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1) Linear programming problem
canonical form:

s.t.

standard form:

0,, ≥

s.t.

Fields of application:
Sales and production planning
Blending problems
Cutting stock problems
Agriculture
Financial planning

Solution methods:

ℜ∈ℜ∈ × bbA mnm

xcz T=max
mmm uI ℜ∈ℜ∈ × ,bIuAx =+

.0, ≥ux

0≥x
bAx ≤

xcz T=max nxc ℜ∈,

1951: Simplex method of Dantzig                        (nonpolynomial)
1979: Ellipsoid method of Khachian                    (polynomial)
1984: Interior point method of Karmakar             (polynomial)

1



2) Example for the simplex method and cycling
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Column ν such that:

Row µ such that:
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A tableau is called degenerate, if at least one value of the right-hand 
side is zero. When every tableau is nondegenerate, the simplex 
algorithm solves a linear problem in a finite number of iterations. 
Otherwise cycling may occur, i.e. after some iterations the algorithm 
returns to a previously generated tableau.

Cycling example:

+13max x −220
59 x −350x 45

2 x

+140
1 x +2400

1 x +33x 02 4 ≤x

+120
1 x −2200

9 x +32
1 x 0

25
2

4 ≤x

0,, 41 ≥xx K
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The next iteration results in the initial tableau!

In the following we present conditions which are necessary and sufficient for 
cycling and use them to construct cycling examples.
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3) “History” of simplex cycling
During two years after the publication of Dantzig´s simplex method in 
1951 it was an open problem whether simplex cycling is possible. In 
more than 50 years only a few cycling examples have been published.

Collection of Gass/Vinjamuri (2004):
1953  Hoffman                                
1955  Beale                                     
1965 Yudin / Gol´shtein                    
1969 Marshall / Suurballe                 
1983 Chvátal                                  
1984 Solow                                   
1993 Nering / Tucker                       
1996 Sierksma                               
1997 Kuhn (in: Balinski / Tucker)

The construction of cycling examples was a kind of “mental sport”, 
occasionally almost mystified. There did not exist any systematic 
construction procedure 5



Some citations:

Hoffman 1951: “Cycling is certainly not completely understood.”

Beale 1955: “…linear programmers are still intrigued by cycling    
and seek an understanding of the basic reasons 
underlying its occurrence…“

Lee 1997: “None of those examples is as mysterious as Hoffman´s”

Guerrero-García/Santos-Palomo 2007: Submission of the paper:  
“On Hoffman´s celebrated cycling example”
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4) Basic idea of the construction of cycling examples

Here we restrict ourselves to the easiest case with n = 4 and m = 2, i. e. 
the linear program has the form 

4411max xcxcz ++= K
s.t. 04411 ≤++ xaxa K

04411 ≤++ xbxb K

0,, 41 ≥xx K

Without loss of generality we may assume that the right-hand side zero. 
Let the “simplex cycle” be

{ } { } { } { } { } { } { }( ),2,1,6,1,6,5,5,4,4,3,3,2,2,1=C

i. e. the first basis consists of columns 1 and 2, the second of columns 2 and 3, 
etc.
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The tableaux must have the following properties (right-hand side eliminated):
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VB

: element must be positive
: element must be the most negative
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In order to obtain necessary and sufficient conditions for cycling, every 
tableau must be expressed in terms of .iii cba ,,

The tableau associated with the basic variables and is of the formjiT ix jx

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

654321

654321

6543211

jijijijijiji

iiiiii

jjjjjj

ji
ji

DDDDDD
DDDDDD
DDDDDD

D
T

9

For example, a pivot step from to is possíble, iff        has the 
following properties:

4,3T 4,3T5,4T

KK 5x

KK 4,35,3 / DD
KK jDDDD j ∀≤> 4,3,4,34,35,4,3 //0

KK 0/ 4,34,5 >DD

,bb
aa

:D
ji

ji
ji =

ν

ν

ν
ν

ccc
bbb
aaa

D
ji

ji

ji
ji

−−−
=:where ( )jivji <≤≤ ,6,,1 .



