
'

&

$

%

�

�

�

�

'

&

$

%

A graphical approach to monad compositions

P. Eklund, M.A. Galán, J. Medina, M. Ojeda-Aciego, A. Valverde

Technical Report MA/00/03



A Graphical Approach to Monad

Compositions

P. Eklund a M.A. Galán a,1 J. Medina b M. Ojeda-Aciego b

A. Valverde b

aDept. Computing Science. Ume̊a University.
{peklund,magalan}@cs.umu.se

bDept. Matemática Aplicada. Universidad de Málaga.
{jmedina,aciego,a valverde}@ctima.uma.es

Abstract

Techniques for monad compositions can be used to provide a basis for categorical
unification in the framework of generalised terms. In [4], we gave results for the
many-valued sets of terms, and showed that this composition of set functors can be
extended to a monad. In this work we introduce new sufficient conditions for two
monads being composable, and show that the construction in [4] also satisfies these
new condition. In addition, we give a theorem of structure of the multiplication of
the composite monad, i.e. its structure can be determined under certain conditions.

1 Introduction

Monads have shown to be useful in different fields related to computer science.
In functional programming monad compositions are applied to structuring of
functional programs [11]. In particular, in functional programs like parsers
or type checkers the monad needed is often a composed monad [13]. In logic
programming, unification has been identified as the provision of co-equalisers
in Kleisli categories of term monads [12].

The foundational understanding of monads has been well-known for decades,
but proof techniques, especially related to monad compositions have not been
developed. As monad compositions are basically built upon operations of cor-
responding natural transformations, proof techniques require an adequate han-

1 Supported by the Swedish Research Council for Engineering Sciences.

Preprint submitted to Elsevier Preprint 28 July 2000



dling of the basic combinatorial properties of functors and natural transfor-
mations (Godement rules). In [3,6] it was discovered that these combinatorial
properties can be represented more visually, in that the basic observation
relates to distributivity of the star product of natural transformation with
respect to composition of natural transformations.

This improves readability of expressions involving compositions of natural
transformations and supports proofs involving more complex properties. This
visual technique is not widely known and has been used mainly in purely
algebraic contexts [2].

The aim of this paper is to further develop these ideas, and to demonstrate the
use of this technique by providing some concrete examples on generalised terms
where various set functors are composed with the conventional term functor
[4,5]. In particular, we will illuminate the use of this technique by providing
results on preservation properties for iterated compositions and subconstructs.

2 Notations and pictorial representations

Let C be a category and consider (covariant) endofunctors F,G,H, . . . : C→ C,
together with natural transformations τ, σ, . . . : F → G between such endo-
functors. For τ : F → G and σ : G→ H, let σ◦τ : F → H be the usual compo-
sition of natural transformations, and for τ ′ : F ′ → G′, let τ ′?τ : F ′◦F → G′◦G
be the star product given by

τ ′ ? τ = τ ′G ◦ F ′τ = G′τ ◦ τ ′F. (1)

The star product, like composition, is associative.

For the identity transformation idF : F → F , also written as 1F or 1, note
that

1F ? 1G = 1F◦G. (2)

For a natural transformation τ : F → G, and a functor H, (Hτ)X = HτX and
(τH)X = τHX , or equivalently, Hτ = 1H ? τ and τH = τ ? 1H . The following
distributivity laws hold:

1 ? (σ ◦ τ) = (1 ? σ) ◦ (1 ? τ), (3)

(σ ◦ τ) ? 1 = (σ ? 1) ◦ (τ ? 1). (4)

A natural transformation τ : F → G as a basic building block is depicted as

2



F

τ

G

.

Blocks τ : F → G and σ : G→ H are built, or composed, vertically as

F

τ

G

σ

H

=

F

σ ◦ τ

H

.

For τ ′ : F ′ → G′, horizontal block building is done as

F ′ F

τ ′ τ

G′ G

=

F ′ F

τ ′ ? τ

G′ G

.

Note that equation (1) can is pictorially represented by

F ′ F

τ ′ ? τ

G′ G

=

F ′ F

1F ′ ? τ

F ′ G

τ ′ ? 1G

G′ G

=

F ′ F

τ ′ ? 1F

G′ F

1G′ ? τ

G′ G

.

Equation (3) can be written as

K F

1K σ ◦ τ

K H

=

K F

1K ? τ

K G

1K ? σ

K H

,

3



i.e., in this case building blocks can be applied in any order. The same holds
for equation (4).

