of the sagitta method [1]. But, in
a feasible-point sagitta approach, we consider of interest (not essential) such
a movement along d(j). The interest is twofold: firstly, the approximation of
the feasible point to an optimal solution, and secondly, the availability –as far
as possible– of a varying boundary information. So, if the null-space descent
direction d(j) is a feasible direction at x(j), regardless of the way in which
the foreactive set Aj has been determined, a movement takes place from the
iteration x(j) to a new iteration x(j+1) defined by

x(j+1) = x(j) + αjd
(j)

for a non-negative step length αj .
The sagitta method selects the constraints to be added to the current

foreactive set Aj from among the contrary constraints to the current direction
d(j), where a contrary constraint to the direction d(j) is such that

aT
i d(j) < 0. (3)

Moreover, even though the sagitta method tries to determine an active set
A∗ at an optimal solution of the (ILP ), the candidate foreactive set Aj can
be such that the corresponding null-space descent direction d(j) is feasible for
all the constraints, that is to say, such that

aT
i d(j) ≥ 0 for all i ∈M

or, in other terms, a null-space descent direction d(j) such that it is a direction
of the feasible region (see [2, p. 82] or [3, p. 58]). Then, it is possible to
conclude that the objective function is unbounded below.

Theorem 2.1 Consider the (ILP ) problem and suppose that there is a feasi-
ble solution. If a descent direction d exists such that

AT d ≥ 0,

then the objective function is unbounded below in the feasible region.

Proof: It is straightforward.2

Well now, if the (ILP ) has an optimal solution, the determination of a
null-space descent direction corresponding to a foreactive set Aj not always
will be possible. But it is well-known that if we have no such direction, as the
foreactive-set matrix Aj has full column rank, the system

Ajµ = c (4)
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is compatible (see, for example, [4, p. 377]). Also, it is compatible the set of
equations

aT
i x = bi for all i ∈ Aj ,

or, equivalently, the system
AT

j x = b(j) (5)

where b(j) is the subvector of b with elements bi for all i ∈ Aj . Then, the
resolution of the systems (4) and (5) provide another iteration point x̂(j),
usually exterior to the feasible set, and a multiplier vector µ(j) associated
with it.

If the system (5) is underdetermined, alternative options for the iteration
point x̂(j) are the minimum norm solution of (5) or the solution of (5) closest
to x(j), that is to say, the solution of the least-distance problem

Minimize
x∈Rn

‖ x(j) − x ‖2

subject to AT
j x = b(j).

The following theorem characterizes the minimum norm solution of the
system (5).

Theorem 2.2 Suppose that B is an n × k matrix with full column rank and
that the system BT t = v is underdetermined. Then a solution t∗ of BT t = v
is the minimun norm solution of this system if and only if t∗ lies in the range-
space of B.

Proof: See, for example, [8, Theorem 4.3.2].2

According with this theorem, an option for x̂(j) is

x̂(j) = Aj(AT
j Aj)−1b(j). (6)

On the other hand, a well-known result from linear algebra is that, if x̃
is a particular solution of (5), then x̃ + z is also a solution of (5) if and only
if z lies in the null-space of AT

j , that is, z is a solution of the corresponding
homogeneous system

AT
j x = 0.

Then, if x̃ is selected as the minimum norm solution and Zj is an n × (n −
cardinal(Aj)) matrix whose columns form a basis for the null-space of AT

j , the
solution of the above least-distance problem can be written in the form

x̂(j) = Aj(AT
j Aj)−1b(j) + Zj(ZT

j Zj)−1ZT
j x(j). (7)
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Finally, we note that an iteration point x̂(j) has a multiplier vector µ(j)

associated and it is an optimal solution of the following subproblem

(ELP )j Minimize
x∈Rn

`(x) = cT x

subject to aT
i x = bi for all i ∈ Aj

and, also, if µ(j) ≥ 0, then x̂(j) is an optimal solution of the subproblem
(ILP )j , linear program with the same objective function ` and the inequality
constraints

aT
i x ≥ bi for all i ∈ Aj

with the foreactive set Aj a set of active constraints at x̂(j). That is why,
when a first iteration point x̂(j) is determined, the sagitta method basically
pursuits to carry x̂(j) towards the feasible region by modifying conveniently the
foreactive set and trying that, when we have done it, the associated multiplier
vector is non-negative, therefore, a feasible dual vector.