After some simplifications we obtain the following conditions which are 
necessary and sufficient for the simplex algorithm to run through the cycle

{ } { } { } { } { } { } { }( ) :2,1,6,1,6,5,5,4,4,3,3,2,2,1=C

5,2,14,2,13,2,12,1 ,0 DDDD ≤>>

6,2,35,2,34,2,32,3 ,0 DDDD ≤>>

1,4,36,4,35,4,34,3 ,0 DDDD ≤>>

2,4,51,4,56,4,54,5 ,0 DDDD ≤>>

3,6,52,6,51,6,56,5 ,0 DDDD ≤>>

4,6,13,6,12,6,16,1 ,0 DDDD ≤>>

(1)

(2)

(3)

(4)

(5)

(6)

(1)(5)

(4) (2)

(6)

(3)

C

1, 6 1, 2

5, 6 3, 2

5, 4 3, 4
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0

543

543

543

<
−−− ccc
bbb
aaa

,31 =c ,
20
59

2 =c ,503 −=c ,
5
2

4 −=c

,
40
1

1 =a ,
400
1

2 =a ,33 =a ,24 =a

,
20
1

1 =b ,
200
9

2 =b ,
2
1

3 −=b
25
2

4 =b

A specific solution of the above system is:

Note that the variables in the above system are the elements e     
of the initial tableau. For example, means 

ii ba , ic
05,4,3 <D

Observation:
Determining a cycling example is equivalent to solving a system of 
determinantal inequalities of the above type! Thus, nonlinear 
programming software can be applied to construct cycling examples!

which corresponds to the illustrated cycling example.
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Crucial idea for the characterization of the cycling property: 

Express all tableaux in terms of the initial tableau, using Cramer’s 

Rule: 
 

If the problem is 

 

max z = c1 x1 + …+ c4 x4  

s.t. 

              a1 x1 + …+ a4 x4 ≤  0 

              b1 x1 + …+ b4 x4 ≤  0 

                            x1, …,x4 ≥  0 

 

i.e. the initial tableau is  

 

1 2 3 4

1 2 3 4

1 2 3 4

1 0

0 1

0 0

a a a a

b b b b

c c c c

 
 
 
 − − − − 

, 

 

the tableau Tij, having basic variables xi and xj can be expressed as 

 

Tij = 
















654321

654321

654321
1

jijijijijiji

iiiiii

jjjjjj

ji
DDDDDD

DDDDDD

DDDDDD

D
  

 

where Dij = 
ji

ji

bb

aa
,   

νjiD  = 

ν

ν

ν

ccc

bbb

aaa

ji

ji

ji

−−−

. 

 

For example,  

 

T12 = 
















621512421321221121

161541132111

625242322212

21

1

DDDDDD

DDDDDD

DDDDDD

D
  

 

=























−−−

−−−

−

4

265

2

25

10

193

8

165
00

255098
2

325
10

2

5
45

5

449

4

545
01

 (for the numerical example). 
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Thus, the sequence of tableaux is 
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and we get the conditions for cycling 
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which can be simplified to 

 

D16  > 0,    0 > 261D ≤ 361D , 461D  
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5) Cycling examples for diverse pivot rules

5a) Dantzig´s rule with the “Least-index tie-breaking rule”:
(When several basic variables satisfy the criterion for leaving the basis, 
choose the variable with the least index):

0
50
19

100
1

10
3

10
7

4321 ≤+−− xxxx

4321 20
20
72514max xxxx −+−

05
10
12 4321 ≤+−− xxxx

0,, 41 ≥xx K

Solution: unbounded

0
25
2

50
1

50
1

20
1

4321 ≤+++ xxxx

4321 5
15

5
2

2
1max xxxx −−+

023
100

1
40
1

4321 ≤++− xxxx

0,, 41 ≥xx K

041 == xx KSolution:

:4,2 == nm :4,2 == nm(5.1) (5.2)
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Example with nonzero right-hand side:

4321 20
20
72514max xxxx −+−

:4,4 == nm

−1x −22x +310
1 x 05 4 ≤x

0
50
19

100
1

10
3

10
7

4321 ≤+−− xxxx (5.3)

+1x +3x+2x 54 ≤x

+22x 104 ≤x+1x +33x

0,, 41 ≥xx K

Solution: )0,211700,0,21110(),,,( 4321 =xxxx
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Example with higher dimensions:

:6,2 == nm
{ } { } { } { } { } { } { } { } { }( )2,1,8,1,8,7,7,6,6,5,5,4,4,3,3,2,2,1=C

−1100
1max x +2100

1 x −31000
9 x +4200

3 x −5500
1 x 620

3 x

−120
1 x −2100x −35

2 x −4100x +5x 065 6 ≤x (5.4)

−110
9 x +2x −35

3 x −42
3 x +5100

1 x 0
100

1
6 ≤x

0,, 61 ≥xx K

Solution: unbounded
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5b) Largest-coefficient tie-breaking rule
In practical calculations various problems arise if the pivot element is 
“too small” (ill-conditioned basis matrices). Therefore a common 
practical tie-braking rule for the leaving basic variable consists in 
selecting the largest (positive) element of the entering column as the 
pivot element.

Examples:

+1100
1max x +21000

1 x −32000
1 x 4100

63 x

:4,2 == nm

+120x −2100
7 x +3100

7 x 0100 4 ≤x (5.5)

−− 1100x −210
3 x +3100

1 x 0
4
1

4 ≤x

0,, 41 ≥xx KSolution: unbounded
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:7,3 == nm

7654321 200
33

25
2

25
1

10
1

25
2

20
1

10
1max xxxxxxx −++−++

−12
5 x +210

13 x +35x +45
8 x +55

1 x +65
3 x 0

2
3

7 ≤x
(5.6)

0
2
1

10
7

25
1

20
132

5
2

5
12

7654321 ≤−++−++ xxxxxxx

−− 125x −25
8 x −324x +63x−45

1 x −52x 05 7 ≤x

0,, 71 ≥xx K

Solution: unbounded
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5c) Steepest-edge column selection criterion
Most of the linear programming solvers offer the “steepest-edge column 
selection” criterion as an alternative for the most negative reduced cost
rule. Here the entering variable is selected on the basis of the most 
negative ratio of reduced cost to the length of the vector, corresponding to 
a unit change in the nonbasic variable, i. e.

nmj
aa

a

aa

a
a

jmj

jm

m

m

m

+=
+++

≤
+++

<

++

+

,,1
1~~

~

1~~

~
0~

2
,

2
,1

,1
2

,
2
,1

,1

,1

K
KK νν

ν

ν

for all

(the leaving basic variable is determined by the “Largest-coefficient 
tie-breaking rule”). 
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:6,3 == nm

654321 20
1

20
1

4
120

5
336max xxxxxx ++−−+−

+12x −25
1 x −35x 0

1000
23

6 ≤x+410
9 x +5x

(5.7)
−− 141x +25

6 x +312x 0
500
1

6 ≤x−45
1 x −55

14 x

030010012596002600165000 654321 ≤−−+++ xxxxxx

0,, 61 ≥xx K

Solution: unbounded
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KBV 1x 2x 3x 4x 5x 10x