For natural transformations F
τ→ G

σ→ H and F ′
τ ′→ G′

σ′→ H ′ we then have

F ′ F

τ ′ ? τ

G′ G

σ′ ? σ

H′ H

(1)
=

F ′ F

τ ′ ? 1F

G′ F

1G′ ? τ

G′ G

1G′ ? σ

G′ H

σ′ ? 1H

H′ H

(3)
=

F ′ F

τ ′ ? 1F

G′ F

1G′ ? (σ ◦ τ)

G′ H

σ′ ? 1H

H′ H

(1)
=

F ′ F

τ ′ ? 1F

G′ F

σ′ ? 1F

H′ F

1H′ ? (σ ◦ τ)

H′ H

(4)
=

F ′ F

(σ′ ◦ τ ′) ? 1F

H′ F

1H′ ? (σ ◦ τ)

H′ H

(1)
=

F ′ F

σ′ ◦ τ ′ σ ◦ τ
H′ H

,

i.e., we have (re)proved the Interchange Law

(σ′ ◦ σ) ∗ (τ ′ ◦ τ) = (σ′ ∗ τ ′) ◦ (σ ∗ τ) (5)

which can be summarized as

F ′ F

τ ′ τ

G′ G

σ′ σ

H ′ H

=

F ′ F

σ′ ◦ τ ′ σ ◦ τ

H ′ H

=

F ′ F

τ ′ ? τ

G′ G

σ′ ? σ

H ′ H

showing how blocks with particular positions generally can be attached ver-
tically and horizontally in any order without changing the resulting transfor-
mation.

Note in the transformation

4



F F F

τ σ

F F F

σ τ

F F F

that the composition (σ ? τ) ◦ (τ ? σ) indeed exists, but neither τ ◦ σ nor σ ◦ τ
do. This indicates how the applicability of the Interchange Law is more easily
seen in the pictorial representation of the transformation.

In order to further improve readability of transformation expressions, identity
transformations 1F : F → F as blocks within transformation expressions are
depicted as

F

.

3 Monad compositions

A monad (or triple, or algebraic theory) over C is written as F = (F, η, µ),
where F : C→ C is a (covariant) functor, and η : idC → F and µ : F ◦ F → F
are natural transformations such that

µ ◦ (η ? 1F ) = 1F , (6)

µ ◦ (1F ? η) = 1F , (7)

µ ◦ (1F ? µ) =µ ◦ (µ ? 1F ). (8)

We say that η is respectively a left and right unit, and that the multiplication
µ is associative. These monad conditions, with the identity functor idC : C→ C

written as 1, can be depicted as

1 F F

η

F = 1F

µ

F F

,

F 1 F

η

F = 1F

µ

F F,

5



F F F F F F

µ µ

F = F

µ µ

F F

.

The following result appears in [5]. Similar results appear also in [3,4,8]

Proposition 1 Let F = (F, ηF , µF ) and G = (G, ηG, µG) be monads. Let
σ : G◦F → F ◦G be a natural transformation such that the following properties
hold:

σ ◦ (ηG ? 1F ) = 1F ? η
G,

σ ◦ (1G ? η
F ) = ηF ? 1G, (

(1F ? µ
G) ◦ (σ ? 1G) ◦ (1G ? µ

F ? 1G) ◦ (1GF ? σ) = (µF ? 1G) ◦ (1F ? σ) ◦ (1F ? µ
G ? 1F ) ◦ (σ ? 1G(

Then F •G = (F ◦G, ηFG, µFG) is a monad, where

ηFG = ηF ? ηG, (12)

µFG = (µF ? µG) ◦ (1F ? σ ? 1G). (13)

PROOF. The following proof demonstrates the use of our pictorial represen-
tations.

Firstly, we show that ηFG is a left unit.

1 F G

ηFG

F G

µFG

F G

(12),(13)
=

1 1 F G

ηF ηG

F G

σ

F G

µF µG

F G

(9)
=

1 F 1 G

ηF ηG

F G

µF µG

F G

(6)
=

F G

1F ? 1G

F G

(2)
=

FG

1FG

FG

.

Note how the ’highlighting’ of subexpressions is due to the Interchange Law.
The right unit property is shown similarly.

Secondly, we show that µFG is associative.

6



F G F G F G

µFG

F G

µFG

F G

(13)
=

F G F G F G

σ

F G

µF µG

F G

σ

F G

µF µG

F G

(1)
=

F G F G F G

σ

F G

µG

G

µF

F

σ

F G

µF µG

F G

(5)
=

F G F G F G

σ

F G

µG

G

µF

F

σ

F G

µF µG

F G

(1)
=

F G F G F G

σ

F G

µG

G

σ

F G

µF

F

µF µG

F G

(5)
=

F G F G F G

σ

F G

µG

G

σ

F G

µF

F

µF µG

F G

(8)
=

F G F G F G

σ

F G

µG

G

σ

F G

µF

F

µF µG

F G

7



(5)
=

F G F G F G

σ

F G

µG

G

σ

F G

µF

F

µF µG

F G

(11)
=

F G F G F G

σ

F G

µF

F

σ

F G

µG

G

µF µG

F G

by reverse steps
=

F G F G F G

µFG

F G

µFG

F G

.