3. The Feasible-Point Sagitta Method

The first and basic scheme of the sagitta method [1] does not use an initial
feasible point, starts with a foreactive set and a corresponding null-space de-
scent direction and it repeats the constraint addition to the current foreactive
set Aj until there is not a current null-space descent direction d(j). When an
iteration point is determined (usually an exterior point to the feasible region),
the method continues undertaking a loop of additions or exchanges to Aj of
violated constraints at the exterior iteration point, until it concludes that the
(ILP ) has no solution or it finds a feasible solution that it is accustomed to
be an optimal solution of the (ILP ). The restarting of the global process is
taken into account, with a contraint dropping from Aj , but it seldom takes
place.

The feasible-point approach presented below maintains the basic sagitta
methodology, but it tries to take advantage of the “local” information upon
the feasible region that a feasible point x(j) supplies; for example, selecting
active constraints at this point to be added to the foreactive set. Also, as
feasible-point or primal method, x(j) is moved approximating it to an optimal
solution. The method is provided without a description of addition/exchange
strategies for reasons of clarity and generality.

The Feasible-Point Sagitta Method

Let x(1) be a feasible solution; A1 ← ∅; d(1) ← −c ( c 6= 0)

M← {1, 2, . . . , m}; j ← 1
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While ∅ 6= C ←
{

i ∈M−Aj | aT
i d(j) < 0

}
Do

Determine a step length α

x(j+1) ← x(j) + αd(j)

Select P ⊆ C to be added to Aj with Aj ∪P a linearly independent set.
Aj+1 ← Aj ∪ P.
If there is not a null-space descent direction Then

j ← j + 1
Determine a solution x̂(j) of the equations aT

i x = bi for all i ∈ Aj .
Determine the solution µ(j) of Ajµ = c.
While ∅ 6= V ←

{
i ∈M−Aj | aT

i x̂(j) − bi < 0
}

Do
If `(x̂(j)) < `(x(j)) Then

Determine a step length α ∈ [0, 1) for the direction x̂(j)− x(j)

x(j+1) ← x(j) + α(x̂(j) − x(j))
Endif
Select p ∈ V to be added to Aj

If ap ∈ Range–space of Aj Then
Select q ∈ Aj to be exchanged for p

Aj+1 ← Aj − {q} ∪ {p}
Else
Aj+1 ← Aj ∪ {p}.

Endif
Determine a solution x̂(j+1) of the equations aT

i x = bi, ∀i ∈ Aj+1

Determine the solution µ(j+1) of Aj+1µ = c

j ← j + 1.
Endwhile
If `(x̂(j)) ≤ `(x(j)) Then x(j+1) ← x̂(j) Endif
If µ(j) ≥ 0 Then Stop (Problem (ILP) has an optimal solution x(j))

Select Q to be dropped from Aj

Aj+1 ← Aj −Q
Endif
Determine a null-space descent direction d(j+1)

j ← j + 1
Endwhile
Stop (The objective function for the (ILP ) is unbounded below)

We note that the main explicit difference with respect to the first scheme
is the movement of the feasible point x(j), but an implicit difference consists in
the specific addition/exchange strategies for this feasible-point method. Also,
the internal loop continues as a primal feasibility search loop since the multi-
plier vector is associated to the exterior iteration point, and, trivially, a check
for linear programs with no feasible solution is absent.
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The initial selection of A1 = ∅ and d(1) = −c could be changed by another
foreactive set and a corresponding null-space descent direction.

The multiple addition of constraints (cardinal(P) > 1) will be convenient if
we try to join the local and global viewpoint. In the external loop specifically,
if the set C of the contrary constraints to the null-space descent direction d(j)

is not empty, we adopt to select:

A) Boundary or local viewpoint: Or an active constraint at x(j) if the direc-
tion d(j) is not feasible and, hence, α = 0, or else an active constraint at
the new feasible point after a step in the direction d(j) with step length
α > 0.

