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1) Linear programming problem

canonical form: maxZ=C' X c,xeR"
s.t. Ax <D AcR™ beR". b>0
X=>0
standard form: max Z =C' X
s.t.  Ax+lu=b | e R™M ueR”
X,u = 0.

Sales and production planning
Blending problems

Cutting stock problems
Agriculture

Financial planning

1951: Simplex method of Dantzig (nonpolynomial)
1979: Ellipsoid method of Khachian (polynomial)

1984: Interior point method of Karmakar (polynomial)



Example for the simplex method and cycling

max zZ =4X; +3X, BV | X; | X, | X3 | X4

s.t. 2%, +3%, <12 (1) X 23] 1] 012
x, 2%+ X <8 (2) X, 1| 0] 18
I X[, Xy = 0 Az |4 |31 0| 0] O

X, | 0| 1 | 12[-12] 2

X, | 1| 0 |-1/4|3/4| 3

] 2 3 4 5 Az | 0| 0 | 1/2|3/2] 18

o ¢

Pivo selection rule of Dantzig:
Column v such that: 0> Az, <Az;V].
Row psuchthat: @  >0: Eﬂ /a,, < E/ﬁ]’v Vi with @  >0.



A tableau 1s called , 1f at least one value of the right-hand
side 1s zero. When every tableau 1s nondegenerate, the simplex
algorithm solves a linear problem in a finite number of iterations.
Otherwise may occur, 1.e. after some iterations the algorithm
returns to a previously generated tableau.
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The next iteration results in the initial tableau!

In the following we present conditions which are necessary and sufficient for

cycling and use them to construct cycling examples. ;



3) “History” of simplex cycling

During two years after the publication of Dantzig’s simplex method in
1951 1t was an open problem whether simplex cycling 1s possible. In
more than 50 years only a few cycling examples have been published.

Collection of Gass/Vinjamuri (2004):

1953 Hoffman

1955 Beale

1965 Yudin / Gol shtein

1969 Marshall / Suurballe

1983 Chvatal

1984 Solow

1993 Nering / Tucker

1996 Sierksma

1997 Kuhn (in: Balinski / Tucker)
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The construction of cycling examples was a kind of “ ,
occasionally almost mystified. There did not exist any systematic
construction procedure



Some citations:

Hoffman 1951: “Cycling is certainly not completely understood.”

Beale 1955: “.. .linear programmers are still intrigued by cycling
and seek an understanding of the basic reasons
underlying its occurrence. ..

Lee 1997: “None of those examples is as mysterious as Hoffman’s”

Guerrero-Garcia/Santos-Palomo 2007: Submission of the paper:
“On Hoffman's celebrated cycling example”



4) Basic 1dea of the construction of cycling examples

Here we restrict ourselves to the withn=4andm=2,1.e.
the linear program has the form

maXZ=C1X1+...-|-C4X4
S.t.

A Xy +...+ ayXq4 <0

b1X1+...+ b4X4 <0

X(5...5 X4 > ()

Without loss of generality we may assume that the right-hand side zero.
Let the ” be

C= ({192}9 {293}9 {394}9 {495}9 {596}9 {196}9 {192})9

1. . the first basis consists of columns 1 and 2, the second of columns 2 and 3,
etc.



The tableaux must have the following properties (right-hand side eliminated):

Xg [+] d, dy dy 1 0

Basic indices

u, 65
0 | [[1| O O O 0
Xp | 1 0| [+] | O O O
Xo| 0 1 O O O O
1,25

[+]: element must be positive
[-1: element must be the most negative 8



In order to obtain necessary and sufficient conditions for cycling, every
tableau must be expressed in terms of a ,b.,cC. .

The tableau Tj j associated with the basic variables x; and X;is of the form
| Dij Daj Dsj D4y Dsj Degj

Tij=5—| P DB DBis Dis Dis Dig
"'\ Dij1 Dij2 Dijs Dij4 Dijs Dijs

N q a; a,
where Dij = b; b; . Dijy = biC bcj: bg (1 <I,J,V<6,1< j).
I T Y

For example, a pivot step from T; 4 to T, 5 is possible, iff T; 4 has the
following properties:
v e e

...O> D3,4,5/D3,4 S D3,4,J / D3’4 Vj...