2

4 Composing powerset monads with the term monad

Let L be a completely distributive lattice. For L = {0, 1}, write L = 2. The
covariant powerset functor Lid is obtained by LidX = LX , i.e. the set of
mappings A : X → L, and following [7], for a morphism f :X → Y in Set, by
defining

Lidf(A)(y) =
∨
x∈X

A(x) ∧ 2idf({y})(x) =
∨

f(x)=y

A(x).

Further, define ηX : X → LidX by

ηX(x)(x′) =
{

1 if x = x′

0 otherwise

and µX : LidLidX → LidX by

µX(A)(x) =
∨

A∈LidX
A(x) ∧ A(A).

Then, Lid = (Lid, η, µ) is a monad ([10]). Note that 2id is the usual covariant
powerset monad P = (P, η, µ), where PX is the set of subsets of X, ηX(x) =
{x} and µX(B) =

⋃B.

These powerset monads are suitably composed with the term monad. For an
operator domain Ω, let TΩX be the usual set of terms over Ω and variables in
X, i.e., we set TΩX =

⋃∞
k=0 T

k
Ω(X), where

8



T 0
Ω(X) =X,

T k+1
Ω (X) = {(n, ω, (mi)i≤n) | ω ∈ Ωn, n ∈ N,mi ∈ T kΩ(X)}.

The TΩ set functor is extended to a monad TΩ = (TΩ, η
TΩ , µTΩ) in the usual

way ([10]).

In order to compose Lid and TΩ, we need a swapper σ : TΩ ◦ Lid → Lid ◦ TΩ.
In [4], this was given by σX |T 0LX = (1L)X and for l = (n, ω, (li)i≤n) ∈ TαLX,
α > 0, li ∈ T βiLX, βi < α, by

σX(l)((n′, ω′, (mi)i≤n)) =


∧
i≤n σX(li)(mi) if n = n′ and ω = ω′,

0 otherwise.

For L = 2, note that

σX(l) = {(n, ω, (mi)i≤n) | mi ∈ σX(li)}.

In [4] it was shown that σ is a natural transformation satisfying conditions
(9), (10) and (11). Thus, Lid ◦TΩ can be extended to a monad with a unit and
a multiplication given by (12) and (13). These results can be generalised also
to include double (contravariant) powerset functors and filter functors using
multiplications originated from [9].

5 Composing substitutions

The Kleisli category CF for a monad F over a category C is given by Ob(CF) =
Ob(C) and homCF

(X, Y ) = homC(X,FY ), where morphisms f :X ⇁ Y in
CF are morphisms f :X → FY in C, with ηFX :X → FX being the identity
morphism. Composition of morphisms in CF is according to

(X
f
⇁ Y )◦(Y g

⇁ Z) = X
µFZ◦Fg◦f−→ FZ.

In the case of the term monad TΩ, morphisms in the corresponding Kleisli
category are variable substitutions, and most general unifiers are precisely the
co-equalisers in this category ([12]).

References

[1] Adámek, J., Herrlich, H. and Strecker, G., Abstract and Concrete Categories,
John Wiley & Sons, 1990.

9



[2] Barja Pérez, J.M. Personal communication. April, 2000.

[3] Caruncho Castro, J.R. Triples theory. (in Spanish) Department of Algebra of
the Univ. de Santiago de Compostela Reports Series. Alxebra 5, 1971.

[4] Eklund, P., Galán, M.A., Ojeda-Aciego, M. and Valverde, A. Set functors
and generalised terms, Proc. 8th Information Processing and Management of
Uncertainty in Knowledge-Based Systems Conference (IPMU 2000), pp. 1595-
1599.

[5] Eklund, P., Galán, M.A., Medina, J., Ojeda-Aciego, M. and Valverde,
A. Generalised terms and composition of monads, X Spanish Conference
on Fuzzy Logic and Technologies (ESTYLF 2000). Accepted. Available at
http://www.ctima.uma.es/aciego/TR/estylf.pdf

[6] Freire Nistal, J.L. Universal properties in higher order triples. (in Spanish)
Department of Algebra of the Univ. de Santiago de Compostela Reports Series.
Alxebra 11, 1971.

[7] Goguen, J.A. L-fuzzy sets, J. Math. Anal. Appl. 18 (1967), 145-174.

[8] Jones, M.P. and Duponcheel, L. Composing Monads, Research Report
YALEU/DCS/RR-1004, Yale University, New Haven, Connecticut, USA,
December 1993.

[9] Kowalsky, H.-J. Limesräume und Komplettierung, Math. Nachr. 12 (1954), 301-
340.

[10] Manes, E.G. Algebraic Theories, Springer-Verlag, 1976.

[11] Moggi, E. Computational lambda-calculus and monads. In IEEE Symposium
on Logic in Computer Science, 1989.

[12] Rydeheard, D.E. and Burstall, R.M. A categorical unification algorithm, Proc.
Summer Workshop on Category Theory and Computer Programming, 1985,
LNCS 240, pp. 493–505. Springer-Verlag, 1986.

[13] Wadler, J. Comprehending monads. Mathematical structures in computer
science 2:461–493, 1992.

10