B) Global viewpoint: A constraint in C, if it does exist, that persists in
being a contrary constraint to the updated null-space descent direction,
after the constraint selected with the boundary criterion is added to the
forective set, or none otherwise.

The “most contrary” thumb rule can be utilized.
The null-space descent direction d(j+1) can be taken as any solution of[

AT
j+1

cT

]
d(j+1) =

[
0
−1

]
or the steepest-descent null-space direction [4, p. 377–378]

d(j+1) = −Zj+1(ZT
j+1Zj+1)−1ZT

j+1c. (8)

The exterior iteration point x̂(j) is a solution of the system (5). If this
system is underdetermined, x̂(j) can be computed through (6) or (7).

The determination of a new iteration point x̂(j+1) in the internal loop can
be carried out by a simple update

x̂(j+1) = x̂(j) +
−rp(x̂(j))
aT

p Pjap
Pjap (9)

where rp(x̂(j)) = aT
p x̂(j) − bp and Pj is the projection operator

Pj = I −Aj(AT
j AT

j )−1AT
j , (10)

even though q ∈ Aj is exchanged for p, but in this case we have to use the
foreactive-set matrix Aj updated without the column corresponding to the qth
constraint.

The computation of a multiplier vector µ(j) that solves the compatible
system (4) can be carried out without the least difficulty. In the internal loop,
when a constraint addition takes place, the update formula of the multiplier
vector is

µ(j+1) =
[

µ(j)

0

]
;
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but, when ap = AT
j η and a constraint exchange occurs, the update formula is

µ(j+1) =
[

µ̄(j) − τ η̄
τ

]
where µ̄(j) and η̄ are the respective vectors µ(j) and η without their kth element
correspondig to the exchanged constraint q for p in Aj , and τ = µ

(j)
k /ηk.

Generally, since the first determined x̂(j) is accustomed to be an exterior
point, the internal loop is crucial for the method convergence aimed in the
sense that we have an optimal solution the first time that x̂(j) arrives at the
boundary of the feasible region. Santos [1] points out a definite parallelism,
from an algorithmic viewpoint, of the internal or primal-feasibility search loop
with dual methods for solving quadratic programs (see, for example, [9, 10]).
And he proved the following convergence theorem for the sagitta method,
although the cycling possibility cannot be ruled out if zero or cuasizero mul-
tipliers are numerous.

Theorem 3.1 Assume that an optimal solution x̂(j) of a subproblem (ILP )j

has been computed. Then, henceforth, the objective function does not decrease
in the primal-feasibility search loop if, when p is such that ap lies in the range-
space of Aj, a constraint q ∈ Aj is exchanged for p, where q is determined
by

µ
(j)
k

ηk
= min

{
µ

(j)
h
ηh

for ηh > 0, h ∈ {1, 2, . . . , cardinal(Aj)}
}

, k = h(q).

(11)
Furthermore, if such loop finishes obtaining a feasible solution, this one is an
optimal solution of the (ILP ).

In the internal loop and bearing in mind this result, Santos [1] suggests to
select the pth constraint to be added to Aj as the most violated constraint
at x̂(j), with normalization in 2-norm, and to use (even when some µ

(j)
i < 0)

the criterion (11) to determine q to be exchanged for p. The behaviour of the
primal-feasibility loop is good, usually convergent.

In this feasible-point method, the availability of a feasible point compels us
to consider a “local” strategy to select p. We have used the boundary criterion
facilitated for the external loop with x̂(j)−x(j) as direction if `(x̂(j)) < `(x(j)),
that is to say if it is a descent direction, or, in other case, the most violated
constraint at x̂(j).

We note that none of the aforementioned strategies is sufficient to ensure
the method convergence to an optimal solution at the first arrival of x̂(j) at the



JOTA: VOL. 94, NO. 1, FEBRUARY 1999 569

boundary of the feasible region, as it can be tested using the particular linear
programs described by Goldfarb [11], whose feasible region is constructed com-
binatorially equivalent to the n-cube (see Example 4.3 in §4). Nevertheless,
the research continues.