After some simplifications we obtain the following conditions which are

necessary and sufficient for the simplex algorithm to run through the cycle

C =({1,2},{2,3},{3,4},{4,5},{5,6},{1,6},{1,2}):

D, >0> D123 <Di24, Di2s
D;,>0> D324 <D325, D326
D;4>0> D345 < D346, D34,
Ds4>0> D546 <Dsa1, D542
Ds > 0> Ds61<Dsg2, Dse3

D, s >0>Dis,2<Die3, D14

(1)
(2)
3)
(4)
()
(6)

5,6

1,6

()

(4)

(6)

(3)

5,4

1,2

1)

(@)

3,4

3,2
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Note that the variables in the above system are the elements a;,b; e C:
of the 1nitial tableau. For example, D3 4.5 <0 means

<0

a3
by
A specific solution of the above system is:

Cl = 3, C2

a-1. a

T

1
— D
b=, b,

;z, c; = —50, c4:—§,
:1,a3:3, a =2,
400

9 ol 2
2000 0 27 Tt 25

which corresponds to the illustrated cycling example.

Observation:

Determining a cycling example is equivalent to solving a system of
determinantal inequalities of the above type! Thus, nonlinear
programming software can be applied to construct cycling examples!
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Crucial idea for the characterization of the cycling property:
Express all tableaux in terms of the initial tableau, using Cramer’s
Rule:

If the problem is

max z=Cy; X; T ...+ C4 X4
s.t.
@ xyt ... tagxs<0
b] X1 T ...+b4X4S 0
X1y -.-sX4 20

1.e. the 1nitial tableau is

a a a a, 10
b, b, by b, 0 1],
-¢, —¢, —¢ ——¢, 00

the tableau Tj;, having basic variables x; and X; can be expressed as



where D;;= ‘ bi

i

For example,
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(for the numerical example).




Thus, the sequence of tableaux is
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and we get the conditions for cycling

D D. D.
% >0, 0> 2% < =Y for y=2,...,6
D56 D56 D56
D D, D,
250, 0> 2 < ¥ for v=1,3,....6
16 D16 D16
D D. D,
65 > 0, 0 > 456 S 45v for V=1, ’5
45 D45 D45

which can be simplified to

Dis>0, 0> D,,<D,;, D,
D, >0, 0> D,,<D,,, D,
D3, >0, 0> D, <D,,, D,
D3y >0, 0> D,,.<D,,, D,,
Ds; >0, 0> D, <D,,, D,
Ds¢ >0, 0> D, <D,,,, D,



5) Cycling examples for diverse pivot rules

5a) Dantzig's rule with the *“Least-index tie-breaking rule”:
(When several basic variables satisfy the criterion for leaving the basis,
choose the variable with the least index):

m=2n=4: (5.1)

max 14X, —25X, + 210 X3 — 20X,

x1—2x2—%x3+5x4 <0

7 3 1 19

—— Xy —— X3+ X, <0
107 100 507

10

X{5esXq 20

Solution: unbounded

m=2.nNn=4: (5.2)

maxlx +gx —5X —lx
5 1 5 2 3 5 4

1 1
— Xy —— X, + 3%, +2X, <0
401 10072 T

1

1 1 2
+— X+ — X +—X, <0
20 2 3 4

50 50 25

X{s-eesXq 20

Solution: X, =... X, =0
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Example with nonzero right-hand side:

m=4,n=4:

max 14X, —25X, + ! X3 —20X4

7 3 1 19

— X; —— X, +
10 10 100 50

X|+ Xy + X3+ X4 <5

X1+ 2%+ 3%+ X, <10

Solution: (X;, X5, X3, X4)=(10/211, 0, 700/211, 0)

(5.3)

13



Example with higher dimensions:

m=2,nN=6:

C =(iL,2}, {2.3}, 13,4}, 14,5}, 15,6}, 16,7}, {7.8), 1.8}, {1.2)

1 1 9 3 1 3
max | — Xy Xy =Xyt Xs — —Xg

100 100 1000 200 500 20
ix1—100x2— zx_,,—100x4— Xs+ 65Xs <0 (5.4)
20 5
2x— Xy + éx—éx—ix+1x<0
10" ’ 57 27% 1007 10077

X{5--sXg 20

Solution: unbounded

14



5b) Largest-coefficient tie-breaking rule

In practical calculations various problems arise if the pivot element is
“ ” (ill-conditioned basis matrices). Therefore a common
practical tie-braking rule for the leaving basic variable consists in

selecting the largest (positive) element of the entering column as the
pivot element.

m=2,nN=4:
| 1 1 63
max—X + —— X, + —— X3 — ——X4
100 1000 2000 100
7 7
20+ — Xy — — X+ 100x, <0 5.5
" 1007 10077 4 5:2)
3 1 1
—100%, — —X,— —X2+ —X,<0
! 1072 100° 4%
Solution: unbounded X[seeesXq 20
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m=3,n="7:

MY [ IVE I IS IOV eI BV [ I
107072072 25™ 7107 T 2575 T o576 T 00
5 13 1

3 3
Xy — —Xrn+ SXa+ —Xy44+ X+ X +—X%X <0
2"t 107 A S !