z∆ 0 0 3c− 4c− 5c− 10c−K

1x 1 0 3a 4a 5a 10aK

2x 0 1 3b 4b 5b 10bK

z∆ 9c− 10c− 0 3c− 8c−K

3x 9a 10a 0 3a 8aK

4x 9b 10b 1 3b 8bK

2x
3

3
a
b

− 1 4
3

3
4 a

a
bb − 5

3

3
5 a

a
bb − K 10

3

3
10 a

a
bb −

3x
3

1
a

0
1
0

0

10
3

4
a
a

3

5
a
a K

3

10
a
a

z∆
3

3
a
c

0 0 4
3

3
4 a

a
cc +− 5

3

3
5 a

a
cc +− K 10

3

3
10 a

a
cc +−

6) Cycling examples with permutation structure
The cycling example of Hoffman (1953) has the following form. After two 
pivot steps the tableau is a column permutation of the initial tableau: 

MMM 19



Such permutation structure occurs iff the initial tableau has the following 
form, see Zörnig (2008, formula (2.7)):

where the matrix                satisfies                 , and the tableau satisfies 
some determinantal inequalities.
Observe that two pivot steps, substituting    by     and     by correspond 
to a premultiplication of the tableau by

1x 2x 3x 4x 5x 6x 1+nx 2+nx

0 )( BIcT
B +−T

Bc−

B 2B K 2nB

)( 122 −++++− nT
B BBBIc K

I

K

K

22×ℜ∈B IBn =+12

1x 3x 2x 4x

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟

⎠
⎞

⎜
⎝
⎛ −

−

−−

1

11

0
1

0
1

B
Bc

B
c T

B
T
B .

(6.1)
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Using the above theory and some matrix theory (                 , i. e. B is
involutary) one can construct cycling examples with permutation structure.

IBn =+12

Example: In (6.1) choose n = 8 and

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−

−

=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −−
=⎟

⎠
⎞

⎜
⎝
⎛−

5
3

2
5

2
1

25
53

10
5

10
1

10
3

4
1

43
43
43

bb
aa
cc

B
cT

B
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7) Practical relevance/Concluding remarks
The large number of anticycling rules, published over the decades 
demonstrate the practical significance of cycling. 
The occurrence of this phenomenon is not restricted to the original version 
of the simplex algorithm. 
Almost all improvements and variants of the simplex method, as well as 
many of the simplex type algorithms in (nonlinear) mathematical 
programming involve the possibility of cycling or stalling, for example:

• steepest edge simplex algorithm
• primal-dual  simplex algorithm
• exterior point simplex algorithm
• transportation problems
• network problems
• quadratic problems 

• linear complementarity problems
• bottleneck programming 
• piecewise-linear programming
• linearly constrained optimization
• integral simplex method for

combinatorial optimization
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Occurrence of cycling in practice:

(see Zörnig 2006: page 2248)

Discussion of cycling in the Internet:

• “Brian´s Digest”,
see http://www.worms.ms.unimelb.edu. au/digest.html 

• “Linear Programming FAQ´s”,  see
http://www-unix.mcs.anl.gov/otc/Guide/fac/linear-programming-fac.html
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Types of cycling

It is indispensable to distinguish between classical cycling and
computer cycling. 
Classical cycling: arises when the problem data may be 
expressed as rational fractions and computations are performed 
without round-off errors, i.e. the data are always transformed 
from rational fractions to rational fractions.

Computer cycling: caused by round-off errors.

All examples above are of the first type!
They need not cause cycling when professional software is 
applied.
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Practical use of the results

The results answer the classical question, under which conditions 
(classical) cycling may arise. The theory permits the construction 
of cycling examples with higher dimensions (all examples in the 
literature are small). The possibility of construction is only limited 
by the capacity of the software used to solve the systems of 
determinantal inequalities.
There is a large number of general linear programming test 
problems available, but only a few examples for classical cycling.
For example, the “TOMLAB OPERA Toolbox”, developed at 
Mälardalen University in Sweden offers only three (!) cycling 
examples among their test problems.
A great collection of constructed cycling examples could be useful 
to evaluate the practical performance of (anticycling) procedures or 
new variants of simplex type methods 
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