4. Examples

Example 4.1: (Unbounded objective)

Minimize −2x1 −3x2 +x3 +12x4

subject to x1 ≥ 0
x2 ≥ 0

x3 ≥ 0
x4 ≥ 0

2x1 +9x2 −x3 −9x4 ≥ 0
−1

3x1 −x2 +1
3x3 +2x4 ≥ 0

Solution: This is a linear program constructed by Kuhn (see [4, p. 351]) to
show that cycling can occurs in the simplex method. We initiate the feasible-
point sagitta method with the feasible point x(1) as the origin, which is a
degenerate vertex where all six constraints are active. Starting with the fore-
active set A1 = ∅ and the descent direction d(1) = −c, the indices of the
contrary constraints to the direction d(1) are {3, 4, 6}, so

aT
3 d(1)

‖a3‖2
= −1,

aT
4 d(1)

‖a4‖2
= −12,

aT
6 d(1)

‖a6‖2
=
−28√
47/3

,

and we select the constraint 6; since only constraint 4 persists in being contrary
to the updated direction [0, −1/3, 0, −1/6]T , we finally add P = {6, 4} to
the foreactive set and it results A2 = {6, 4}. Then, a corresponding null-space
descent direction is

d(2) =


1

−1/3
0
0

 .

The indices of the contrary constraints to d(2) are {2, 5}:

aT
2 d(2)

‖a2‖2
= −1/3,

aT
5 d(2)

‖a5‖2
=
−1√
167

, aT
i d(2) ≥ 0 for i = {1, 3}

and we select constraint 2; since constraint 5 is not contrary to the updated
direction

d(3) =


1
0
1
0

 ,
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Figure 1: Example #2 Linear Program

we only add P = {2} to the foreactive set and it results A3 = {6, 4, 2}.
This direction d(3) is such that AT d(3) ≥ 0 and, therefore, in conformity with
Theorem 1 the objective function is unbounded below for this linear program.
Note that we can conclude this with no move of the initial feasible point and
without the computation of an exterior iteration point.

Example 4.2: (Non-unique solution)

Minimize `(x) = −(6/5)x1 −x2

subject to (5/4)x1 −x2 ≥ −5/2
(11/5)x1 −x2 ≥ −11/5
−(3/2)x1 −(6/5)x2 ≥ −13/4
−(3/2)x1 −x2 ≥ −5/2

−x1 ≥ −7/5
x1 ≥ 0

x2 ≥ 0
−(6/5)x1 −x2 ≥ −12/5

Solution: The application of the feasible-point sagitta method to this linear
program is depicted in figure 1. We have marked with ri the line corresponding
to the ith constraint, we have shadowed the feasible region and the two parallel
dotted lines represent the contour lines `(x) = 0 and `(x) = −4. As an aside,
note that A → B → C → D is the path followed by the simplex method.
Starting with the feasible point x(1) as the origin, the foreactive set A1 = ∅
and the descent direction d(1) = −c (see figure 1), the indices of the contrary
constraints to the direction d(1) are {3, 4, 5, 8}, so

aT
3 d(1)

‖a3‖2
=

−3√
369/10

,
aT

4 d(1)

‖a4‖2
=
−14/5√

13/2
,

aT
5 d(1)

‖a5‖2
= −6/5,

aT
8 d(1)

‖a8‖2
=
−61/25√

61/5
,
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and the min-ratio test gives α = 25/28; we then move the feasible-point x(1)

in the direction d(1) to obtain x(2) = [15/14, 25/28]T (shown with a circle in
figure 1), activating the constraint 4. Now, only constraints in {3, 8} persists
in being contrary to the updated direction d̃(1) = [−10/3, 5]T , so

aT
3 d̃(1)

‖a3‖2
=

−1√
369/10

,
aT

8 d̃(1)

‖a8‖2
=
−1√
61/5

,

and we select the most contrary constraint, in this case constraint 8. Suming
up, we add P = {4, 8} to the foreactive set and it results A2 = {4, 8}.
As cardinal(A2) = n = 2, there is not a corresponding null-space descent
direction.