(5.6)
— X+ — X, + 2X —Ex +L +lx —lx <0
5 1 2 3 0 4 75 X5 1 6 7=
— 25X = =Xy —=24X3— —=X4— 2X5— 3Xs+ 5%, <0
X{5-ees X7 20

Solution: unbounded
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5¢) Steepest-edge column selection criterion

Most of the linear programming solvers offer the “steepest-edge column
selection” criterion as an alternative for the most negative reduced cost
rule. Here the entering variable i1s selected on the basis of the most
negative ratio of reduced cost to the length of the vector, corresponding to
a unit change in the nonbasic variable, 1. €.

am+1,v <0

.’ | A% +...+32  +1
al,v —I_o-.—l_am‘/—'_ 1 o o o m 1

(the leaving basic variable is determined by the “Largest-coefficient
tie-breaking rule™).

17



m=3,Nn=6:

max— 36X, +%X2 — 20X, —ix4 +Lx5 Jer6

20 20
1 9 23
2%, + — X, — S5, — — X, + Xe + —X. <0
! 572 S 107 > 1000 "°
6 1 14 1
— 41X, — X+ 12X+ Xy — —Xe— — X <0
] 5 2 3 5 4 5 5 500 6

165000%; +2600X, +9600x; +125%X, —100Xs — 300X, <0
X[5--sXg =0

Solution: unbounded

(5.7)
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6) Cycling examples with permutation structure

The cycling example of Hoffman (1953) has the following form. After two
pivot steps the tableau 1s a column permutation of the 1nitial tableau:

BV | Xi| Xo| Xj Xy X X10
AZ 0 O _C3 —C4 _C5 _CIO
x| 1] 0 a, as &l
Xo | 0 1 by b, bs bo
C C C
a, a3
1 a
Xs| —| 0| 1 .
a, a3
b; b
3
X2)l==1 1] 0 Do — =2y
a, a3
AZ | — C9 —Cqo 0 - C8
X | a9| 8| 1 ag




Such permutation structure occurs iff the initial tableau has the following
form, see Zornig (2008, formula (2.7)):

X1 X2 | X3 X4 X5 Xg Xnt1  Xn+2
0 | -ck |-cla+B) . |=cL(1+B+BX+...+B"2
| B B2 B"2
6.1)
where the matrix B e 2 satisfies B"2*! = |, and the tableau satisfies

some determinantal inequalities.

Observe that two pivot steps, substituting X; by X; and x, by X, correspond
to a premultiplication of the tableau by

1 —cl) (1 B}
0 B 0 B

20



Using the above theory and some matrix theory (Bn/ *l =] i e Bis
involutary) one can construct cycling examples with permutation structure.

: In (6.1) choose n = 8 and

1 3
4 10
(— cgj P 1 J5 53
- 3 4 | 1N PPN
10 10 25
by by 1 J5 03
2 2 5



7) Practical relevance/Concluding remarks

The large number of anticycling rules, published over the decades
demonstrate the practical significance of cycling.

The occurrence of this phenomenon 1s not restricted to the original version
of the simplex algorithm.

Almost all improvements and variants of the simplex method, as well as
many of the simplex type algorithms in (nonlinear) mathematical
programming involve the possibility of cycling or stalling, for example:

* steepest edge simplex algorithm * linear complementarity problems
e primal-dual simplex algorithm * bottleneck programming

e exterior point simplex algorithm * piecewise-linear programming

e transportation problems * linearly constrained optimization
 network problems e integral simplex method for

e quadratic problems combinatorial optimization

22



Occurrence of cycling in practice:

(see Zornig 2006: page 2248)

Discussion of cycling in the Internet:

* “Brian’s Digest”,
see http:// www.worms.ms.unimelb.edu. au/digest.html

* “Linear Programming FAQ’s”, see
http://www-unix.mcs.anl.gov/otc/Guide/fac/linear-programming-fac.html

23



Types of cycling

It 1s indispensable to distinguish between classical cycling and
computer cycling.

. arises when the problem data may be
expressed as rational fractions and computations are performed
without round-off errors, 1.¢. the data are always transformed
from rational fractions to rational fractions.

: caused by round-off errors.

All examples above are of the first type!

They need not cause cycling when professional software 1s
applied.

24



Practical use of the results

The results answer the classical question, under which conditions
(classical) cycling may arise. The theory permits the construction
of cycling examples with higher dimensions (all examples in the
literature are small). The possibility of construction 1s only limited
by the capacity of the software used to solve the systems of
determinantal inequalities.

There is a large number of general linear programming test
problems available, but only a few examples for classical cycling.

For example, the “ 7, developed at
Malardalen University in Sweden offers only cycling
examples among their test problems.

A great collection of constructed cycling examples could be useful
to evaluate the practical performance of (anticycling) procedures or
new variants of simplex type methods

25



	1) Linear programming problem