Solving the systems AT
2 x = b(2) and A2µ = c for

A2 =
[
−3/2 −6/5
−1 −1

]
and b(2) =

[
−5/2
−12/5

]
,

we obtain the iteration point x̂(2) (see point D in figure 1, marked with a plus
sign) and the multiplier vector µ(2) associated with it, respectively; resulting

x̂(2) =
[

1/3
2

]
and µ(2) =

[
0
1

]
.

The residual vector associated with x̂(2) is

r(x̂(2)) = Ax̂(2) − b =
[

11/12 14/15 7/20 0 16/15 1/3 2 0
]T

,

so there is no violated constraint at x̂(2) and the algorithm does not enter in
the primal feasibility search loop. Since `(x̂(2)) = −12/5 < −61/28 = `(x(2)),
we can move the feasible point to obtain x(3) = x̂(2) = [1/3, 2]T (see point D
in figure 1, marked with a circle). The multiplier vector µ(2) is non-negative
too, so we have that x(3) is an optimal solution of the linear program and the
minimum value of the objective function is `(x(3)) = −12/5.

Finally, note that we could have adopted the criterion of it does not add to
the foreactive set the activated constraint when we make a movement. In this
example it implies not to add constraint 4 to the foreactive set and only add
constraint 8, so we have no null-space descent direction. When solving the
corresponding underdetermined system we obtain the exterior point x̂(2) =
[72/61, 60/61]T (marked with a plus sign in figure 1); then, the algorithm
cannot move the feasible point x(2) (α = 0) and enters in the interior loop to
add constraint 4 (the only violated constraint at this exterior point). Next, we
determine the point x̂(3) = [1/3, 2]T (D in figure 1), which brings x(2) towards
him and stops with optimal solution x̂(3) since it is a feasible point which has
non-negative multiplier vector.
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Figure 2: Goldfarb polytope (n = 3;β = 2;δ = 5)

Example 4.3: (Unique solution)

Minimize β(2− β2)x2 + (1− β2)x3

subject to x1 ≥ 0
−βx1 + x2 ≥ 0

x1 − βx2 + x3 ≥ 0
−x1 ≥ −1
−βx1 − x2 ≥ −δ

x1 − βx2 − x3 ≥ −δ2

Solution: This is a parametric linear program constructed by Goldfarb (see
[11]) to show that the simplex method with the steepest-edge pivoting rule
can be forced to visit all intervening vertices. The application of both the
feasible-point sagitta method and the simplex method to a particular case of
this linear program is depicted in figure 2, where we have labeled the vertices in
lexicographical ordering to indicate the path followed by the simplex method.
Note that we have shown four of the six faces of the feasible region:

Constraint Vertices Shown
1 A−D − E −H No
2 A−B −G−H No
3 A−B − C −D Yes
4 B − C − F −G Yes
5 C −D − E − F Yes
6 E − F −G−H Yes
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We start with the initial feasible point x(1) (A in figure 2) as the origin (in
which constraints 1, 2 and 3 are actives), the foreactive set A1 = ∅ and
the descent direction d(1) = −c (see figure 2). The indices of the contrary
constraints to the direction d(1) are {3, 5, 6}; using the strategy given in §3
we select P = {3, 6} to add to the foreactive set, so A2 = {3, 6} and a
null-space descent direction is

d(2) =

 1/2
1/4
0

 .

The indices of the contrary constraints to d(2) are {2, 4, 5} and only
constraint 2 is blocking, so P = {2} and A3 = {3, 6, 2}. As cardinal(A3) =
n = 3, there is not a corresponding null-space descent direction. The first
exterior iteration point (marked with a plus sign in figure 2) and its associated
multiplier vector are:

x̂(3) =

 25/6
25/3
25/2

 and µ(3) =

 −1/6
17/6
4/3

 .

The indices of the violated constraints at x̂(3) are {4, 5} and the algorithm
enters in the primal feasibility search loop. Since `(x̂(3)) = −425/6 < 0 =
`(x(3)), we can move the feasible point along the direction x̂(3)− x(3) during a
step length α = 6/25 to obtain

x(4) = [1, 2, 3]T

which is the B vertex in figure 2. Applying the criterion of Theorem 3 and
the strategy given in §3 for the internal loop (the FP2 program in §6 uses
this strategy), the index of the constraint to be exchanged for p = 4 (the
activated constraint after we have done the movement) is q = 3, because
η = [1/6, 1/6, 2/3]T .

The new foreactive set is A4 = {6, 2, 4}, and the exterior iteration point
and its associated multiplier vector would be:

x̂(4) =

 1
2
22

 and µ(4) =

 3
2
−1

 ,

so the exterior iteration point have arrived the feasible region on vertex G in
figure 2. Since there is no violated constraints in x̂(4) the algorithm exits the
interior loop and forces the feasible point to meet x̂(4):

x(5) = x̂(4)
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but the multiplier vector associated with x̂(4) is not non-negative. Then we
have to procced to the restarting procedure, dropping constraint q = 4 (most
negative multiplier) and recovering a null-space descent direction

d(5) =

 −1
−2
3

 ,

that corresponds to A5 = {6, 2}. The only contrary constraint to d(5) is
constraint 1 and there is no blocking constraint, so we can move the feasible
point x(5) to the H point

x(6) = [0, 0, 25]T

and we add that constraint to the foreactive set, so A6 = {6, 2, 1}; then
we do without descent direction and a newly exterior iteration point can be
determined

x̂(6) =

 0
0
25

 and µ(6) =

 3
2
1

 ,

which coincides again with x(6). Now the algorithm can stop with non-negative
multiplier vector for the newly exterior iteration point x̂(6).

Finally, note that we could have not adopted for the internal loop the
strategy given in §3 and keep on considering p as the index of the most violated
constraint at x̂(3), instead of the index of the activated constraint after we
have done the movement. In this case (the FP1 program in §6 uses this
strategy) it would be p = 5 (the most violated constraint at x̂(3)) instead of
p = 4; the index of the constraint to be exchanged for p is q = 3 too, because
η = [2/3, 2/3, 5/3]T . Now the new foreactive set would be A3bis = {6, 2, 5},
and the exterior iteration point x̂(3bis) (close to G and marked with a plus sign
in figure 2) and its associated multiplier vector would be:

x̂(3bis) =

 5/4
5/2
85/4

 and µ(3bis) =

 3
7/4
−1/4

 .

Constraint 4 would be the unique violated constraint at x̂(3bis) and the algo-
rithm would keep into the primal feasibility search loop. Although `(x̂(3bis)) =
−295/4 < −17 = `(x(3bis)) (with x(3bis) = [1, 2, 3]T ), we would not be able
to move the feasible point along the direction x̂(3bis) − x(3bis) since α = 0 and
then x(4) = x(3bis). Once again, the application of the criterion of Theorem 3
and the most violated constraint thumb rule would supply that q = 5 would
have to be exchanged for p = 4 (because η = [0, 1/4, 1/4]T ), and the new
foreactive set would be A4 = {6, 2, 4}. Suming up, we would obtain the same
foreactive set with the iteration point in the same place, but having deter-
mined one additional exterior iteration point and having done one additional
iteration.
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5. A Range-Space Implementation

We have carried out a first computational implementation of the sagitta
method as a range-space method. The initial election of Aj = ∅ justifies this
option. The slack or artificial variables are unnecessary.

We make use of the QR factorization of the foreactive-set matrix Aj ,

Aj =
[

Yj Zj

] [
Rj

O

]
= YjRj ,

storing and updating only the matrices Yj and Rj . The column vectors of Yj

form an orthonormal basis for the range-space of Aj .
When the pth constraint is added to the foreactive set, Yj+1 =

[
Yj y

]
with

y =
Pjap√
aT

p Pjap

where Pj = In − YjY
T
j and, then, the equality

[
Aj ap

]
=

[
Yj y

] [
Rj Y T

j ap

0T σ

]
holds with σ =

√
aT

p Pjap. A numerically stable computation for σ is advised
when the column ap to be added is nearly linearly dependent of Aj (see [12,
13]). Also, update formulae are immediate for Yj and Rj in the cases of
exchange/drop of constraints.

Then, since ZT
j Zj = I and ZjZ

T
j = In − YjY

T
j , the steepest descent null-

space direction is

d(j) = −Zj(ZT
j Zj)−1ZT

j c = −ZjZ
T
j c = −(In − YjY

T
j )c

and the update formula is

d(j+1) = d(j) + (yT c)y.

Furthermore, the first time that we compute an exterior point x̂(j) we use

x̂(j) = YjR
−T
j b(j)

and its associated multiplier vector µ(j) is obtained by solving the triangular
system

Rjµ
(j) = Y T

j c.

where their updating formulae in the primal-feasibility search loop were given
in §3.

The Modified Gram-Schmidt (MGS) method with reorthogonalization or
the Householder method can be used for a robust and numerically stable im-
plementation [14].
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6. Computational Results

Three Matlab programs implementing the sagitta method and two (FP1
and FP2) feasible-point sagitta versions has been prepared and compared
against. The FP1 program uses the local information only in the external
loop of the algorithm, whereas the FP2 program uses it in the two loops. A
personal computer was employed in this investigation.

No attempt has been made to do an extensive comparison of methods.
Our objective has been to test only with some problems if a feasible-point
approach makes possible an interesting reduction of the iteration number of
the original sagitta method.

Table 1 gives the results obtained by solving randomly generated test prob-
lems for n = 100 and m = 100, 200, 400, 800. A block of 50 problems was
solved for each couple (n, m). The elements of A were generated as numbers
at random, uniformly distributed in the range [−1., 1.]. Also, the elements
of an optimal solution x∗ are random numbers uniformly distributed between
−5. and 5. and the elements of a generalized multiplier vector µ∗ are random
numbers uniformly distributed between 0. and 120., with zero multipliers cor-
responding to non-active constraints. Finally, the vectors c and b are computed
according to the conditions of optimality and, for non-active constraints, ran-
domly generated residues in the range [0., 1.]. The initial feasible-point has
been the nearest to the origin for all these problems.

Sagitta FP1 Sagitta FP2 Sagitta
n=100 Iterations Iterations Iterations

m mean max min mean max min mean max min
100 100.0 100 100 50.6 52 50 50.6 52 50
200 253.1 325 210 185.4 275 113 304.9 458 175
400 403.0 471 327 288.3 379 220 418.3 632 249
800 528.1 611 417 375.6 462 294 492.9 644 343

Table 1: Average results for randomly generated linear programs

The results points out that, for this kind of problems, the FP1 program takes
advantage over the sagitta method, but does not so the FP2 program. The
FP1 program advantage is clearly interesting –more than n/2 iterations less
of average– if m is greater. None of these problems had to drop a constraint
from the foreactive set and to restart the external loop.

Table 2 gives the average results for 50 Kuhn-Quandt problems [15, p.
117]:

(KQ) Maximize
x∈Rn

`(x) = 1T x
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subject to Nx ≤ 1041

x ≥ 0

where 1 is a vector of all unit elements and N is a dense n × n matrix with
integer elements chosen at random in the range 1 to 1000. The initial feasible-
point has been the zero vector for all this problems.

Sagitta FP1 Sagitta FP2 Sagitta
Iterations Iterations Iterations

n mean max min mean max min mean max min
50 132.7 173 101 109.3 159 55 99.7 154 48
100 409.0 503 298 324.0 501 191 279.3 469 136
200 1539.8 2013 1255 1314.8 2012 776 1063.7 1811 433

Table 2: Average results for Kuhn-Quandt problems

The results points out that, for Kuhn-Quandt problems, both FP1 and FP2
programs take advantage over the sagitta method, and the FP2 program is
slightly better. Nevertheless, for 5 over the 50 problems, the FP2 program
restarts the external loop, after it drops one constraint from the foreactive set.
We have seen that the objective function value at the first exterior iteration
point is close to the objective optimal value, and this could be a reason for
the good results of the FP2 program.

Finally, computational results are added for two problems with hard or
pathological characteristics.

Table 3 gives results for parametric linear programs whose feasible region
is a polytope combinatorially equivalent to the n-cube, and used by Goldfarb
[11] on the complexity analysis of the simplex method:

(PLP ) Maximize
x∈Rn

`(x) = cn−1 xn−1+ cn xn

subject to 0 ≤ x1 ≤ 1
βx1 ≤ x2 ≤ δ − βx1

βxj − xj−1 ≤ xj+1 ≤ δj − βxj + xj−1

where j = 2, . . . , n − 1, β ≥ 2 and δ > 2β. The cost vector is selected
in such a way that the optimal solution of the problem is the upper vertex
of the polytope with all its elements, except the last, zeroed (see Example
3 in §4). The simplex method path proceeds through all the 2n vertices if
the initial vertex is the zero vector (using the steepest-edge pivoting rule), but
the Bland’s least-index rule makes possible to reduce the number of vertices
visited.
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Problem characteristics Iterations
n β δ cn−1 cn Simplex Sagitta FP1 Sagitta FP2 Sagitta
6 2 9 7 6 25 31 13 36
6 3 9 377 144 25 33 13 36
6 4 9 2911 780 25 33 13 36
8 2 10 9 8 67 42 18 134
8 3 10 2584 987 67 54 17 134

10 2 8 11 10 177 52 27 520
10 2 10 11 10 177 52 27 520
12 2 8 13 12 465 61 39 2058
12 2 10 13 12 465 62 39 2058

Table 3: Results for Parametric Linear Programs

The results points out that these parametric linear programs are pathological
for the FP2 program; however, the sagitta and FP1 programs take clear ad-
vantage. We have noted that numerical unstability turns up frequently when
solving these problems.

Table 4 gives results for the hard israel test problem from Netlib. This
problem has n = 142 nonnegative variables and m = 174 inequality con-
straints. The initial feasible point x(1) was the vector with objective value
`(x(1)) = −81900 and the following nonzero elements:

x
(1)
[26, 37, 41, 42, 43, 44, 45, 46, 48] = [100, 220, 300, 1100, 100, 200, 100, 400, 200].

Iterations
Method Total First Ext. Point Optimal Objective Value
Sagitta 310 137 -896644.821863070

FP1 Sagitta 210 61 -896644.821863064
FP2 Sagitta 385 62 -896644.821863693

Table 4: Results for the israel problem

The results are highly interesting if we compare against the total iterations
facilitated by Bixby [16] for the simplex method using different Initial Bases
—464 (Artificial), 172 (Feasible Slack), 204 (Slack) and 204 (CPLEX)—, be-
cause the sagitta methods do not use artificial nor slacks variables, and Total
Iterations in Table 4 is the counter of the changes in the foreactive set. So,
for example, the first sagitta computes only 173 iteration points.
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7. Summary

We have considered a feasible-point approach for the sagitta method [1],
a new non-simplex active-set method for solving linear programs in inequality
form. The basic characteristics of the sagitta method are: the use of a global
viewpoint of the problem to determine a foreactive set of constraints, starting
without an iteration point; the constraint addition to the foreactive set to at-
tempt initially to determine if the linear program is unbounded below, and the
special primal-feasibility search loop (when an iteration point, usually exterior
to the feasible region, is determined) to converge to an optimal solution the
first time that the exterior iteration point arrives at the boundary.

The feasible-point sagitta method presented in this paper adds active con-
straints at the feasible point to the foreactive set, trying to take advantage
of the “local” information upon the feasible region obtained by the feasible
point. Convenient strategies are adopted pursuiting the method convergence.

The computational results obtained by a first range-space implementation
are highly encouraging, but not concluding; however they clearly show that
appropriate use of the “local” information allows us to solve different linear
programs with an important reduction of the iteration number, perhaps using
a suitable strategy for each different kind of linear programs.
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